Education, Smoking and CRP Genetics in Relation to C-Reactive Protein Concentrations in Black South Africans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Measurements
2.2. Anthropometric and Physiological Measurements and Lifestyle Questionnaires
2.3. Genetic Analyses
2.4. Statistical Analyses
2.5. Ethics Statement
3. Results
3.1. Demographics and Anthropometrics of the Study Population and Their CVD-Risk Factors Stratified to at-Risk CRP Phenotypes
3.2. Effects of SES Factors on Association between Different CRP Genotypes and CRP Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Nyirenda, M.J. Non-communicable diseases in sub-Saharan Africa: Understanding the drivers of the epidemic to inform intervention strategies. Int. Health 2016, 8, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 2015, 67, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Strang, F.; Schunkert, H. C-reactive protein and coronary heart disease: All said, is not it? Mediat. Inflamm. 2014, 2014, 757123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, F.A.H.; de Oliveira Izar, M.C. High-sensitivity C-Reactive Protein and cardiovascular disease across countries and ethnicities. Clinics 2016, 71, 235–242. [Google Scholar] [CrossRef]
- Saboia, I.; Pernencar, C.; Varinhos, M. Augmented Reality and nutrition field: A literature review study. Procedia Comput. Sci. 2018, 138, 105–112. [Google Scholar] [CrossRef]
- Nédélec, Y.; Sanz, J.; Baharian, G.; Szpiech, Z.A.; Pacis, A.; Dumaine, A.; Grenier, J.-C.; Freiman, A.; Sams, A.J.; Hebert, S.; et al. Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 2016, 167, 657–669.e21. [Google Scholar] [CrossRef]
- Shah, T.; Newcombe, P.; Smeeth, L.; Addo, J.; Casas, J.P.; Whittaker, J.; Miller, M.A.; Tinworth, L.; Jeffery, S.; Strazzullo, P.; et al. Ancestry as a determinant of mean population C-reactive protein values: Implications for cardiovascular risk prediction. Circ. Cardiovasc. Genet. 2010, 3, 436–444. [Google Scholar]
- Liu, R.S.; Aiello, A.E.; Mensah, F.K.; Gasser, C.E.; Rueb, K.; Cordell, B.; Juonala, M.; Wake, M.; Burgner, D.P. Socioeconomic status in childhood and C reactive protein in adulthood: A systematic review and meta-analysis. J. Epidemiol. Community Health 2017, 71, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Koster, A.; Bosma, H.; Penninx, B.W.; Newman, A.B.; Harris, T.B.; van Eijk, J.T.; Kempen, G.I.; Simonsick, E.M.; Johnson, K.C.; Rooks, R.N.; et al. Association of inflammatory markers with socioeconomic status. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 284–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Bengtsson Boström, K.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob. Health 2019, 7, e748–e760. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, K.N.; Mezuk, B.; Abdou, C.M.; Rafferty, J.A.; Jackson, J.S. Socioeconomic position, health behaviors, and C-reactive protein: A moderated-mediation analysis. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2010, 29, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbujie, B.A.; Igumbor, E.U.; Puoane, T. A cross-sectional study of socioeconomic status and cardiovascular disease risk among participants in the Prospective Urban Rural Epidemiological (PURE) Study. S. Afr. Med. J. 2016, 106, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Min, Y.I.; Anugu, P.; Butler, K.R.; Hartley, T.A.; Mwasongwe, S.; Norwood, A.F.; Sims, M.; Wang, W.; Winters, K.P.; Correa, A. Cardiovascular disease burden and socioeconomic correlates: Findings from the Jackson heart study. J. Am. Heart Assoc. 2017, 6, e004416. [Google Scholar] [CrossRef]
