Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sample
2.2. Measures
2.3. Analysis
3. Results
3.1. Descriptive Results
3.2. Multivariable Logistic Regression Results—Healthcare Domain
3.3. Multivariable Logistic Regression Results—Health Information Seeking
3.4. Multivariable Logistic Regression Results—User Generated Content/Sharing Domain
4. Discussion
5. Study Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bernhardt, J.M.; Chaney, J.D.; Chaney, B.H.; Hall, A.K. New media for health education: A revolution in progress. Health Educ. Behav. 2013, 40, 129–132. [Google Scholar] [CrossRef]
- Demographics of Internet and Home Broadband Usage in the United States | Pew Research Center. Available online: https://www.pewresearch.org/internet/fact-sheet/internet-broadband/ (accessed on 15 August 2020).
- Cheng, C.; Beauchamp, A.; Elsworth, G.R.; Osborne, R.H. Applying the electronic health literacy lens: Systematic review of electronic health interventions targeted at socially disadvantaged groups. J. Med. Internet Res. 2020, 22, e18476. [Google Scholar] [CrossRef]
- Bardus, M.; El Rassi, R.; Chahrour, M.; Akl, E.W.; Raslan, A.S.; Meho, L.I.; Akl, E.A. The use of social media to increase the impact of health research: Systematic review. J. Med. Internet Res. 2020, 22, e15607. [Google Scholar] [CrossRef]
- Turnbull, S.; Cabral, C.; Hay, A.; Lucas, P.J. Health Equity in the Effectiveness of Web-Based Health Interventions for the Self-Care of People with Chronic Health Conditions: Systematic Review. J. Med. Internet Res. 2020, 22, e17849. [Google Scholar] [CrossRef]
- Brigden, A.; Anderson, E.; Linney, C.; Morris, R.; Parslow, R.; Serafimova, T.; Smith, L.; Briggs, E.; Loades, M.; Crawley, E. Digital behavior change interventions for younger children with chronic health conditions: Systematic review. J. Med. Internet Res. 2020, 22, e16924. [Google Scholar] [CrossRef]
- Hewitt, S.; Sephton, R.; Yeowell, G. The effectiveness of digital health interventions in the management of musculoskeletal conditions: Systematic literature review. J. Med. Internet Res. 2020, 22, e15617. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chen, J.; Wang, C.; Hu, R.; Wu, Y. Effects of Internet-based psycho-educational interventions on mental health and quality of life among cancer patients: A systematic review and meta-analysis. Support. Care Cancer 2020, 28, 2541–2552. [Google Scholar] [CrossRef]
- Chivilgina, O.; Wangmo, T.; Elger, B.S.; Heinrich, T.; Jotterand, F. mHealth for schizophrenia spectrum disorders management: A systematic review. Int. J. Soc. Psychiatry 2020, 66, 20764020933287. [Google Scholar] [CrossRef]
- Allida, S.; Du, H.; Xu, X.; Prichard, R.; Chang, S.; Hickman, L.D.; Davidson, P.M.; Inglis, S.C. mHealth education interventions in heart failure. Cochrane Database Syst. Rev. 2020, 7, CD011845. [Google Scholar]
- Villarreal, V.; Berbey-Alvarez, A. Evaluation of mHealth Applications Related to Cardiovascular Diseases: A Systematic Review. Acta Inform. Med. 2020, 28, 130–137. [Google Scholar] [CrossRef]
- Heponiemi, T.; Jormanainen, V.; Leemann, L.; Manderbacka, K.; Aalto, A.-M.; Hyppönen, H. Digital Divide in Perceived Benefits of Online Health Care and Social Welfare Services: National Cross-Sectional Survey Study. J. Med. Internet Res. 2020, 22, e17616. [Google Scholar] [CrossRef]
- Fareed, N.; Swoboda, C.M.; Jonnalagadda, P.; Huerta, T.R. Persistent digital divide in health-related internet use among cancer survivors: Findings from the Health Information National Trends Survey, 2003–2018. J. Cancer Surviv. 2020. [Google Scholar] [CrossRef]
- Campos-Castillo, C.; Laestadius, L.I. Racial and Ethnic Digital Divides in Posting COVID-19 Content on Social Media among US Adults: Secondary Survey Analysis. J. Med. Internet Res. 2020, 22, e20472. [Google Scholar] [CrossRef]
- Choi, N.G.; DiNitto, D.M.; Lee, O.E.; Choi, B.Y. Internet and Health Information Technology Use and Psychological Distress among Older Adults with Self-Reported Vision Impairment: Case-Control Study. J. Med. Internet Res. 2020, 22, e17294. [Google Scholar] [CrossRef]
