Hyperhomocysteinemia Concurrent with Metabolic Syndrome Is Independently Associated with Chronic Kidney Disease among Community-Dwelling Adults in an Urban Korean Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessment of Body Characteristics and Health-Related Behaviors
2.3. Biochemical Assessments
2.4. Definition of Term
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Study Population
3.2. Association between the Presence of HHcy and MetS, and CKD
3.3. Association between the Presence of HHcy and MetS, and Low eGFR
3.4. Association between the Presence of HHcy and MetS, and Albuminuria
3.5. Odds of CKD, Low eGFR, and Albuminuria for Individual MetS Components
3.6. Odds of CKD, Low eGFR, and Albuminuria for the Combination of HHcy and MetS Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chambers, J.C.; Obeid, O.A.; Refsum, H.; Ueland, P.; Hackett, D.; Hooper, J.; Turner, R.M.; Thompson, S.G.; Kooner, J.S. Plasma homocysteine concentrations and risk of coronary heart disease in UK Indian Asian and European men. Lancet 2000, 355, 523–527. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Salpeter, S.F.; Buckley, N.S.; Cooke, J.P.; Fliser, D. Two cardiovascular risk factors in one? Homocysteine and its relation to glomerular filtration rate. A meta-analysis of 41 studies with 27,000 participants. Kidney Blood Press. Res. 2008, 31, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Yuan, Y.; Guo, J.; Yang, S.; Xu, X.; Wang, Q.; Li, Y.; Qin, X.; Tang, G.; Huo, Y. Hyperhomocysteinemia predicts renal function decline: A prospective study in hypertensive adults. Sci. Rep. 2015, 5, 16268. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Nie, J. Homocysteine in Renal Injury. Kidney Dis. 2016, 2, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lerman, L.O. The metabolic syndrome and chronic kidney disease. Transl. Res. 2017, 183, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Ji, E.; Kim, Y.S. Prevalence of chronic kidney disease defined by using CKD-EPI equation and albumin-to-creatinine ratio in the Korean adult population. Korean J. Intern. Med. 2016, 31, 1120–1130. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Oh, H.J.; Choi, H.Y.; Lee, H.; Ryu, D.-R. Impact of chronic kidney disease on mortality: A nationwide cohort study. Kidney Res. Clin. Pract. 2019, 38, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.; Choi, J.; Kim, B.; Kim, T. Socioeconomic burden of chronic kidney disease in South Korea. Korean Public Health Res. 2014, 40, 13–23. [Google Scholar]
- Chin, H.J.; Kim, S.G. Chronic kidney disease in Korea. Korean J. Med. 2009, 76, 511–514. [Google Scholar]
- Koh, K.K. Metabolic Syndrome Fact Sheet in Korea 2018. Available online: http://kscms.org/en/uploads/Metabolic_Syndrome.pdf (accessed on 16 April 2020).