- Pisa, P.T.; Behanan, R.; Vorster, H.H.; Kruger, A. Social drift of cardiovascular disease risk factors in Africans from the North West Province of South Africa: The PURE study. Cardiovasc. J. Afr. 2012, 23, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Pankow, J.S.; Folsom, A.R.; Cushman, M.; Borecki, I.B.; Hopkins, P.N.; Eckfeldt, J.H.; Tracy, R.P. Familial and genetic determinants of systemic markers of inflammation: The NHLBI family heart study. Atherosclerosis 2001, 154, 681–689. [Google Scholar] [CrossRef]
- Reiner, A.P.; Beleza, S.; Franceschini, N.; Auer, P.L.; Robinson, J.G.; Kooperberg, C.; Peters, U.; Tang, H. Genome-wide association and population genetic analysis of C-reactive protein in African American and Hispanic American women. Am. J. Hum. Genet. 2012, 91, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Nienaber-Rousseau, C.; Swanepoel, B.; Dolman, R.C.; Pieters, M.; Conradie, K.R.; Towers, G.W. Interactions between C-reactive protein genotypes with markers of nutritional status in relation to inflammation. Nutrients 2014, 6, 5034–5050. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, U.E.; Venter, C.S.; Vorster, H.H.; Steyn, H.S. A combination of statistical methods for the analysis of the relative validation data of the quantitative food frequency questionnaire used in the THUSA study. Transition, Health and Urbanisation in South Africa. Public Health Nutr. 2001, 4, 45–51. [Google Scholar] [CrossRef] [Green Version]
- R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Ishii, S.; Karlamangla, A.S.; Bote, M.; Irwin, M.R.; Jacobs, D.R., Jr.; Cho, H.J.; Seeman, T.E. Gender, Obesity and Repeated Elevation of C-Reactive Protein: Data from the CARDIA Cohort. PLoS ONE 2012, 7, e36062. [Google Scholar] [CrossRef]
- Bunyasi, E.W.; Coetzee, D.J. Relationship between socioeconomic status and HIV infection: Findings from a survey in the Free State and Western Cape Provinces of South Africa. BMJ Open 2017, 7, e016232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, M.; McClure, L.A.; Howard, V.J.; Jenny, N.S.; Lakoski, S.G.; Howard, G. Implications of elevated c-reactive protein for cardiovascular risk stratification in black and white men and women in the United States. Clin. Chem. 2009, 55, 1627–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006, 83, 461S–465S. [Google Scholar] [CrossRef] [Green Version]
- Timpson, N.J.; Nordestgaard, B.G.; Harbord, R.M.; Zacho, J.; Frayling, T.M.; Tybjarg-Hansen, A.; Davey Smith, G. C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011, 35, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Wee, C.C.; Mukamal, K.J.; Huang, A.; Davis, R.B.; McCarthy, E.P.; Mittleman, M.A. Obesity and C-reactive Protein Levels Among White, Black, and Hispanic US Adults. Obesity 2008, 16, 875–880. [Google Scholar] [CrossRef]
- Whelton, S.P.; Narla, V.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Jenny, N.S.; Al-Mallah, M.H.; Michos, E.D. Association between resting heart rate and inflammatory biomarkers (high-sensitivity C-reactive protein, interleukin-6, and fibrinogen) (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 2014, 113, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Hage, F.G. C-reactive protein and hypertension. J. Hum. Hypertens. 2014, 28, 410–415. [Google Scholar] [CrossRef]
- Liu, S.; Hempe, J.M.; McCarter, R.J.; Li, S.; Fonseca, V.A. Association between Inflammation and Biological Variation in Hemoglobin A1c in U.S. Nondiabetic Adults. J. Clin. Endocrinol. Metab. 2015, 100, 2364–2371. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef]
- Ye, X.; Yu, Z.; Li, H.; Franco, O.H.; Liu, Y.; Lin, X. Distributions of C-reactive protein and its association with metabolic syndrome in middle-aged and older Chinese people. J. Am. Coll. Cardiol. 2007, 49, 1798–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Cooporative Governance and Traditional Affairs. Dr Ruth Segomotsi Mompati District Municipality Profile; Department of Cooporative Governance and Traditional Affairs: Pretoria, South Africa, 2012; p. 17.