- Joshi, A.; Malhotra, B.; Amadi-Mgbenka, C.; Loomba, M.; Misra, A.; Sharma, S.; Arora, A.; Amatya, J. Gender and the Digital Divide Across Urban Slums of New Delhi, India: A Cross-Sectional Study. J. Med. Internet Res. 2019, 22, e14714. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kim, Y.; Chipalo, E.; Lee, H.Y. Does perceived ageism widen the digital divide? And does it vary by gender? Gerontologist 2020, 60, 1213–1223. [Google Scholar] [CrossRef]
- Philbin, M.M.; Parish, C.; Pereyra, M.; Feaster, D.J.; Cohen, M.; Wingood, G.; Konkle-Parker, D.; Adedimeji, A.; Wilson, T.E.; Cohen, J.; et al. Health Disparities and the Digital Divide: The Relationship between Communication Inequalities and Quality of Life among Women in a Nationwide Prospective Cohort Study in the United States. J. Health Commun. 2019, 24, 405–412. [Google Scholar] [CrossRef]
- Langford, A.; Orellana, K.; Kalinowski, J.; Aird, C.; Buderer, N. Use of Tablets and Smartphones to Support Medical Decision Making in US Adults: Cross-Sectional Study. JMIR Mhealth Uhealth 2020, 8, e19531. [Google Scholar] [CrossRef]
- Camacho-Rivera, M.; Gonzalez, C.J.; Morency, J.A.; Blake, K.D.; Calixte, R. Heterogeneity in Trust of Cancer Information among Hispanic Adults in the United States: An Analysis of the Health Information National Trends Survey. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1348–1356. [Google Scholar] [CrossRef]
- Fareed, N.; Swoboda, C.M.; Jonnalagadda, P.; Walker, D.M.; Huerta, T.R. Differences Between Races in Health Information Seeking and Trust Over Time: Evidence From a Cross-Sectional, Pooled Analyses of HINTS Data. Am. J. Health Promot. 2020, 890117120934609. [Google Scholar] [CrossRef]
- Sherman, L.D.; Patterson, M.S.; Tomar, A.; Wigfall, L.T. Use of digital health information for health information seeking among men living with chronic disease: Data from the health information national trends survey. Am. J. Mens. Health 2020, 14, 1557988320901377. [Google Scholar] [CrossRef]
- Zulman, D.M.; Kirch, M.; Zheng, K.; An, L.C. Trust in the internet as a health resource among older adults: Analysis of data from a nationally representative survey. J. Med. Internet Res. 2011, 13, e19. [Google Scholar] [CrossRef]
- Brown-Johnson, C.G.; Boeckman, L.M.; White, A.H.; Burbank, A.D.; Paulson, S.; Beebe, L.A. Trust in health information sources: Survey analysis of variation by sociodemographic and tobacco use status in oklahoma. JMIR Public Health Surveill. 2018, 4, e8. [Google Scholar] [CrossRef]
- Rutten, L.J.F.; Blake, K.; Hesse, B.W.; Ackerson, L.K. Isolated and skeptical: Social engagement and trust in information sources among smokers. J. Cancer Educ. 2011, 26, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Moult, A.; Burroughs, H.; Kingstone, T.; Chew-Graham, C.A. How older adults self-manage distress-does the internet have a role? A qualitative study. BMC Fam. Pract. 2018, 19, 185. [Google Scholar] [CrossRef]
- Miller, L.M.S.; Bell, R.A. Online health information seeking: The influence of age, information trustworthiness, and search challenges. J. Aging Health 2012, 24, 525–541. [Google Scholar] [CrossRef]
- Finney Rutten, L.J.; Blake, K.D.; Greenberg-Worisek, A.J.; Allen, S.V.; Moser, R.P.; Hesse, B.W. Online health information seeking among US adults: Measuring progress toward a healthy people 2020 objective. Public Health Rep. 2019, 134, 617–625. [Google Scholar] [CrossRef]
- Kontos, E.Z.; Emmons, K.M.; Puleo, E.; Viswanath, K. Communication inequalities and public health implications of adult social networking site use in the United States. J. Health Commun. 2010, 15 (Suppl. S3), 216–235. [Google Scholar] [CrossRef] [Green Version]
- Bethesda, N. HINTS 4 Cycle 4 Methodology Report. Available online: https://hints.cancer.gov/docs/HINTS_4_Cycle_4_Methodology_Report.pdf (accessed on 12 August 2020).
