Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Model
2.2. Infectious Disease Detection Channel 3
2.2.1. Flu-Related Semantic Examination Activity
2.2.2. Flu-Period Sentiment Measure Activity
- Building the vocabulary of the flu-related weibo texts: the processing of the text, which means that a specific vocabulary is required;
- Initializing the network structure of the weibo text: the initialization of parameters in the CBOW model, with Huffman coding generation;
- Saving the word embedding: saving the result in a specific form.
2.2.3. Construction of LSTM for Sentiment Polarity and Flu Period Classification
2.3. Data Description
3. Results
3.1. Relationship between Sentiment Polarity and Flu-Period State at the Word Level
3.2. Classification of Flu Period Based on Sentiment Polarity at the Text Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sidana, S.; Amer-Yahia, S.; Clausel, M.; Rebai, M.; Mai, S.T.; Amini, M.R. Health monitoring on social media over time. IEEE Trans. Knowl. Data Eng. 2018, 30, 1467–1480. [Google Scholar] [CrossRef]
- Sinnenberg, L.; DiSilvestro, C.L.; Mancheno, C.; Dailey, K.; Tufts, C.; Buttenheim, A.M.; Barg, F.; Ungar, L.; Schwartz, H.; Brown, D.; et al. Twitter as a Potential Data Source for Cardiovascular Disease Research. Jama Cardiol. 2016, 1, 1032–1036. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention of the United States of America. Available online: https://www.cdc.gov/flu/weekly/pastreports.htm (accessed on 21 August 2018).
- Belser, J.A.; Tumpey, T.M. The 1918 flu, 100 years later. Science 2018, 359, 255. [Google Scholar] [CrossRef] [Green Version]
- Hasnain, S.E. Molecular epidemiology of infectious diseases: A case for increased surveillance. Bull. World Health Organ. 2003, 81, 474. [Google Scholar] [CrossRef]
- Summary table of SARS cases by country, 1 November 2002–7 August 2003. Available online: http://www.who.int/csr/sars/country/2003_08_15/en/ (accessed on 15 August 2003).
- Smith, R.D. Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med. 2006, 63, 3113–3123. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Xu, K.; Raymond, R.; Chon, J.; Fuller, S.; Debruyn, A. Regional Level Influenza Study with Geo-Tagged Twitter Data. J. Med. Syst. 2016, 40, 1–8. [Google Scholar] [CrossRef]
- Allen, C.; Tsou, M.-H.; Aslam, A.; Nagel, A.; Gawron, J.-M. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza. PLoS ONE 2016, 11, e0157734. [Google Scholar] [CrossRef] [PubMed]
- Yan, L. Good Intentions, Bad Outcomes: The Effects of Mismatches between Social Support and Health Outcomes in an Online Weight Loss Community. Prod. Oper. Manag. 2018, 27, 9–27. [Google Scholar] [CrossRef]
- Rolls, K.; Hansen, M.; Jackson, D.; Elliott, D. How health care professionals use social media to create virtual communities: An integrative review. J. Med. Internet Res. 2016, 18, e166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, R.Y.K.; Zhang, W.; Xu, W. Parallel aspect-oriented sentiment analysis for sales forecasting with big data. Prod. Oper. Manag. 2018, 27, 1775–1794. [Google Scholar] [CrossRef]
- Wu, D.; Cui, Y. Disaster early warning and damage assessment analysis using social media data and geo-location information. Decis. Support Syst. 2018, 111, 48–59. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X. Social media analytics for natural disaster management. Int. J. Geogr. Inf. Sci. 2017, 2, 1–24. [Google Scholar] [CrossRef]
- Shan, S.; Liu, X.; Wei, Y.; Xu, L.; Zhang, B.; Yu, L. A new emergency management dynamic value assessment model based on social media data: A multiphase decision-making perspective. Enterp. Inf. Syst. 2020, 14, 680–709. [Google Scholar] [CrossRef]
- Hamilton, L.A.; Franks, A.; Heidel, R.E.; McDonough, S.L.K.; Suda, K.J. Assessing the Value of Online Learning and Social Media in Pharmacy Education. Am. J. Pharm. Educ. 2016, 80, 97. [Google Scholar] [CrossRef] [PubMed]
- Butler, D. When google got flu wrong. Nature 2013, 494, 155–156. [Google Scholar] [CrossRef] [Green Version]
- Lazer, D.; Kennedy, R.; King, G.; Vespignani, A. The parable of google flu: Traps in big data analysis. Science 2014, 343, 1203–1205. [Google Scholar] [CrossRef]
- Update: Influenza Activity in the United States During the 2017–18 Season and Composition of the 2018–19 Influenza Vaccine. Available online: https://www.cdc.gov/mmwr/volumes/67/wr/mm6722a4.htm?s_cid=mm6722a4_w (accessed on 8 June 2018).
