Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Characterization of MGO
2.3. Adsorption Studies
2.4. Optimization of the Adsorption Conditions
3. Results and Discussions
3.1. Characterization
3.2. Effect of pH
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Fractional Factorial Design
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar]
- Hu, X.-J.; Liu, Y.-G.; Zeng, G.-M.; Wang, H.; Hu, X.; Chen, A.-W.; Wang, Y.-Q.; Guo, Y.-M.; Li, T.-T.; Zhou, L.; et al. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets. J. Colloid Interface Sci. 2014, 426, 213–220. [Google Scholar]
- Wu, C.-Y.; Wong, C.-S.; Chung, C.-J.; Wu, M.-Y.; Huang, Y.-L.; Ao, P.-L.; Lin, Y.-F.; Lin, Y.-C.; Shiue, H.-S.; Su, C.-T.; et al. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J. Hazard. Mater. 2019, 375, 224–232. [Google Scholar] [PubMed]
- Wu, L.; Song, J.; Xue, J.; Xiao, T.; Wei, Q.; Zhang, Z.; Zhang, Y.; Li, Z.; Hu, Y.; Zhang, G.; et al. MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells. Toxicol. Lett. 2020, 331, 159–166. [Google Scholar] [PubMed]
- Pruvost-Couvreur, M.; Le Bizec, B.; Béchaux, C.; Rivière, G. A method to assess lifetime dietary risk: Example of cadmium exposure. Food Chem. Toxicol. 2020, 137, 111130. [Google Scholar] [PubMed]
- García-Esquinas, E.; Carrasco-Rios, M.; Navas-Acien, A.; Ortolá, R.; Rodríguez-Artalejo, F. Cadmium exposure is associated with reduced grip strength in US adults. Environ. Res. 2020, 180, 108819. [Google Scholar] [PubMed]
- Farooq, M.; Ullah, A.; Usman, M.; Siddique, K.H.M. Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere 2020, 260, 127652. [Google Scholar] [PubMed]
- Luo, L.Y.; Xie, L.L.; Jin, D.C.; Mi, B.B.; Wang, D.H.; Li, X.F.; Dai, X.Z.; Zou, X.X.; Zhang, Z.; Ma, Y.Q.; et al. Bacterial community response to cadmium contamination of agricultural paddy soil. Appl. Soil Ecol. 2019, 139, 100–106. [Google Scholar]
- Yuan, W.; Cheng, J.; Huang, H.; Xiong, S.; Gao, J.; Zhang, J.; Feng, S. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol Environ. Saf. 2019, 175, 138–147. [Google Scholar] [PubMed]
- Naushad, M.; Mittal, A.; Rathore, M.; Gupta, V. Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin. Water Treat. 2015, 54, 2883–2890. [Google Scholar]
- Wang, H.; Hu, X.; Guo, Y.; Qiu, C.; Long, S.; Hao, D.; Cai, X.; Xu, W.; Wang, Y.; Liu, Y. Removal of copper ions by few-layered graphene oxide nanosheets from aqueous solutions: External influences and adsorption mechanisms. J. Chem. Technol. Biotechnol. 2018, 93, 2447–2455. [Google Scholar] [CrossRef]
- Trakal, L.; Veselská, V.; Šafařík, I.; Vítková, M.; Číhalová, S.; Komárek, M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016, 203, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.A.; Garud, H.B.; Patil, A.H.; Patil, G.D.; Patil, C.R.; Dongale, T.D.; Patil, P.S. Recent advancements in silica nanoparticles based technologies for removal of dyes from water. Colloid Interface Sci. Commun. 2019, 30, 100181. [Google Scholar] [CrossRef]
- Hu, X.-J.; Wang, J.-S.; Liu, Y.-G.; Li, X.; Zeng, G.-M.; Bao, Z.-L.; Zeng, X.-X.; Chen, A.-W.; Long, F. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 2011, 185, 306–314. [Google Scholar] [CrossRef]
- Chenchen, Q.; Ma, M.; Chen, W.; Cai, P.; Huang, Q. Surface complexation modeling of Cu(II) sorption to montmorillonite–bacteria composites. Sci. Total Environ. 2017, 607–608, 1408–1418. [Google Scholar]
- Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454–10462. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.-G.; Zeng, G.-M.; Hu, X.-J.; Hu, X.; Li, T.-T.; Li, H.-Y.; Wang, Y.-Q.; Jiang, L.-H. Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydr. Polym. 2014, 113, 166–173. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Xie, G.; Wang, H.; Tan, X.; Jin, Q.; Zhou, D.; Zhao, Y. Ternary assembly of g-C3N4/graphene oxide sheets /BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation. Chemosphere 2019, 216, 733–741. [Google Scholar] [CrossRef]