- Bethesda, N. HINTS 5 Cycle 1 Methodology Report. Available online: https://hints.cancer.gov/docs/methodologyreports/HINTS5_Cycle_1_Methodology_Rpt.pdf (accessed on 12 August 2020).
- Kontos, E.; Blake, K.D.; Chou, W.-Y.S.; Prestin, A. Predictors of eHealth usage: Insights on the digital divide from the Health Information National Trends Survey 2012. J. Med. Internet Res. 2014, 16, e172. [Google Scholar] [CrossRef]
- Finney Rutten, L.J.; Davis, T.; Beckjord, E.B.; Blake, K.; Moser, R.P.; Hesse, B.W. Picking up the pace: Changes in method and frame for the health information national trends survey (2011–2014). J. Health Commun. 2012, 17, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.N.K.; Shao, J. Jackknife variance estimation with survey data under hot deck imputation. Biometrika 1992, 79, 811–822. [Google Scholar] [CrossRef]
- Heffner, J.L.; Mull, K.E. Smartphone ownership among US adult cigarette smokers: 2014 health information national trends survey (HINTS) data. J. Med. Internet Res. 2017, 19, e305. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; West, B.T.; Barton, D.L.; Harris, M.R. Acceptance and Use of eHealth/mHealth Applications for Self-Management among Cancer Survivors. Stud. Health Technol. Inform. 2017, 245, 131–135. [Google Scholar] [PubMed]
- Claridy, M.D.; Hudson, M.M.; Caplan, L.; Mitby, P.A.; Leisenring, W.; Smith, S.A.; Robison, L.L.; Mertens, A.C. Patterns of Internet-based health information seeking in adult survivors of childhood cancer. Pediatr. Blood Cancer 2018, 65, e26954. [Google Scholar] [CrossRef] [PubMed]
- van Eenbergen, M.C.H.J.; Vromans, R.D.; Boll, D.; Kil, P.J.M.; Vos, C.M.; Krahmer, E.J.; Mols, F.; van de Poll-Franse, L.V. Changes in internet use and wishes of cancer survivors: A comparison between 2005 and 2017. Cancer 2020, 126, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.L.; Amato, M.S. Twelve Million Smokers Look Online for Smoking Cessation Help Annually: Health Information National Trends Survey Data, 2005–2017. Nicotine Tob. Res. 2019, 21, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Hong, Y.A.; Liu, P.L. Trends of online patient-provider communication among cancer survivors from 2008 to 2017: A digital divide perspective. J. Cancer Surviv. 2019, 13, 197–204. [Google Scholar] [CrossRef]
- Anthony, D.L.; Campos-Castillo, C.; Lim, P.S. Who isn’t using patient portals and why? Evidence and implications from a national sample of US adults. Health Aff. 2018, 37, 1948–1954. [Google Scholar] [CrossRef]
- Kruse, C.S.; Argueta, D.A.; Lopez, L.; Nair, A. Patient and provider attitudes toward the use of patient portals for the management of chronic disease: A systematic review. J. Med. Internet Res. 2015, 17, e40. [Google Scholar] [CrossRef]
- Anthony, D.; Campos-Castillo, C. Why most of your patients aren’t using an online portal, and what you can do about it. Rhode Isl. Med J. (2013) 2020, 103, 32–34. [Google Scholar]