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.; Bilous, R.; Lamb, E.; Coresh, J. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Ärnlöv, J.; Lampa, E. The Interplay Between Fat Mass and Fat Distribution as Determinants of the Metabolic Syndrome Is Sex-Dependent. Metab. Syndr. Relat. Disord. 2017, 15, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Stanisławska-Sachadyn, A.; Woodside, J.V.; Brown, K.S.; Young, I.S.; Murray, L.; McNulty, H.; Strain, J.J.; Boreham, C.A.; Scott, J.M.; Whitehead, A.S.; et al. Evidence for sex differences in the determinants of homocysteine concentrations. Mol. Genet. Metab. 2008, 93, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Toyama, T.; Furuichi, K.; Ninomiya, T.; Shimizu, M.; Hara, A.; Iwata, Y.; Kaneko, S.; Wada, T. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: Meta-analysis. PLoS ONE 2013, 8, e71810. [Google Scholar] [CrossRef] [Green Version]
- Kazancioğlu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2013, 3, 368–371. [Google Scholar] [CrossRef] [Green Version]
- Kubo, S.; Kitamura, A.; Imano, H.; Cui, R.; Yamagishi, K.; Umesawa, M.; Muraki, I.; Kiyama, M.; Okada, T.; Iso, H.; et al. Serum Albumin and High-Sensitivity C-reactive Protein are Independent Risk Factors of Chronic Kidney Disease in Middle-Aged Japanese Individuals: The Circulatory Risk in Communities Study. J. Atheroscler. Thromb. 2016, 23, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Stump, C.S. Physical Activity in the Prevention of Chronic Kidney Disease. Cardiorenal Med. 2011, 1, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liang, Y.; Qiu, B.; Wang, F.; Duan, X.; Yang, X.; Yang, J.; Huang, W.; Wang, N. Metabolic syndrome and chronic kidney disease in a rural Chinese population. Clin. Chim Acta 2011, 412, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, V.T.; Schei, J.; Jenssen, T.G.; Melsom, T.; Eriksen, B.O. Central obesity associates with renal hyperfiltration in the non-diabetic general population: A cross-sectional study. BMC Nephrol. 2016, 17, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozawa, M.; Iseki, K.; Iseki, C.; Oshiro, S.; Ikemiya, Y.; Takishita, S. Triglyceride, but not total cholesterol or low-density lipoprotein cholesterol levels, predict development of proteinuria. Kidney Int. 2002, 62, 1743–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, J.; Liu, M.; Wu, L.; Wang, J.; Yang, S.; Wang, Y.; Yao, Y.; Jiang, B.; He, Y. The Association of Hypertriglyceridemic Waist Phenotype with Chronic Kidney Disease and Its Sex Difference: A Cross-Sectional Study in an Urban Chinese Elderly Population. Int. J. Environ. Res. Public Health 2016, 13, 1233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yuan, Z.; Chen, W.; Chen, S.; Liu, X.; Liang, Y.; Shao, X.; Zou, H. Serum Lipid Profiles, Lipid Ratios and Chronic Kidney Disease in a Chinese Population. Int. J. Environ. Res. Public Health 2014, 11, 7622–7635. [Google Scholar] [CrossRef] [Green Version]
- Eo, G.; Na, L. Cardiovascular Complications in CKD Patients: Role of Oxidative Stress. Cardiol. Res. Pract. 2011. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, C.E.; Silverio, D.; Tsomidou, C.; Salcedo, M.D.; Montan, P.D.; Guzman, E. The Impact of Insulin Resistance and Chronic Kidney Disease on Inflammation and Cardiovascular Disease. Clin. Med. Insights 2018, 11. [Google Scholar] [CrossRef]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Derm. 2018, 36, 14–20. [Google Scholar] [CrossRef]
- Laha, A.; Majumder, A.; Singh, M.; Tyagi, S.C. Connecting homocysteine and obesity through pyroptosis, gut microbiome, epigenetics, peroxisome proliferator-activated receptor gamma, and zinc finger protein 407. Can. J. Physiol. Pharmacol. 2018, 96, 971–976. [Google Scholar] [CrossRef]