- Yun, G.W.; Morin, D.; Park, S.; Joa, C.Y.; Labbe, B.; Lim, J.; Lee, S.; Hyun, D. Social media and flu: Media Twitter accounts as agenda setters. Int. J. Med. Inform. 2016, 91, 67–73. [Google Scholar] [CrossRef]
- Saldana-Perez, A.M.M.; Moreno-Ibarra, M. Traffic analysis based on short texts from social media. Int. J. Knowl. Soc. Res. 2016, 7, 63–79. [Google Scholar] [CrossRef]
- Liang, S.; Ren, Z.; Zhao, Y.; Ma, J.; Yilmaz, E.; De Rijke, M. Inferring Dynamic User Interests in Streams of Short Texts for User Clustering. Acm Trans. Inf. Syst. 2017, 36, 1–37. [Google Scholar] [CrossRef]
- Tommasel, A.; Godoy, D. A Social-aware online short-text feature selection technique for social media. Inf. Fusion 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Heesterbeek, H.; Anderson, R.M.; Andreasen, V.; Bansal, S.; De Angelis, D.; Dye, C.; Eames, K.T.D.; Edmunds, W.J.; Frost, S.D.W.; Funk, S.; et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 2015, 347, aaa4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rus, H.M.; Cameron, L.D. Health Communication in Social Media: Message Features Predicting User Engagement on Diabetes-Related Facebook Pages. Ann. Behav. Med. 2016, 50, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Long, E.F.; Nohdurft, E.; Spinler, S. Spatial Resource Allocation for Emerging Epidemics: A Comparison of Greedy, Myopic, and Dynamic Policies. Manuf. Serv. Oper. Manag. 2018, 20, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Ayer, T.; Chhatwal, J. Optimal M-Switch Surveillance Policies for Liver Cancer in a Hepatitis C–Infected Population. Oper. Res. 2018, 66, 673–696. [Google Scholar] [CrossRef]
- Ozaltin, O.Y.; Prokopyev, O.A.; Schaefer, A.J. Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy. Inf. J. Comput. 2018, 30, 371–387. [Google Scholar] [CrossRef]
- Duijzer, L.E.; van Jaarsveld, W.L.; Wallinga, J.; Dekker, R. Dose-Optimal Vaccine Allocation over Multiple Populations. Prod. Oper. Manag. 2018, 27, 143–159. [Google Scholar] [CrossRef]
- Lee, E.C.; Arab, A.; Goldlust, S.M.; Viboud, C.; Grenfell, B.T.; Bansal, S. Deploying digital health data to optimize influenza surveillance at national and local scales. PLoS Comput. Biol. 2018, 14, e1006020. [Google Scholar] [CrossRef]
- Tambo, E.; Adetunde, O.T.; Olalubi, O.A. Re-emerging lassa fever outbreaks in Nigeria: Re-enforcing “one health” community surveillance and emergency response practice. Infect. Dis. Poverty 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ruomeng, C.; Santiago, G.; Antonio, M.; Zhang, D.J. The operational value of social media information. Prod. Oper. Manag. 2017, 27, 1749–1769. [Google Scholar] [CrossRef]
- Pandey, A.C.; Rajpoot, D.S.; Saraswat, M. Twitter sentiment analysis using hybrid cuckoo search method. Inf. Process. Manag. 2017, 53, 764–779. [Google Scholar] [CrossRef]
- D’Andrea, E.; Ducange, P.; Lazzerini, B.; Marcelloni, F. Real-time detection of traffic from twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2269–2283. [Google Scholar] [CrossRef]
- Aiello, A.E.; Renson, A.; Zivich, P.N. Social Media- and Internet-Based Disease Surveillance for Public Health. Annu. Rev. Public Health 2020, 41, 101–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, S.; Zhao, F.; Wei, Y.; Liu, M. Disaster management 2.0: A real-time disaster damage assessment model based on mobile social media data—A case study of Weibo (Chinese Twitter). Saf. Sci. 2019, 115, 393–413. [Google Scholar] [CrossRef]
- Raamkumar, A.S.; Tan, S.G.; Wee, H.L. Measuring the Outreach Efforts of Public Health Authorities and the Public Response on Facebook during the COVID-19 Pandemic in Early 2020: Cross-Country Comparison. J. Med. Internet Res. 2020, 22, 12. [Google Scholar] [CrossRef]
- Lwin, M.O.; Lu, J.H.; Sheldenkar, A.; Schulz, P.J. Strategic Uses of Facebook in Zika Outbreak Communication: Implications for the Crisis and Emergency Risk Communication Model. Int. J. Environ. Res. Public Health 2018, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Vijaykumar, S.; Meurzec, R.W.; Jayasundar, K.; Pagliari, C.; Fernandopulle, Y. What’s buzzing on your feed? Health authorities’ use of Facebook to combat Zika in Singapore. J. Am. Med. Inf. Assoc. 2017, 24, 1155–1159. [Google Scholar] [CrossRef]