- Hong, Y.A.; Jiang, S.; Liu, P.L. Use of patient portals of electronic health records remains low from 2014 to 2018: Results from a national survey and policy implications. Am. J. Health Promot. 2020, 34, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y. A path analysis on correlates of consumer trust in online health information: Evidence from the health information national trends survey. J. Health Commun. 2010, 15 (Suppl. S3), 200–215. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.; Reinhardt, A.; Rossmann, C. Lifestyle Segmentation to Explain the Online Health Information-Seeking Behavior of Older Adults: Representative Telephone Survey. J. Med. Internet Res. 2020, 22, e15099. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y. Correlates of consumer trust in online health information: Findings from the health information national trends survey. J. Health Commun. 2011, 16, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.M.; Deshpande, A.D.; Perri, M.; Zinkhan, G.M. Trust in online prescription drug information among internet users: The impact on information search behavior after exposure to direct-to-consumer advertising. Health Mark. Q. 2002, 20, 17–35. [Google Scholar] [CrossRef]
- Jackson, D.N.; Peterson, E.B.; Blake, K.D.; Coa, K.; Chou, W.-Y.S. Americans’ trust in health information sources: Trends and sociodemographic predictors. Am. J. Health Promot. 2019, 33, 1187–1193. [Google Scholar] [CrossRef]
- Jiang, S.; Street, R.L. Factors Influencing Communication with Doctors via the Internet: A Cross-Sectional Analysis of 2014 HINTS Survey. Health Commun. 2017, 32, 180–188. [Google Scholar] [CrossRef]
- Huo, J.; Desai, R.; Hong, Y.-R.; Turner, K.; Mainous, A.G.; Bian, J. Use of social media in health communication: Findings from the health information national trends survey 2013, 2014, and 2017. Cancer Control 2019, 26, 1073274819841442. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, W. Digital divide 2.0: The role of social networking sites in seeking health information online from a longitudinal perspective. J. Health Commun. 2015, 20, 60–68. [Google Scholar] [CrossRef]
- Ten Bruggencate, T.; Luijkx, K.G.; Sturm, J. Friends or frenemies? The role of social technology in the lives of older people. Int. J. Environ. Res. Public Health 2019, 16, 4969. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, A.S.; Godinho, C.A.; Steinman, C.; Updegraff, J.A. Education differences in cancer fatalism: The role of information-seeking experiences. J. Health Psychol. 2018, 23, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Wigfall, L.T.; Tanner, A.H. Health Literacy and Health-Care Engagement as Predictors of Shared Decision-Making among Adult Information Seekers in the USA: A Secondary Data Analysis of the Health Information National Trends Survey. J. Cancer Educ. 2018, 33, 67–73. [Google Scholar] [CrossRef]
- Thompson, E.L.; Wheldon, C.W.; Vamos, C.A.; Griner, S.B.; Daley, E.M. How is health literacy related to pap testing among US women? J. Cancer Educ. 2019, 34, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Paasche-Orlow, M.K.; Wolf, M.S. Promoting health literacy research to reduce health disparities. J. Health Commun. 2010, 15 (Suppl. S2), 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nutbeam, D. The evolving concept of health literacy. Soc. Sci. Med. 2008, 67, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Fleary, S.A.; Ettienne, R. Social disparities in health literacy in the United States. Health Lit. Res. Pract. 2019, 3, e47–e52. [Google Scholar] [CrossRef]
- Fleary, S.A.; Paasche-Orlow, M.K.; Joseph, P.; Freund, K.M. The relationship between health literacy, cancer prevention beliefs, and cancer prevention behaviors. J. Cancer Educ. 2019, 34, 958–965. [Google Scholar] [CrossRef]