- Puzianowska-Kuźnicka, M.; Owczarz, M.; Wieczorowska-Tobis, K.; Nadrowski, P.; Chudek, J.; Slusarczyk, P.; Skalska, A.; Jonas, M.; Franek, E.; Mossakowska, M. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior study. Immun. Ageing 2016, 13, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. Off. Publi. Am. Soc. Parenter. Enter. Nutr. 2010, 25, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Medenwald, D.; Loppnow, H.; Kluttig, A.; Nuding, S.; Greiser, K.H.; Thiery, J.; Tiller, D.; Herzog, B.; Werdan, K.; Haerting, J. Educational level and chronic inflammation in the elderly—The role of obesity: Results from the population-based CARLA study. Clin. Obes. 2015, 5, 256–265. [Google Scholar] [CrossRef]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 15 (Suppl. S3), 51–60. [Google Scholar] [CrossRef]
- Aksu, F.; Çapan, N.; Aksu, K.; Ofluoğlu, R.; Canbakan, S.; Yavuz, B.; Akin, K.O. C-reactive protein levels are raised in stable Chronic obstructive pulmonary disease patients independent of smoking behavior and biomass exposure. J. Thorac. Dis. 2013, 5, 414–421. [Google Scholar]
- Aldaham, S.; Foote, J.A.; Chow, H.-H.S.; Hakim, I.A. Smoking status effect on inflammatory markers in a randomized trial of current and former heavy smokers. Int. J. Inflamm. 2015, 2015, 439396. [Google Scholar] [CrossRef] [Green Version]
- Chiolero, A.; Faeh, D.; Paccaud, F.; Cornuz, J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am. J. Clin. Nutr. 2008, 87, 801–809. [Google Scholar] [CrossRef] [Green Version]
Variables Indicated as n (%) or Median [IQR] | Normal CRP (<3 mg/L) n = 751 | Elevated CRP (>3 mg/L) n = 818 | p-Value ¤ | Statistic ǂ | p-Value ∞ |
---|---|---|---|---|---|
Men | 317 (42.2%) | 270 (33.0%) | <0.001 | 2.42 [0.72; 7.87] | <0.0002 |
Women | 434 (57.8%) | 548 (67.0%) | 3.58 [1.24; 10.2] | ||
Menorrhea | 229 (54.7%) | 236 (43.6%) | 0.001 | 3.05 [0.82; 9.00] | <0.0001 |
Amenorrhea | 190 (45.3%) | 305 (56.4%) | 4.31 [1.72; 11.9] | ||
Age (years) * | 46.0 [41.0; 53.0] | 49.0 [42.0; 58.0] | <0.001 | ρ = 0.12 | <0.05 |
HIV-positive | 128 (17.1)/ | 131 (16.1)/ | NS | 3.11 [0.93; 12.0] | NS |
Negative | 620 (82.9) | 683 (83.9) | 3.25 [0.96; 9.14] | ||
Tobacco use (whole group): | |||||
Formerly | 25 (3.4%) | 33 (4.0%) | NS | 3.98 [1.29; 18.3] | NS |
Currently | 403 (54.1%) | 413 (50.6%) | 3.05 [0.89; 9.18] | ||
Never | 317 (42.6%) | 370 (45.3%) | 3.44 [1.04; 9.34] | ||
Alcohol consumption: | |||||
Formerly | 29 (3.9%) | 38 (4.7%) | NS | 3.74 [1.31; 14.1] | NS |
Currently | 321 (43.1%) | 305 (37.6%) | 2.78 [0.85; 9.28] | ||
Never | 394 (53.0%) | 469 (57.8%) | 3.53 [1.05; 9.20] | ||
Body mass index (kg/m2) | 21.6 [18.9; 24.9] | 25.6 [19.7; 32.2] | <0.001 | ρ = 0.24 | <0.0001 |
Underweight | 152 (20.4%) | 134 (16.5%) | 2.51 [0.64; 11.5] | ||