- Chen, J.Y.; Tsai, Y.W.; Chen, S.Y.; Ho, C.I.; Weng, Y.M.; Hsiao, C.T.; Li, W.C. The association of leptin and homocysteine with renal function impairment in a population of Taiwanese adults. Clin. Nutr. 2015, 34, 943–950. [Google Scholar] [CrossRef]
- Farooq, A.; Knez, W.L.; Knez, K.; Al-Noaimi, A.; Grantham, J.; Mohamed-Ali, V. Gender differences in fat distribution and inflammatory markers among Arabs. Mediat. Inflamm. 2013, 2013, 497324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Li, F.; Wang, F.; Ma, X.; Zhao, X.; Zeng, Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. Medicine 2016, 95, e3769. [Google Scholar] [CrossRef] [PubMed]
- Wahba, I.M.; Mak, R.H. Obesity and Obesity-Initiated Metabolic Syndrome: Mechanistic Links to Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto-Sietsma, S.J.; Navis, G.; Janssen, W.M.; de Zeeuw, D.; Gans, R.O.; de Jong, P.E. A central body fat distribution is related to renal function impairment, even in lean subjects. Am. J. Kidney Dis. 2003, 41, 733–741. [Google Scholar] [CrossRef]
- Briley, L.P.; Szczech, L.A. Leptin and renal disease. Semin Dial. 2006, 19, 54–59. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Charchar, F.J.; Maric, C.; McClure, J.; Crawford, L.; Grzeszczak, W.; Sattar, N.; Zukowska-Szczechowska, E.; Dominiczak, A.F. Glomerular hyperfiltration: A new marker of metabolic risk. Kidney Int. 2007, 71, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.-W.; Whang, D.H.; Ko, Y.J.; Joo, S.Y.; Yun, Y.-M.; Hur, M.; Kim, J.Q. Reference interval and determinants of the serum homocysteine level in a Korean population. J. Clin. Lab. Anal. 2011, 25, 317–323. [Google Scholar] [CrossRef]
- Yang, B.; Fan, S.; Zhi, X.; Wang, Y.; Wang, Y.; Zheng, Q.; Sun, G. Prevalence of hyperhomocysteinemia in China: A systematic review and meta-analysis. Nutrients 2014, 7, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Holst-Schumacher, I.; Monge-Rojas, R.; Cambronero-Gutierrez, P.; Brenes, G. Genetic, dietary, and other lifestyle determinants of serum homocysteine levels in young adults in Costa Rica. Rev. Panam. Salud Publica 2005, 17, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Wadia, R.S.; Edul, N.C.; Bhagat, S.; Bandishti, S.; Kulkarni, R.; Sontakke, S.; Barhadi, S.; Shah, M. Hyperhomocysteinaemia And Vitamin B12 Deficiency In Ischaemic Strokes In India. Ann. Indian Acad. Neurol. 2004, 7, 387–392. [Google Scholar]
- Kamat, P.K.; Mallonee, C.J.; George, A.K.; Tyagi, S.C.; Tyagi, N. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcohol Clin. Exp. Res. 2016, 40, 2474–2481. [Google Scholar] [CrossRef] [PubMed]
- Komenda, P.; Ferguson, T.W.; Macdonald, K.; Rigatto, C.; Koolage, C.; Sood, M.M.; Tangri, N. Cost-effectiveness of primary screening for CKD: A systematic review. Am. J. Kidney Dis. 2014, 63, 789–797. [Google Scholar] [CrossRef] [PubMed]
Male | Female | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HHcy−/MetS− | HHcy−/MetS+ | HHcy+/MetS− | HHcy+/MetS+ | Total | p | HHcy−/MetS− | HHcy−/MetS+ | HHcy+/MetS− | HHcy+/MetS+ | Total | p | |
Number of participants | 7828 (72.19) | 1561 (14.40) | 1231 (11.35) | 223 (2.06) | 10,843 | 5959 (70.37) | 2233 (26.37) | 202 (2.39) | 74 (0.87) | 8468 | ||