- Greenberg-Worisek, A.J.; Kurani, S.; Finney Rutten, L.J.; Blake, K.D.; Moser, R.P.; Hesse, B.W. Tracking healthy people 2020 internet, broadband, and mobile device access goals: An update using data from the health information national trends survey. J. Med. Internet Res. 2019, 21, e13300. [Google Scholar] [CrossRef]
- Alcaraz, K.I.; Vereen, R.N.; Burnham, D. Use of Telephone and Digital Channels to Engage Socioeconomically Disadvantaged Adults in Health Disparities Research Within a Social Service Setting: Cross-Sectional Study. J. Med. Internet Res. 2020, 22, e16680. [Google Scholar] [CrossRef]
- Desai, K.; Chewning, B.; Mott, D. Health care use amongst online buyers of medications and vitamins. Res. Soc. Adm. Pharm. 2015, 11, 844–858. [Google Scholar] [CrossRef]
- Knippen, K.L.; Mahas, R.; Van Wasshenova, E. Outcome Expectancies, Health Information Seeking, and Cancer Beliefs Associated with Multivitamin/Mineral Use in a National Sample, HINTS-FDA 2015. J. Acad. Nutr. Diet. 2020, 120, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Ellis, L.; Canchola, A.J.; Spiegel, D.; Ladabaum, U.; Haile, R.; Gomez, S.L. Racial and ethnic disparities in cancer survival: The contribution of tumor, sociodemographic, institutional, and neighborhood characteristics. J. Clin. Oncol. 2018, 36, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Li, L.; Pagán, J.A. Acculturation and the use of complementary and alternative medicine. Soc. Sci. Med. 2008, 66, 439–453. [Google Scholar] [CrossRef]
- Yeo, Y.; Park, J.; Roh, S.; Levkoff, S. Use of electronic personal health records (PHRs) for complementary and alternative medicine (CAM) disclosure: Implications for integrative health care. Complement. Ther. Med. 2016, 26, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Bernat, J.K.; Coa, K.; Blanch-Hartigan, D. Cancer survivors as activated patients: Exploring the relationship between cancer history and patient activation. J. Psychosoc. Oncol. 2017, 35, 239–247. [Google Scholar] [CrossRef]
- Jiang, S. The role of social media use in improving cancer survivors’ emotional well-being: A moderated mediation study. J. Cancer Surviv. 2017, 11, 386–392. [Google Scholar] [CrossRef]
- Seiler, A.; Klaas, V.; Tröster, G.; Fagundes, C.P. eHealth and mHealth interventions in the treatment of fatigued cancer survivors: A systematic review and meta-analysis. Psychooncology 2017, 26, 1239–1253. [Google Scholar] [CrossRef]
Sociodemographics | N | Unweighted Percent | Weighted Percent (Standard Error) |
---|---|---|---|
Gender | |||
Male | 1819 | 37.76 | 46.6 (0.67) |
Female | 2694 | 55.93 | 48.37 (0.59) |
Missing | 304 | 6.31 | 5.02 (0.46) |
Age Group | |||
18–34 | 738 | 15.32 | 27.82 (1.07) |
35–49 | 1188 | 24.66 | 31.01 (1.12) |
50–64 | 1687 | 35.02 | 27.18 (0.60) |
65–74 | 777 | 16.13 | 8.09 (0.23) |
>75 | 308 | 6.39 | 4.00 (0.21) |
Missing | 119 | 2.47 | 1.91 (0.25) |
Race/Ethnicity | |||
Non-Hispanic White | 2890 | 60.00 | 64.75 (0.52) |
Non-Hispanic Black | 579 | 12.02 | 8.91 (0.39) |
Hispanic | 635 | 13.18 | 13.21 (0.37) |
Other | 353 | 7.33 | 7.36 (0.28) |
Missing | 360 | 7.47 | 5.78 (0.44) |
Education Level | |||
≤ than High School | 892 | 18.52 | 24.19 (0.73) |
Some College | 1477 | 30.66 | 35.08 (0.67) |
College Graduate or More | 2362 | 49.03 | 39.50 (0.39) |
Missing | 86 | 1.79 | 1.23 (0.39) |
Annual household income (USD) | |||
Less than 20,000 | 605 | 12.56 | 12.14 (0.79) |
20,000 to < 35,000 | 549 | 11.4 | 10.61 (0.84) |
35,000 to < 50,000 | 609 | 12.64 | 13.84 (0.95) |