Healthy | 407 (54.6%) | 253 (31.1%) | 1.89 [0.60; 5.67] | ||
Overweight | 127 (17.0%) | 145 (17.8%) | 3.25 [1.30; 7.46] | ||
Obese | 59 (7.9%) | 282 (34.6%) | 8.24 [3.74; 15.9] | ||
Waist circumference (cm) * | 74.3 [68.5; 81.2] | 82.4 [72.2; 92.9] | <0.001 | ρ = 0.27 | <0.0001 |
Hip circumference (cm) * | 90.0 [83.8; 98.4] | 98.2 [85.5; 112] | <0.001 | ρ = 0.21 | <0.0001 |
Dietary intake (kJ) * | 6996 [5265; 9719] | 7284 [5259; 10,025] | NS | ρ = 0.03 | >0.05 |
Urban | 388 (51.7%)/ | 420 (51.3)/ | NS | 3.20 [1.06; 9.83] | NS |
Rural | 363 (48.3%) | 398 (48.7%) | 3.26 [0.86; 8.75] |
Variables Indicated as n (%) or Median [IQR] | Normal CRP (<3 mg/L) n = 751 | Elevated CRP (>3 mg/L) n = 818 | p-Value ¤ | Statistic ǂ | p-Value ∞ | |
---|---|---|---|---|---|---|
Education level | None | 251 (34.1%) | 286 (36.3%) | NS | 3.33 [0.93; 9.91] | NS |
Primary | 304 (41.4%) | 334 (42.4%) | 3.25 [1.01; 9.17] | |||
Secondary | 180 (24.5%) | 167 (21.3%) | 2.80 [0.83; 9.00] | |||
Marital status | Never married | 282 (39.1%) | 268 (33.5%) | 0.04 | 2.86 [0.88; 8.69] | NS |
Partnered | 357 (49.4%) | 405 (50.7%) | 3.36 [0.91; 9.34] | |||
Separated | 30 (4.2%) | 45 (5.6%) | 3.73 [1.21; 11.6] | |||
Widowed | 53 (7.34%) | 81 (10.1%) | 4.41 [1.65; 9.84] | |||
Time to nearest grocery store (minutes) * | 30.0 [20.0; 60.0] | 30.0 [20.0; 60.0] | NS | ρ = –0.015 | NS | |
Time to nearest bank facility (minutes) * | 30.0 [20.0; 60.0] | 40.0 [20.0; 60.0] | NS | ρ = 0.018 | NS | |
Access | 639 (87.2%) | 714 (88.8%) | NS | 3.29 [0.97; 9.49] | NS | |
No access to electricity | 94 (12.8%) | 90 (11.2%) | 2.91 [0.83; 7.76] | |||
Heat source | Coal open fire | 92 (12.6%) | 97 (12.2%) | NS | 3.25 [0.97; 9.87] | NS |
Wood open fire | 343 (47.1%) | 342 (42.9%) | 2.97 [0.84; 8.45] | |||
Portable heater | 28 (3.85%) | 38 (4.76%) | 4.17 [1.05; 15.3] | |||
None | 122 (16.8%) | 129 (16.2%) | 3.17 [0.92; 8.98] | |||
Electricity | 94 (12.9%) | 131 (16.4%) | 3.86 [1.42; 11.2] | |||
Other | 49 (6.7%) | 61 (7.6%) | 4.02 [1.25; 16.0] | |||
Water source | Sourced water | 418 (57.1%) | 440 (55.1%) | NS | 3.25 [0.86; 9.05] | NS |
Municipal water | 314 (42.9%) | 359 (44.9%) | 3.22 [1.13; 9.47] | |||
Roof structure | Galvanized iron sheets | 601 (82.1%) | 641 (79.7%) | NS | 3.19 [0.90; 9.13] | NS |
Asbestos sheets | 86 (11.7%) | 112 (13.9%) | 3.66 [1.21; 13.1] | |||
Other | 45 (6.2%) | 51 (6.4%) | 3.22 [1.10; 9.04] | |||
Cooking fuel | Electricity | 275 (37.6%) | 352 (43.8%) | NS | 3.58 [0.99; 9.87] | NS |
Kerosene | 224 (30.6%) | 222 (27.6%) | 2.96 [0.99; 9.28] | |||
Gas | 32 (4.4%) | 35 (4.4%) | 3.26 [1.05; 9.21] | |||
Wood | 188 (25.7%) | 177 (22.0%) | 2.87 [0.82; 8.86] | |||
Other | 45 (6.2%) | 51 (6.4%) | 3.22 [1.10; 9.04] |