eGFR, mL/min/1.73 m2 | 97.34 ± 19.36 | 96.59 ± 17.73 | 90.27 ± 43.66 | 88.10 ± 20.32 | 96.24 ± 23.39 | <0.001 | 105.96 ± 22.68 | 105.21 ± 21.10 | 90.28 ± 25.05 | 86.97 ± 29.32 | 105.22 ± 22.59 | <0.001 |
Homocysteine, μmol/L | 10.38 ± 2.31 | 10.15 ± 2.32 | 19.24 ± 4.53 | 18.85 ± 4.03 | 11.52 ± 4.05 | <0.001 | 8.06 ± 2.27 | 7.97 ± 2.26 | 18.80 ± 4.35 | 19.22 ± 3.65 | 8.39 ± 3.04 | <0.001 |
Age, years | 47.86 ± 11.01 | 47.48 ± 11.40 | 49.21 ± 12.88 | 47.65 ± 13.09 | 47.95 ± 11.35 | <0.001 | 48.07 ± 11.76 | 47.51 ± 11.77 | 53.51 ± 15.42 | 52.61 ± 14.52 | 48.09 ± 1.93 | <0.001 |
Central obesity | 655 (8.37) | 937 (60.03) | 104 (8.45) | 130 (58.30) | 1826 (16.84) | <0.001 | 998 (16.75) | 1679 (75.19) | 39 (19.31) | 56 (75.68) | 2772 (32.74) | <0.001 |
High TG | 1460 (18.65) | 1276 (81.74) | 219 (17.79) | 180 (80.72) | 3135 (28.91) | <0.001 | 752 (12.62) | 1609 (72.06) | 29 (14.36) | 54 (72.97) | 2444 (28.86) | <0.001 |
Low HDL | 435 (5.56) | 633 (40.55) | 52 (4.22) | 84 (37.67) | 1204 (11.10) | <0.001 | 1230 (20.64) | 1699 (76.09) | 40 (19.80) | 56 (75.68) | 3025 (35.72) | <0.001 |
High blood pressure | 2192 (28.00) | 1219 (78.09) | 353 (28.68) | 174 (78.03) | 3938 (36.32) | <0.001 | 1374 (23.06) | 1550 (69.41) | 55 (27.23) | 51 (68.92) | 3030 (35.78) | <0.001 |
High fasting glucose | 1655 (21.14) | 1190 (76.23) | 244 (19.82) | 172 (77.13) | 3261 (30.07) | <0.001 | 998 (16.75) | 1387 (62.11) | 39 (19.31) | 35 (47.30) | 2459 (29.04) | <0.001 |
Current smoker | 3652 (46.65) | 738 (47.28) | 565 (45.90) | 113 (50.67) | 5068 (46.74) | 0.898 | 445 (7.47) | 173 (7.75) | 12 (5.94) | 4 (5.41) | 634 (7.49) | 0.673 |
Binge drinker | 991 (12.66) | 199 (12.75) | 168 (13.65) | 33 (14.80) | 1391 (12.83) | 0.331 | 766 (12.85) | 301 (13.48) | 29 (14.36) | 13 (17.57) | 1109 (13.10) | 0.797 |
Physically inactive | 3829 (48.91) | 751 (48.11) | 601 (48.82) | 114 (51.12) | 5295 (48.83) | 0.846 | 2732 (45.85) | 978 (43.80) | 98 (48.51) | 32 (43.24) | 3840 (45.35) | 0.294 |
Hs-CRP, mg/L | 0.13 ± 0.44 | 0.22 ± 0.75 | 0.12 ± 0.34 | 0.19 ± 0.48 | 0.14 ± 0.49 | <0.001 | 0.13 ± 0.63 | 0.21 ± 1.01 | 0.11 ± 0.53 | 0.18 ± 0.42 | 0.15 ± 0.75 | <0.001 |
Albumin, g/L | 4.51 ± 0.29 | 4.58 ± 0.30 | 4.53 ± 0.28 | 4.59 ± 0.28 | 4.53 ± 0.29 | <0.001 | 4.49 ± 0.29 | 4.55 ± 0.29 | 4.55 ± 0.27 | 4.55 ± 0.26 | 4.51 ± 0.29 | <0.001 |
Uric acid, mg/dL | 5.07 ± 1.37 | 6.00 ± 1.49 | 5.05 ± 1.31 | 6.02 ± 1.45 | 5.22 ± 1.42 | <0.001 | 4.83 ± 1.38 | 5.82 ± 1.53 | 4.93 ± 1.30 | 6.03 ± 1.27 | 5.11 ± 1.49 | <0.001 |
WC, cm | 78.55 ± 8.60 | 89.95 ± 7.42 | 78.63 ± 8.83 | 90.01 ± 7.15 | 80.43 ± 9.44 | <0.001 | 77.07 ± 8.36 | 88.21 ± 7.08 | 78.07 ± 8.12 | 87.66 ± 6.13 | 80.13 ± 9.42 | <0.001 |
TC, mmol/L | 195.51 ± 35.44 | 205.44 ± 40.76 | 196.85 ± 35.66 | 206.33 ± 41.05 | 197.32 ± 36.58 | <0.001 | 194.59 ± 35.49 | 203.96 ± 39.16 | 194.44 ± 34.51 | 213.28 ± 36.04 | 197.22 ± 36.73 | <0.001 |
TG, mmol/L | 114.26 ± 67.60 | 230.17 ± 133.8 | 113.61 ± 64.86 | 207.58 ± 96.84 | 132.79 ± 91.18 | <0.001 | 104.45 ± 54.40 | 208.01 ± 123.67 | 104.43 ± 54.51 | 216.2 ± 140.61 | 132.74 ± 92.15 | <0.001 |