50,000 to < 75,000 | 855 | 17.75 | 18.21 (0.80) |
>75,000 | 1766 | 36.66 | 37.25 (1.00) |
Missing | 433 | 8.99 | 7.94 (0.71) |
US Born | |||
Yes | 4097 | 85.05 | 84.78 (0.76) |
No | 653 | 13.56 | 14.19 (0.73) |
Missing | 67 | 1.39 | 1.02 (0.18) |
Smoking Status | |||
Current | 598 | 12.41 | 15.98 (0.98) |
Former | 1282 | 26.61 | 23.97 (0.87) |
Never | 2900 | 60.2 | 59.56 (1.17) |
Missing | 37 | 0.77 | 0.49 (0.13) |
Home Ownership | |||
Own | 3303 | 68.57 | 62.14 (1.01) |
Rent or occupied without rent | 1357 | 28.17 | 35.33 (1.02) |
Missing | 157 | 3.26 | 2.53 (0.30) |
Ever diagnosed as having cancer? | |||
Yes | 674 | 13.99 | 7.80 (0.20) |
No | 4109 | 85.3 | 91.70 (0.23) |
Missing | 34 | 0.71 | 0.51 (0.13) |
Any family members ever had cancer? | |||
Yes | 3302 | 68.55 | 67.04 (0.97) |
No | 1373 | 28.5 | 30.44 (0.93) |
Missing | 142 | 2.95 | 2.52 (0.31) |
eHealth Task | N | Unweighted Percent | Weighted Percent (Standard Error) |
---|---|---|---|
Ever looked for information about health or medical topics from any source? | |||
Yes | 4197 | 87.13 | 84.35 (0.99) |
No | 576 | 11.96 | 14.59 (0.96) |
Healthcare Domain | |||
In the past 12 months, used email or Internet to communicate with a doctor or doctor’s office? | |||
Yes | 1769 | 36.72 | 35.48 (0.94) |
No | 3013 | 62.55 | 63.95 (0.96) |
In the past 12 months, bought medicine or vitamins online? | |||
Yes | 1117 | 23.19 | 22.17 (1.00) |
No | 3641 | 75.59 | 77.02 (1.02) |
In the past 12 months, used the Internet to look for a health care provider? | |||
Yes | 1983 | 41.17 | 43.55 (1.17) |
No | 2769 | 57.48 | 55.47 (1.20) |
Health Information Seeking Domain | |||
In the past 12 months, used the Internet to look for health or medical information for self? | |||
Yes | 3864 | 80.22 | 79.96 (1.03) |
No | 922 | 19.14 | 19.46 (1.04) |
In the past 12 months, used the Internet to look for health or medical information for someone else? | |||
Yes | 3142 | 65.23 | 67.46 (1.09) |
No | 1639 | 34.03 | 32.09 (1.12) |
User Generated Content/Sharing Domain | |||
In the past 12 months, participated in an online support group for people with a similar health or medical issue? | |||
Yes | 335 | 6.95 | 7.30 (0.52) |
No | 4454 | 92.46 | 92.08 (0.55) |
In the past 12 months, visited a social networking site to read and share about medical topics? | |||
Yes | 856 | 17.77 | 20.21 (0.98) |
No | 3933 | 81.65 | 79.08 (1.01) |
In the past 12 months, wrote in an online diary or blog about any type of health topic? | |||
Yes | 255 | 5.29 | 6.06 (0.57) |
No | 4524 | 93.92 | 93.20 (0.60) |
Sociodemographics | Look for Health Care Provider | Used Email or Internet to Communicate with Doctor | Bought Medicine or Vitamins Online | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Gender (ref: Male) | ||||||
Female | 1.16 | 0.96, 1.41 | 1.14 | 0.91, 1.43 | 1.25 | 0.99, 1.58 |
Age Group (ref: 18–34) | ||||||
35–49 | 0.67 | 0.49, 0.92 * | 1.08 | 0.79, 1.47 | 0.84 | 0.61, 1.17 |
50–64 | 0.49 | 0.36, 0.65 *** | 0.82 | 0.61, 1.10 | 0.80 | 0.55, 1.17 |
65–74 | 0.27 | 0.18, 0.40 *** | 0.60 | 0.42, 0.85 ** | 0.73 | 0.47, 1.11 |
>75 | 0.16 | 0.09, 0.28 *** | 0.46 | 0.28, 0.76 ** | 0.69 | 0.42, 1.16 |
Race/Ethnicity (ref: non-Hispanic White) | ||||||
Non-Hispanic Black | 1.27 | 0.91, 1.78 | 0.91 | 0.61, 1.37 | 0.56 | 0.38, 0.84 ** |
Hispanic | 1.03 | 0.78, 1.34 | 1.01 | 0.76, 1.34 | 0.87 | 0.65, 1.16 |
Other | 1.41 | 0.94, 2.11 | 0.85 | 0.60, 1.21 | 0.97 | 0.65, 1.45 |