Variables Indicated as n (%) or Median [IQR] | Normal CRP (<3 mg/L) n = 751 | Elevated CRP (>3 mg/L) n = 818 | p-Value ¤ | Statistic ǂ | p-Value ∞ |
---|---|---|---|---|---|
Systolic blood pressure (mmHg) * | 127 [114; 144] | 131 [117; 147] | 0.002 | ρ = 0.06 | NS |
Diastolic blood pressure (mmHg) * | 85.0 [76.0; 94.0] | 88.0 [79.0; 97.0] | <0.001 | ρ = 0.08 | NS |
Heart rate (BPM) * | 70.0 [61.0; 81.0] | 73.0 [64.0; 87.0] | <0.001 | ρ = 0.17 | <0.0001 |
Hypertensive * | 176 (23.6%) | 228 (28.0%) | NS | 3.63 [1.27; 8.88] | NS |
normotensive * | 569 (76.4%) | 586 (72.0%) | 3.11 [0.84; 9.32] | ||
Total cholesterol (mmol/L) * | 4.76 [4.02; 5.79] | 4.95 [4.03; 6.01] | 0.035 | ρ = 0.04 | >0.05 |
HDL-c (mmol/L) * | 1.48 [1.14; 1.98] | 1.34 [1.02; 1.80] | <0.001 | ρ = −0.15 | <0.0001 |
LDL-c (mmol/L) * | 3.01 [2.32; 3.77] | 3.23 [2.44; 4.14] | <0.001 | ρ = 0.1 | <0.0001 |
Triglycerides (mmol/L) * | 1.01 [0.76; 1.41] | 1.14 [0.85; 1.65] | <0.001 | ρ = 0.144 | <0.0001 |
HbA1c (%) * | 5.40 [5.20; 5.70] | 5.60 [5.30; 5.90] | <0.001 | ρ = 0.23 | <0.0001 |
Variable | Estimate β Coefficients | Standard Error | Change (%) * | p-Value |
---|---|---|---|---|
Intercept | −3.387 | 0.388 | <0.0001 | |
Age | 0.014 | 0.004 | 1.41 | 0.0002 |
Heart rate | 0.020 | 0.002 | 2.21 | <0.0001 |
WC | 0.027 | 0.003 | 3.10 | <0.0001 |
HDL-C | −0.249 | 0.059 | −22.0 | <0.0001 |
HbA1c | 0.117 | 0.043 | 12.4 | 0.006 |
Completed at least seven years of formal education | −0.090 | 0.085 | −8.60 | 0.292 |
Twelve or more years of formal education | −0.209 | 0.104 | −18.9 | 0.044 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myburgh, P.H.; Nienaber-Rousseau, C.; Kruger, I.M.; Towers, G.W. Education, Smoking and CRP Genetics in Relation to C-Reactive Protein Concentrations in Black South Africans. Int. J. Environ. Res. Public Health 2020, 17, 6646. https://doi.org/10.3390/ijerph17186646
Myburgh PH, Nienaber-Rousseau C, Kruger IM, Towers GW. Education, Smoking and CRP Genetics in Relation to C-Reactive Protein Concentrations in Black South Africans. International Journal of Environmental Research and Public Health. 2020; 17(18):6646. https://doi.org/10.3390/ijerph17186646
Chicago/Turabian StyleMyburgh, Pieter Hermanus, Cornelie Nienaber-Rousseau, Iolanthé Marike Kruger, and Gordon Wayne Towers. 2020. "Education, Smoking and CRP Genetics in Relation to C-Reactive Protein Concentrations in Black South Africans" International Journal of Environmental Research and Public Health 17, no. 18: 6646. https://doi.org/10.3390/ijerph17186646
APA StyleMyburgh, P. H., Nienaber-Rousseau, C., Kruger, I. M., & Towers, G. W. (2020). Education, Smoking and CRP Genetics in Relation to C-Reactive Protein Concentrations in Black South Africans. International Journal of Environmental Research and Public Health, 17(18), 6646. https://doi.org/10.3390/ijerph17186646