- Fang, Y.; Lv, Y.; Tang, J.; Wu, H.; Jia, D.; Feng, D.; Kong, B.; Wang, Y.; Elzatahry, A.A.; Al-Dahyan, D.; et al. Back Cover: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. Int. Ed. 29/2015). Angew. Chem. Int. Ed. 2015, 54, 8566. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, P.; Chen, H.; Zhang, H.; Zhang, Q.; Chen, Y. Polymeric Graphene Bulk Materials with a 3D Cross-Linked Monolithic Graphene Network. Adv. Mater. 2019, 9, e1802403. [Google Scholar] [CrossRef]
- Hu, X.-J.; Liu, Y.-G.; Wang, H.; Chen, A.-W.; Zeng, G.-M.; Liu, S.-M.; Guo, Y.-M.; Hu, X.; Li, T.-T.; Wang, Y.-Q.; et al. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Zhang, J.; Chen, P.; Yang, G.; Zhou, X.; Zhang, Q.; Yan, Q.; Zhang, H. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res. Lett. 2012, 7, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Strezov, V.; Kumar, R.; Weldekidan, H.; Jahan, S.; Dastjerdi, B.H.; Zhou, X.; Kan, T. Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. J. Clean. Prod. 2019, 234, 1235–1245. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, S.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Bioresour. Technol. 2019, 292, 121951. [Google Scholar] [CrossRef]
- Huang, D.; Wu, J.; Wang, L.; Liu, X.; Meng, J.; Tang, X.; Tang, C.; Xu, J. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem. Eng. J. 2019, 358, 1399–1409. [Google Scholar] [CrossRef]
- Liu, S.-B.; Tan, X.-F.; Liu, Y.-G.; Gu, Y.-L.; Zeng, G.-M.; Hu, X.-J.; Wang, H.; Zhou, L.; Jiang, L.-H.; Zhao, B.-B. Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Adv. 2016, 6, 5871–5880. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Y.; Li, B.; Wang, H.; Zeng, G. Adsorption mechanism of polyethyleneimine modified magnetic core–shell Fe3O4@SiO2 nanoparticles for anionic dye removal. RSC Adv. 2019, 9, 32462–32471. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhu, B.; Ren, X.; Shao, D.; Tan, X.; Chen, C. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co-removal. J. Hazard. Mater. 2016, 314, 249–259. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, M.; Singh, D. Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Environ. Pollut 2019, 253, 111–119. [Google Scholar] [CrossRef]
- Lei, L.; Kang, X.; Zhang, Y.; Jia, C.; Yang, Q.; Chen, Z. Highly efficient magnetic separation of organic dyes from liquid water utilizing Fe3O4@graphene composites. Mater. Res. Express 2019, 6, 106106. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 2019, 231, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Liu, C.; Gao, J.; Dionysiou, D.D.; Zhou, D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 2015, 49, 5645–5653. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Zhai, Y.; Wu, L.; Zhang, Y. Magnetic aligned Fe3O4-reduced graphene oxide/waterborne polyurethane composites with controllable structure for high microwave absorption capacity. Carbon 2019, 152, 661–670. [Google Scholar] [CrossRef]
- Yang, H.; Yu, H.; Cui, Q.; Xie, W.; Xia, J.; Li, Y.; Xing, L.; Xu, H.; Zhang, X. A simple synthesis of magnetic ammonium 12-molybdophosphate/graphene oxide nanocomposites for rapid separation of Cs+ from water. J. Radioanal. Nucl. Chem. 2018, 318, 955–966. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Xiong, N.; Bai, Y.; Yilihamu, A.; Ma, Q.; Yang, S.; Wu, D.; Yang, S.T. Carboxylation as an effective approach to improve the adsorption performance of graphene materials for Cu2+ removal. Sci. Total Environ. 2019, 682, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, I.M.; Makarova, L.I.; Yusova, A.A. Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier. Chemosphere 2018, 212, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Namvar-Mahboub, M.; Khodeir, E.; Bahadori, M.; Mahdizadeh, S.M. Preparation of magnetic MgO/Fe3O4 via the green method for competitive removal of Pb and Cd from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124419. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Rafi, M.; Samiey, B.; Cheng, C.-H. Study of Adsorption Mechanism of Congo Red onGraphene Oxide/PAMAM Nanocomposite. Materials 2018, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, J.; Wu, C.; Deng, J.; Liao, W.; Ling, Y.; Yang, Y.; Zhao, Y.; Zhao, Y.; Hu, X.; et al. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design. PLoS ONE 2017, 12, e0187166. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, H.; Chai, L.; Li, M. Effects of single- and multi-organic acid ligands on adsorption of copper by Fe3O4/graphene oxide-supported DCTA. J. Colloid Interface Sci. 2016, 478, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Secula, M.S.; Cretescu, I.; Cagnon, B.; Manea, L.R.; Stan, C.S.; Breaban, I.G. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions. Materials 2013, 6, 2723–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masteri-Farahani, M.; Ghahremani, M. Surface functionalization of graphene oxide and graphene oxide-magnetite nanocomposite with molybdenum-bidentate Schiff base complex. J. Phys. Chem. Solids 2019, 130, 6–12. [Google Scholar] [CrossRef]
- Geshev, J. Interaction plots obtained from in-field magnetization instead of remanence measurements. J. Magn. Magn. Mater. 2018, 467, 135–138. [Google Scholar] [CrossRef]
- Splechtna, R.; Elshehaly, M.; Gračanin, D.; Ɖuras, M.; Bühler, K.; Matković, K. Interactive interaction plot. Vis. Comput. 2015, 31, 1055–1065. [Google Scholar] [CrossRef]
Factors | (−) | 0 | (+) | |
---|---|---|---|---|
A | pH | 4 | 6 | 8 |
B | T (°C) | 15 | 30 | 45 |
C | t (min) | 10 | 35 | 60 |
D | Initial concentration of Cd(II) (mg/L) | 10 | 40 | 70 |
E | NaCl (mM) | 10 | 55 | 100 |
Run | Encoding of Variables | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
1 | −1(4) | 1(45) | −1(10) | 1(70) | 1(100) |
2 | 1(8) | −1(15) | −1(10) | 1(70) | 1(100) |
3 | −1(4) | −1(15) | −1(10) | 1(70) | −1(10) |
4 | 1(8) | 1(45) | −1(10) | −1(10) | 1(100) |
5 | −1(4) | −1(15) | 1(60) | −1(10) | −1(10) |
6 | −1(4) | −1(15) | 1(60) | 1(70) | 1(100) |
7 | 1(8) | 1(45) | −1(10) | 1(70) | −1(10) |
8 | 0(6) | 0(30) | 0(35) | 0(35) | 0(55) |
9 | −1(4) | −1(15) | −1(10) | −1(10) | 1(100) |
10 | 1(8) | 1(45) | 1(60) | 1(70) | 1(100) |
11 | 1(8) | −1(15) | 1(60) | 1(70) | −1(10) |
12 | 1(8) | −1(15) | −1(10) | −1(10) | −1(10) |
13 | −1(4) | 1(45) | 1(60) | 1(70) | −1(10) |
14 | −1(4) | 1(45) | −1(10) | −1(10) | −1(10) |
15 | 1(8) | −1(15) | 1(60) | −1(10) | 1(100) |
16 | 1(8) | 1(45) | 1(60) | −1(10) | −1(10) |
17 | −1(4) | 1(45) | 1(60) | −1(10) | 1(100) |
Kinetic Model | 5 mg/L | 10 mg/L | 20 mg/L | |
---|---|---|---|---|
qe,exp = 8.50 | qe,exp = 11.18 | qe,exp = 15.36 | ||
Pseudo-first-order | k1 (1/min) | 0.293 | 0.339 | 0.294 |
qe,1 (mg/g) | 8.489 | 10.42 | 14.66 | |
R2 | 0.987 | 0.971 | 0.952 | |
Pseudo-second-order | k2 (g/mg min) | 0.083 | 0.077 | 0.038 |
qe,2 (mg/g) | 8.667 | 10.65 | 15.13 | |
h (mg/g min) | 6.235 | 8.734 | 8.699 | |
R2 | 0.991 | 0.986 | 0.982 | |
Elovich model | α (mg/g min) | 3.01 × 1012 | 1.78 × 1011 | 9.61 × 106 |
β (g/mg) | 4.208 | 3.095 | 1.473 | |
R2 | 0.964 | 0.981 | 0.993 |
Model | Parameter | T (°C) | ||
---|---|---|---|---|
15 °C | 30 °C | 45 °C | ||
qe,exp = 10.35 | qe,exp = 22.46 | qe,exp = 31.94 | ||
Langmuir | qmax (mg/g) | 16.68 | 28.43 | 31.45 |
KL (L/mg) | 0.019 | 0.45 | 0.233 | |
R2 | 0.971 | 0.931 | 0.830 | |
Freundlich | n | 1.700 | 3.460 | 4.347 |
KF | 0.763 | 2.309 | 11.78 | |
R2 | 0.972 | 0.957 | 0.990 | |
Temkin | aT (L/g) | 0.308 | 0.608 | 5.928 |
bT (kJ/mol) | 0.816 | 0.448 | 0.519 | |
R2 | 0.907 | 0.918 | 0.966 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, Y.; Hu, X.; Guo, Y.; Cai, X.; Liu, C.; Wang, P.; Liu, Y. Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design. Int. J. Environ. Res. Public Health 2020, 17, 6648. https://doi.org/10.3390/ijerph17186648
Wang H, Zhou Y, Hu X, Guo Y, Cai X, Liu C, Wang P, Liu Y. Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design. International Journal of Environmental Research and Public Health. 2020; 17(18):6648. https://doi.org/10.3390/ijerph17186648
Chicago/Turabian StyleWang, Hui, Yiming Zhou, Xinjiang Hu, Yuan Guo, Xiaoxi Cai, Chunjie Liu, Ping Wang, and Yunguo Liu. 2020. "Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design" International Journal of Environmental Research and Public Health 17, no. 18: 6648. https://doi.org/10.3390/ijerph17186648
APA StyleWang, H., Zhou, Y., Hu, X., Guo, Y., Cai, X., Liu, C., Wang, P., & Liu, Y. (2020). Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design. International Journal of Environmental Research and Public Health, 17(18), 6648. https://doi.org/10.3390/ijerph17186648