Education Level (ref: College Graduate or more) | ||||||
≤than High School | 0.59 | 0.46, 0.75 *** | 0.49 | 0.37, 0.66 *** | 0.87 | 0.62, 1.21 |
Some College | 0.70 | 0.56, 0.87 ** | 0.83 | 0.67, 1.04 | 1.02 | 0.77, 1.36 |
Annual household income (USD) (ref: >75,000) | ||||||
Less than 20,000 | 0.68 | 0.45, 1.03 | 0.38 | 0.27, 0.54 *** | 0.35 | 0.21, 0.59 *** |
20,000 to < 35,000 | 0.77 | 0.53, 1.13 | 0.32 | 0.22, 0.45 *** | 0.38 | 0.24, 0.60 *** |
35,000 to < 50,000 | 0.71 | 0.50, 1.01 | 0.54 | 0.38, 0.80 *** | 0.73 | 0.49, 1.10 |
50,000 to < 75,000 | 0.88 | 0.66, 1.16 | 0.65 | 0.50, 0.84 ** | 0.64 | 0.49, 0.85 ** |
US Born (ref: Born in US) | ||||||
No | 1.24 | 0.91, 1.70 | 1.32 | 0.94, 1.83 | 1.81 | 1.25, 2.61 ** |
Smoking Status (ref: Never Smoker) | ||||||
Current | 0.70 | 0.50, 0.99 * | 0.91 | 0.65, 1.29 | 0.71 | 0.46, 1.09 |
Former | 0.81 | 0.65, 1.01 | 1.00 | 0.81, 1.23 | 1.04 | 0.82, 1.31 |
Home Ownership (ref: Own) | ||||||
Rent or occupied without rent | 1.15 | 0.87, 1.51 | 1.31 | 1.03, 1.66 * | 0.79 | 0.60, 1.05 |
Ever diagnosed as having cancer (ref: Yes, history of cancer) | ||||||
No | 0.84 | 0.66, 1.09 | 0.66 | 0.51, 0.86 ** | 0.86 | 0.61, 1.20 |
Any family members ever had cancer (ref: Yes, history of cancer) | ||||||
No | 0.73 | 0.59, 0.90 ** | 0.94 | 0.74, 1.20 | 1.18 | 0.88, 1.58 |
Survey Release (ref: HINTS 4 cycle 3) | ||||||
HINTS 5 cycle 1 | 1.53 | 1.19, 1.98 *** | 1.65 | 1.26, 2.15 *** | 1.40 | 1.05, 1.89 * |
Sociodemographics | Look for Health or Medical Information for Self | Look for Health or Medical Information for Someone Else | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Sex (ref: Male) | ||||
Female | 1.14 | 0.87, 1.49 | 1.74 | 1.39, 2.18 *** |
Age Group (ref: 18–34) | ||||
35–49 | 0.77 | 0.48, 1.25 | 1.06 | 0.75, 1.50 |
50–64 | 0.47 | 0.30, 0.75 ** | 0.62 | 0.45, 0.85 ** |
65–74 | 0.32 | 0.19, 0.52 *** | 0.33 | 0.22, 0.48 *** |
>75 | 0.21 | 0.11, 0.38 *** | 0.29 | 0.16, 0.51 *** |
Race/Ethnicity (ref: non-Hispanic White) | ||||
Non-Hispanic Black | 0.87 | 0.56, 1.34 | 0.85 | 0.60, 1.19 |
Hispanic | 0.87 | 0.58, 1.29 | 0.87 | 0.66, 1.16 |
Other | 0.95 | 0.58, 1.55 | 1.31 | 0.91, 1.87 |
Education Level (ref: College Graduate or more) | ||||
≤than High School | 0.45 | 0.33, 0.62 *** | 0.67 | 0.49, 0.93 * |
Some College | 0.69 | 0.49, 0.99 * | 0.95 | 0.72, 1.25 |
Annual household income (USD) (ref: >75,000) | ||||
Less than 20,000 | 0.67 | 0.37, 1.23 | 0.55 | 0.36, 0.86 ** |
20,000 to < 35,000 | 0.67 | 0.43, 1.06 | 0.73 | 0.47, 1.15 |
35,000 to < 50,000 | 1.05 | 0.67, 1.63 | 1.05 | 0.73, 1.49 |
50,000 to < 75,000 | 1.03 | 0.72, 1.47 | 0.79 | 0.60, 1.05 |
US Born (ref: Born in US) | ||||
No | 0.89 | 0.60, 1.32 | 1.09 | 0.77, 1.55 |
Smoking Status (ref: Never Smoker) | ||||
Current | 0.71 | 0.46, 1.09 | 1.05 | 0.72, 1.53 |
Former | 0.95 | 0.71, 1.27 | 1.01 | 0.79, 1.29 |
Home Ownership (ref: Own) | ||||
Rent or occupied without rent | 1.18 | 0.85, 1.64 | 0.97 | 0.74, 1.26 |
Ever diagnosed as having cancer (ref: Yes, history of cancer) | ||||
No | 0.55 | 0.40, 0.76 *** | 0.70 | 0.54, 0.90 ** |
Any family members ever had cancer (ref: Yes, history of cancer) | ||||
No | 0.81 | 0.61, 1.07 | 0.76 | 0.59, 0.99 * |
Survey Release (ref: HINTS 4 cycle 3) | ||||
HINTS 5 cycle 1 | 1.23 | 0.86, 1.75 | 1.03 | 0.78, 1.35 |