- Dubey, D.; Amritphale, A.; Sawhney, A.; Dubey, D.; Srivastav, N. Analysis of YouTube as a source of information for West Nile Virus infection. Clin. Med. Res. 2014, 12, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.W.; Haim, D.A.; Radin, J.M. Using Networks to Combine “Big Data” and Traditional Surveillance to Improve Influenza Predictions. Sci. Rep. 2015, 5, 8154. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Z.; Hossain, K.; Butler, P.; Ramakrishnan, N.; Prakash, B.A. Syndromic surveillance of Flu on Twitter using weakly supervised temporal topic models. Data Min. Knowl. Discov. 2016, 30, 681–710. [Google Scholar] [CrossRef]
- Lamb, A.; Paul, M.J.; Dredze, M. Separating fact from fear: Tracking flu infections on twitter. In Proceedings of the NAACL, Atlanta, Georgia, 9–14 June 2013; pp. 789–795. [Google Scholar]
- Wang, P.; Xu, B.; Xu, J.; Tian, G.; Liu, C.; Hao, H. Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 2016, 174, 806–814. [Google Scholar] [CrossRef]
- Muhammad, A.; Wiratunga, N.; Lothian, R. Contextual sentiment analysis for social media genres. Knowl. -Based Syst. 2016, 108, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Luo, X.; Xuan, J.; Xu, Z. Sentiment Computing for the News Event Based on the Social Media Big Data. IEEE Access 2017, 5, 2373–2382. [Google Scholar] [CrossRef]
- Shan, S.; Peng, J.; Wei, Y. Environmental Sustainability assessment 2.0: The value of social media data for determining the emotional responses of people to river pollution—A case study of Weibo (Chinese Twitter). Socio-Econ. Plan. Sci. 2020. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, R.; Xu, T.; Yang, Y.; Wang, J.; Feng, T. Emotional attitudes towards procrastination in people: A large-scale sentiment-focused crawling analysis. Comput. Hum. Behav. 2020, 110, 106391. [Google Scholar] [CrossRef]
- Sun, X.; Ye, J.; Ren, F. Detecting influenza states based on hybrid model with personal emotional factors from social networks. Neurocomputing 2016, 210, 257–268. [Google Scholar] [CrossRef]
- Adamopoulos, P.; Ghose, A.; Todri, V. The Impact of User Personality Traits on Word of Mouth: Text-Mining Social Media Platforms. Inf. Syst. Res. 2018, 29, 612–640. [Google Scholar] [CrossRef]
- Lee, D.; Hosanagar, K.; Nair, H.S. Advertising content and consumer engagement on social media: Evidence from Facebook. Manag. Sci. 2018, 64, 5105–5513. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Mei, T.; Kweon, I.-S.; Hua, X.-S. Contextual Bag-of-Words for Visual Categorization. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 381–392. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119. [Google Scholar]
- Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEE Trans. Knowl. Data Eng. 2019, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, I.; Hinz, O. The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks. Inf. Syst. Res. 2018, 29, 592–611. [Google Scholar] [CrossRef]
- Timoshenko, A.; Hauser, J.R. Identifying customer needs from user-generated content. Mark. Sci. 2019, 38. [Google Scholar] [CrossRef]
- Hughes, M.; Li, I.; Kotoulas, S.; Suzumura, T. Medical text classification using convolutional neural networks. Stud. Health Technol. Inform. 2017, 235, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Kadetotad, D.; Yin, S.; Berisha, V.; Chakrabarti, C.; Seo, J.-S. An 8.93 TOPS/W LSTM Recurrent Neural Network Accelerator Featuring Hierarchical Coarse-Grain Sparsity for On-Device Speech Recognition. IEEE J. Solid-State Circuits 2020, 55, 1877–1887. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1997, pp. 1735–1780. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Xie, B.; Vovsha, I.; Rambow, O.; Passonneau, R. Sentiment analysis of Twitter data. The Workshop on Languages in Social Media. Assoc. Comput. Linguist. 2011, 39, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Taboada, M.; Brooke, J.; Tofiloski, M. Lexicon-based methods for sentiment analysis. Comput. Linguist. 2011, 37, 267–307. [Google Scholar] [CrossRef]
- Gao, W.; Su, C. Analysis on block chain financial transaction under artificial neural network of deep learning. J. Comput. Appl. Math. 2020, 380, 112991. [Google Scholar] [CrossRef]
- Gers, F.A.; Schraudolph, N.N. Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 2003, 3, 115–143. [Google Scholar] [CrossRef]
- The 41th China Statistical Report on Internet Development. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201803/t20180305_70249.htm (accessed on 5 March 2018).