LDL, mmol/L | 121.21 ± 32.14 | 127.15 ± 36.56 | 121.57 ± 32.62 | 129.93 ± 35.61 | 122.28 ± 33.02 | <0.001 | 119.67 ± 32.47 | 127.89 ± 34.12 | 119.25 ± 32.84 | 135.89 ± 32.70 | 121.97 ± 33.14 | <0.001 |
HDL, mmol/L | 58.17 ± 14.33 | 44.98 ± 11.56 | 58.80 ± 14.14 | 46.37 ± 12.74 | 56.10 ± 14.73 | <0.001 | 60.30 ± 14.21 | 45.70 ± 10.32 | 59.60 ± 13.03 | 45.95 ± 11.48 | 56.31 ± 14.74 | <0.001 |
SBP, mmHg | 120.75 ± 14.97 | 135.29 ± 14.16 | 121.07 ± 15.37 | 135.83 ± 15.40 | 123.19 ± 15.86 | <0.001 | 119.04 ± 14.73 | 133.60 ± 14.71 | 120.18± 15.00 | 132.47± 13.41 | 123.02 ± 16.07 | <0.001 |
DBP, mmHg | 73.68 ± 10.63 | 83.55 ± 10.48 | 73.92 ± 10.93 | 83.47 ± 10.58 | 75.33 ± 11.25 | <0.001 | 72.09 ± 10.32 | 82.22 ± 10.53 | 72.76 ± 10.61 | 81.70 ± 10.49 | 74.86 ± 11.31 | <0.001 |
HbA1c, % | 5.56 ± 0.69 | 6.23 ± 1.17 | 5.60 ± 1.32 | 6.09 ± 1.01 | 5.67 ± 0.90 | <0.001 | 5.54 ± 0.68 | 6.10 ± 1.14 | 5.53 ± 0.54 | 6.04 ± 1.26 | 5.69 ± 0.87 | <0.001 |
Fasting glucose, mmol/L | 94.20 ± 17.73 | 115.53 ± 32.43 | 95.05 ± 24.17 | 113.47 ± 29.38 | 97.76 ± 22.86 | <0.001 | 93.15 ± 17.74 | 110.03 ± 33.63 | 92.80 ± 13.19 | 106.65 ± 31.28 | 97.71 ± 24.25 | <0.001 |
Males | Females | ||||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | ||
Model 1 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 1.175 | 0.996–1.385 | 0.055 | 1.261 | 1.063–1.498 | 0.008 | |
HHcy+/MetS− | 1.951 | 1.667–2.284 | <0.001 | 2.323 | 1.563–3.453 | <0.001 | |
HHcy+/MetS+ | 2.087 | 1.497–2.909 | <0.001 | 4.095 | 2.383–7.037 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Model 2 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 1.140 | 0.966–1.346 | 0.121 | 1.237 | 1.040–1.470 | 0.016 | |
HHcy+/MetS− | 1.941 | 1.658–2.273 | <0.001 | 2.277 | 1.531–3.387 | <0.001 | |
HHcy+/MetS+ | 2.015 | 1.444–2.812 | <0.001 | 4.006 | 2.329–6.892 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Age | 1.008 | 1.003–1.013 | 0.002 | 0.991 | 0.984–0.997 | 0.005 | |
Smoking | 0.972 | 0.901–1.049 | 0.465 | 0.937 | 0.804–1.091 | 0.400 | |
Drinking | 1.078 | 0.981–1.186 | 0.120 | 1.012 | 0.891–1.149 | 0.858 | |
Physical activity | 1.036 | 0.924–1.162 | 0.541 | 0.924 | 0.791–1.080 | 0.323 | |
hs-CRP | 1.106 | 1.004–1.219 | 0.042 | 0.948 | 0.809–1.109 | 0.503 | |
Albumin | 1.383 | 1.131–1.692 | 0.002 | 1.549 | 1.183–2.029 | 0.001 | |
HHcy+/MetS+ vs HHcy−/MetS+ | 1.750 | 1.223–2.505 | 0.002 | 3.224 | 1.851–5.616 | <0.001 | |
HHcy+/MetS+ vs HHcy+/MetS− | 1.070 | 0.746–1.535 | 0.712 | 1.847 | 0.942–3.622 | 0.074 |
Males | Females | ||||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | ||
Model 1 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 0.547 | 0.299–1.001 | 0.050 | 0.918 | 0.542–1.557 | 0.752 | |
HHcy+/MetS− | 4.926 | 3.667–6.616 | <0.001 | 3.692 | 1.986–6.867 | <0.001 | |
HHcy+/MetS+ | 3.814 | 2.034–7.153 | <0.001 | 12.913 | 6.089–27.385 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Model 2 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 0.540 | 0.295–0.989 | 0.046 | 0.925 | 0.544–1.574 | 0.775 | |
HHcy+/MetS− | 4.923 | 3.664–6.615 | <0.001 | 3.698 | 1.981–6.902 | <0.001 | |
HHcy+/MetS+ | 3.716 | 1.971–7.004 | <0.001 | 13.530 | 6.338–28.885 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Age | 1.103 | 1.089–1.117 | <0.001 | 1.139 | 1.116–1.163 | <0.001 | |
Smoking | 0.921 | 0.769–1.103 | 0.373 | 1.268 | 0.911–1.766 | 0.160 | |