Sociodemographics | Visited a Social Networking Site to Read and Share about Medical Topics | Wrote in an Online Diary or Blog about Any Type of Health Topic | Participated in an Online Support Group for People with a Similar Health or Medical Issue | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Gender (ref: Male) | ||||||
Female | 1.93 | 1.43, 2.60 *** | 0.94 | 0.59, 1.49 | 1.62 | 1.05, 2.50 * |
Age Group (ref: 18–34) | ||||||
35–49 | 0.82 | 0.56, 1.19 | 0.69 | 0.41, 1.17 | 0.79 | 0.52, 1.20 |
50–64 | 0.30 | 0.21, 0.43 *** | 0.37 | 0.17, 0.79 ** | 0.39 | 0.22, 0.69 ** |
65–74 | 0.22 | 0.15, 0.35 *** | 0.25 | 0.11, 0.57 ** | 0.12 | 0.06, 0.25 *** |
>75 | 0.11 | 0.05, 0.25 *** | 0.20 | 0.06, 0.59 ** | 0.08 | 0.03, 0.25 *** |
Race/Ethnicity (ref: non-Hispanic White) | ||||||
Non-Hispanic Black | 0.54 | 0.37, 0.80 ** | 0.64 | 0.29, 1.42 | 0.66 | 0.34, 1.29 |
Hispanic | 0.77 | 0.56, 1.05 | 0.66 | 0.33, 1.30 | 0.86 | 0.45, 1.64 |
Other | 0.82 | 0.49, 1.38 | 0.73 | 0.34, 1.55 | 1.17 | 0.42, 3.28 |
Education Level (ref: College Graduate or more) | ||||||
≤than High School | 1.35 | 0.95, 1.92 | 0.34 | 0.18, 0.64 *** | 0.54 | 0.33, 0.91 * |
Some College | 1.51 | 1.12, 2.03 ** | 0.87 | 0.49, 1.55 | 0.80 | 0.51, 1.24 |
Annual household income (USD) (ref: >75,000) | ||||||
Less than 20,000 | 1.09 | 0.71, 1.67 | 1.37 | 0.70, 2.67 | 1.71 | 0.85, 3.45 |
20,000 to < 35,000 | 0.96 | 0.65, 1.43 | 1.89 | 0.95, 3.73 | 1.45 | 0.85, 2.47 |
35,000 to < 50,000 | 1.03 | 0.74, 1.42 | 0.74 | 0.37, 1.51 | 1.41 | 0.79, 2.51 |
50,000 to < 75,000 | 0.97 | 0.69, 1.36 | 1.91 | 1.11, 3.31 * | 1.03 | 0.66, 1.60 |
US Born (ref: Born in US) | ||||||
No | 1.31 | 0.88, 1.95 | 1.16 | 0.61, 2.22 | 0.85 | 0.49, 1.48 |
Smoking Status (ref: Never Smoker) | ||||||
Current | 0.98 | 0.66, 1.48 | 0.49 | 0.25, 0.96 * | 1.44 | 0.73, 2.82 |
Former | 0.87 | 0.64, 1.20 | 0.56 | 0.34, 0.92 * | 1.27 | 0.85, 1.90 |
Home Ownership (ref: Own) | ||||||
Rent or occupied without rent | 1.03 | 0.77, 1.37 | 1.28 | 0.80, 2.05 | 0.78 | 0.54, 1.13 |
Ever diagnosed as having cancer (ref: Yes, history of cancer) | ||||||
No | 0.72 | 0.51, 1.01 | 0.64 | 0.35, 1.17 | 0.52 | 0.31, 0.89 * |
Any family members ever had cancer (ref: Yes, history of cancer) | ||||||
No | 0.67 | 0.49, 0.91 * | 1.06 | 0.67, 1.70 | 0.95 | 0.63, 1.45 |
Survey Release (ref: HINTS 4 cycle 3) | ||||||
HINTS 5 cycle 1 | 0.85 | 0.62, 1.17 | 1.24 | 0.68, 2.24 | 1.31 | 0.74, 2.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calixte, R.; Rivera, A.; Oridota, O.; Beauchamp, W.; Camacho-Rivera, M. Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey. Int. J. Environ. Res. Public Health 2020, 17, 6856. https://doi.org/10.3390/ijerph17186856
Calixte R, Rivera A, Oridota O, Beauchamp W, Camacho-Rivera M. Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey. International Journal of Environmental Research and Public Health. 2020; 17(18):6856. https://doi.org/10.3390/ijerph17186856
Chicago/Turabian StyleCalixte, Rose, Argelis Rivera, Olutobi Oridota, William Beauchamp, and Marlene Camacho-Rivera. 2020. "Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey" International Journal of Environmental Research and Public Health 17, no. 18: 6856. https://doi.org/10.3390/ijerph17186856
APA StyleCalixte, R., Rivera, A., Oridota, O., Beauchamp, W., & Camacho-Rivera, M. (2020). Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey. International Journal of Environmental Research and Public Health, 17(18), 6856. https://doi.org/10.3390/ijerph17186856