- Weibo Posts Unaudited Earnings for the Second Quarter in 2018. Available online: https://tech.sina.com.cn/i/2018-08-08/doc-ihhkuskt9159883.shtml (accessed on 8 August 2018).
Category | Field Name | |
---|---|---|
Tweet’s information | URL, released time, title, text | |
Blogger’s Information | blogger’s ID, nickname of the blogger | |
Resource | Sina Weibo | |
Keywords | flu (Gan Mao), influenza (Liu Gan), cough (Ke Sou), fever (Fa Shao), sneeze (Pen Ti), nasal congestion (Bi Sai) | |
Amount of word2vector training corpora | In 2016 | 50,000 |
In 2017 | 50,000 | |
Amount of labeling sets | In 2016 | 10,000 |
In 2017 | 10,000 | |
Total valid amount | 15,301 | |
LSTM training set | 10,711 | |
LSTM test set | 4590 |
Label | Words |
---|---|
infectious | uncomfortable, not good, ailment, no strength, ache, too awkward, feel bad, serious, sleepy, exhaustion, a tough time, high fever, low fever, pyrexia, diarrhea, emesis, vomit and have watery stools, sneeze, phlegm, dry cough, nasal congestion, difficulty breathing, sore throat, running nose, a bad cold, excessive internal heat, relapse, swell, sore, itch, clinic, children’s hospital, emergency call, see a doctor, transfusion, blood, outpatient service, take medicine, injection, drink more water, transfusion, headache, dizzy, backache, weakness in the limbs, stomach ache, leg pain, giddy, terrible, exacerbation, brain swelling, nausea, regurgitation, tonsil, anti-inflammatory drug, capsule, electuary, painful, fester, tinnitus, toothache, sternutation, cough, lacking in strength, intravenous drip, bacteria, influenza, infection, epidemic, the upper respiratory tract, feel chilly, swollen eyes, X-ray, dazed, lethargy, teeter, have a temperature, flu, rhinorrhea, snot, cold cure, inflammation, virus. |
recovered | bring down a fever, much better, improve, healthy, recovery, almost gone, feel good, heal, feel all right, get better, fever subsided, antipyretic, abatement of fever, return to normal, stop taking medication, in good health, fitness, get well, improve markedly, pull through, self-cure. |
negative | sadness, cry, go crazy, poor, disappointed, tired, heart-broken, agony, worried, unlucky, wronged, grieved, breakdown, disgusting, angry, torturous, sorrow, hard, arduous, piercing pain, sob, anxious, self-accusation, vexation, compunction, fear, gripping, exhausted, weep, worn out, fragile, suffering, helplessness, tantalization, nervous, take offence, guilty, regretful, despairing, whiny, harrowing, depressed, annoying, out of sorts, irritated, listless, bad mood. |
positive | quiet, happy, thankful, wish, clear up, alive and kicking, hope, expect, laugh, love, smile, delighted, cheer up, ha ha ha, make an effort, lovely, grinning, felicity, warmth, cheerful, strong, glad, excited, pray, bless, impetrate, look forward, chuckle, satisfied, joyful, active, all the best, smooth going, hang on, have fun, yeah, contented, hug, gentle, safe and sound, benediction, grand time, brave, relieved. |
Label | X | Y |
---|---|---|
Infectious | 2.665 | 4.758 |
Negative | 2.434 | −3.105 |
Positive | −3.302 | −2.661 |
Recovered | −3.553 | 1.629 |
Period and Sentiment | Positive | Negative | Total | |
---|---|---|---|---|
Recovered | total | 876 | 402 | 1278 |
correct | 655 | 176 | 831 | |
Infectious | total | 356 | 2956 | 3312 |
correct | 297 | 2893 | 3190 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, S.; Yan, Q.; Wei, Y. Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media. Int. J. Environ. Res. Public Health 2020, 17, 6853. https://doi.org/10.3390/ijerph17186853
Shan S, Yan Q, Wei Y. Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media. International Journal of Environmental Research and Public Health. 2020; 17(18):6853. https://doi.org/10.3390/ijerph17186853
Chicago/Turabian StyleShan, Siqing, Qi Yan, and Yigang Wei. 2020. "Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media" International Journal of Environmental Research and Public Health 17, no. 18: 6853. https://doi.org/10.3390/ijerph17186853
APA StyleShan, S., Yan, Q., & Wei, Y. (2020). Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media. International Journal of Environmental Research and Public Health, 17(18), 6853. https://doi.org/10.3390/ijerph17186853