Drinking | 0.945 | 0.749–1.193 | 0.636 | 0.810 | 0.578–1.134 | 0.219 | |
Physical activity | 0.950 | 0.721–1.250 | 0.712 | 1.226 | 0.819–1.837 | 0.322 | |
hs-CRP | 1.014 | 0.676–1.523 | 0.945 | 0.863 | 0.451–1.650 | 0.655 | |
Albumin | 1.242 | 0.756–2.038 | 0.392 | 1.224 | 0.585–2.516 | 0.583 | |
HHcy+/MetS+ vs HHcy−/MetS+ | 7.032 | 3.013–16.413 | <0.001 | 14.637 | 6.090–35.179 | <0.001 | |
HHcy+/MetS+ vs HHcy+/MetS− | 0.787 | 0.417–1.485 | 0.460 | 2.517 | 1.074–5.889 | 0.034 |
Males | Females | ||||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | ||
Model 1 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 1.238 | 1.046–1.466 | 0.013 | 1.273 | 1.064–1.523 | 0.008 | |
HHcy+/MetS− | 1.568 | 1.318–1.866 | <0.001 | 1.507 | 0.915–2.482 | 0.107 | |
HHcy+/MetS+ | 1.837 | 1.286–2.625 | <0.001 | 3.280 | 1.773–6.068 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Model 2 | |||||||
HHcy−/MetS− | Reference | Reference | |||||
HHcy−/MetS+ | 1.199 | 1.011–1.421 | 0.037 | 1.242 | 1.037–1.488 | 0.019 | |
HHcy+/MetS− | 1.561 | 1.311–1.858 | <0.001 | 1.469 | 0.891–2.420 | 0.132 | |
HHcy+/MetS+ | 1.769 | 1.237–2.530 | 0.002 | 3.186 | 1.719–5.904 | <0.001 | |
p-for trend | <0.001 | <0.001 | |||||
Age | 0.993 | 0.988–0.999 | 0.013 | 0.972 | 0.965–0.979 | <0.001 | |
Smoking | 0.990 | 0.913–1.073 | 0.802 | 0.900 | 0.763–1.062 | 0.212 | |
Drinking | 1.082 | 0.979–1.196 | 0.122 | 1.038 | 0.908–1.188 | 0.582 | |
Physical activity | 1.051 | 0.931–1.185 | 0.422 | 0.913 | 0.775–1.077 | 0.281 | |
hs-CRP | 1.121 | 1.019–1.233 | 0.019 | 0.948 | 0.810–1.110 | 0.509 | |
Albumin | 1.399 | 1.132–1.728 | 0.002 | 1.662 | 1.250–2.209 | 0.000 | |
HHcy+/MetS+ vs HHcy−/MetS+ | 1.456 | 0.993–2.136 | 0.055 | 2.534 | 1.353–4.747 | 0.004 | |
HHcy+/MetS+ vs HHcy+/MetS− | 1.130 | 0.767–1.665 | 0.537 | 2.241 | 1.023–4.908 | 0.044 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, H.; Ko, H.-J.; Kim, A.-S. Hyperhomocysteinemia Concurrent with Metabolic Syndrome Is Independently Associated with Chronic Kidney Disease among Community-Dwelling Adults in an Urban Korean Population. Int. J. Environ. Res. Public Health 2020, 17, 6810. https://doi.org/10.3390/ijerph17186810
Moon H, Ko H-J, Kim A-S. Hyperhomocysteinemia Concurrent with Metabolic Syndrome Is Independently Associated with Chronic Kidney Disease among Community-Dwelling Adults in an Urban Korean Population. International Journal of Environmental Research and Public Health. 2020; 17(18):6810. https://doi.org/10.3390/ijerph17186810
Chicago/Turabian StyleMoon, Hana, Hae-Jin Ko, and A-Sol Kim. 2020. "Hyperhomocysteinemia Concurrent with Metabolic Syndrome Is Independently Associated with Chronic Kidney Disease among Community-Dwelling Adults in an Urban Korean Population" International Journal of Environmental Research and Public Health 17, no. 18: 6810. https://doi.org/10.3390/ijerph17186810
APA StyleMoon, H., Ko, H. -J., & Kim, A. -S. (2020). Hyperhomocysteinemia Concurrent with Metabolic Syndrome Is Independently Associated with Chronic Kidney Disease among Community-Dwelling Adults in an Urban Korean Population. International Journal of Environmental Research and Public Health, 17(18), 6810. https://doi.org/10.3390/ijerph17186810