Prevalence and Risk Factors of Elevated Blood Pressure and Elevated Blood Glucose among Residents of Kajiado County, Kenya: A Population-Based Cross-Sectional Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Study Population
2.3. Study Design and Sampling
2.4. Questionnaire
- (1)
- Socio-demographic variables were age, sex, ethnicity, place of residence, length of stay, marital status, education, occupation and household size (9 items).
- (2)
- The behavioural risk factors included variables such as ever measured blood pressure, ever measured blood glucose, tobacco smoking, alcohol use, physical activity and concern about developing hypertension or diabetes (7 items). Physical activity was assessed by the amount of time and number of days one engaged in work-related, transport-related or sports activity that raised the breathing or heartbeat for more than 10 min [29]. Physical activity was classified as adequate if the participant engaged in the activity for at least 30 min and for a minimum of three days a week [30].
- (3)
- Dietary risk factors included variables such as number of meals eaten at home, place where meals are eaten outside home, number of times fruits and vegetables were consumed, use of cooking fat or oil; sugar or sugary foods and salt intake (9 items).
2.5. Anthropometric and Biological Measurements
2.6. Data Collection
2.7. Study Outcomes
2.8. Statistical Analysis
2.9. Ethical Approval
3. Results
3.1. General Characteristics
3.2. Prevalence of the Clinical and Biological Indicators
3.3. Prevalence of NCD Risk Factors
3.4. Factors Associated with Elevated Blood Pressure and Elevated Blood Glucose
4. Discussion
4.1. Prevalence of the Elevated Blood Pressure and Elevated Blood Glucose
4.2. Prevalence of other NCD Risk Factors
4.3. Correlates of Elevated Blood Pressure and Elevated Blood Glucose
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goryakin, Y.; Rocco, L.; Suhrcke, M. The contribution of urbanization to non-communicable diseases: Evidence from 173 countries from 1980 to 2008. Econ. Hum. Biol. 2017, 26, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012. [Google Scholar] [CrossRef] [PubMed]
- Aikins, A.d.-G.; Unwin, N.; Agyemang, C.; Allotey, P.; Campbell, C.; Arhinful, D. Tackling Africa’s chronic disease burden: From the local to the global. Glob. Health 2010, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwan, A. Global Status Report on Noncommunicable Diseases 2010; World Health Organization Press: Geneva, Switzerland, 2011. [Google Scholar]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalal, S.; Beunza, J.J.; Volmink, J.; Adebamowo, C.; Bajunirwe, F.; Njelekela, M.; Mozaffarian, D.; Fawzi, W.; Willett, W.; Adami, H.-O.; et al. Non-communicable diseases in sub-Saharan Africa: What we know now. Int. J. Epidemiol. 2011. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Non-Communicable Diseases and Mental Health Fact sheet [Internet] World Health Organisation December 2009.7. Available online: https://www.who.int/nmh/newsletter_december_20091211_en.pdf (accessed on 4 February 2015).
- World Health Organisation. Noncommunicable Diseases (NCD) Country Profiles-Kenya [Internet]. 2014. Available online: https://www.who.int/nmh/countries/2018/ken_en.pdf?ua=1 (accessed on 21 January 2017).
- Hendriks, M.E.; Wit, F.W.; Roos, M.T.; Brewster, L.M.; Akande, T.M.; De Beer, I.H.; Mfinanga, S.G.; Kahwa, A.M.; Gatongi, P.; Van Rooy, G.; et al. Hypertension in Sub-Saharan Africa: Cross-sectional surveys in four rural and urban communities. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A. Prevalence of Cardiovascular Disease Risk Factors in Urban Garissa Residents. Master’s Thesis, College of Health Sciences, University of Nairobi, Nairobi, Kenya, 2012. Available online: http://erepository.uonbi.ac.ke/handle/11295/6910 (accessed on 12 June 2018).
- Ettarh, R.; Van de Vijver, S.; Oti, S.; Kyobutungi, C. Overweight, Obesity, and Perception of Body Image Among Slum Residents in Nairobi, Kenya, 2008–2009. Prev. Chronic Dis. 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathenge, W.; Foster, A.; Kuper, H. Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: A population-based survey. BMC Public Health 2010, 10, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation. Diabetes Atlas 8th Edition [Internet] IDF Atlas. 2017. Available online: https://reports.instantatlas.com/report/view/704ee0e6475b4af885051bcec15f0e2c/KEN (accessed on 11 August 2018).
- Ministry of Health Kenya. Kenya Health Policy 2014 to 2030. ID UH2030-78. Available online: http://publications.universalhealth2030.org/ref/d6e32af10e5c515876d34f801774aa9a (accessed on 3 November 2016).
- Diabetes, T.L. Endocrinology. Urbanisation, inequality, and non-communicable disease risk. Lancet Diabetes Endocrinol. 2017, 5, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenya National Bureau of Statistics. Population Distribution by Age, Sex and Administrative Units-Volume 1C 2009 Census. 2010. Available online: https://www.knbs.or.ke/download/volume-1c-population-distribution-by-age-sex-and-administrative-units/ (accessed on 9 October 2016).
- Kajiado County Integrated Development Plan 2018–2022. Available online: https://www.cog.go.ke/downloads/category/106-county-integrated-development-plans-2018–2022 (accessed on 28 August 2020).
- Kaptuya, S.P. The Impact of Urbanization on The Livelihoods of The Maasai Community: A Case Study of Ngong Ward, Kajiado County. Master’s Thesis, Department of Geography and Environmental Studies, University of Nairobi, Nairobi, Kenya, 2013. Available online: https://pdfs.semanticscholar.org/1bd1/75f2084c131bab576c155975fd03e6a07b93.pdf?_ga=2.97687839.1817865337.1600762596-632785914.1599062260 (accessed on 2 September 2020).
- Kabubo-Mariara, J. Climate change adaptation and livestock activity choices in Kenya: An economic analysis. Nat. Resour. Forum. 2008, 32, 131–141. [Google Scholar] [CrossRef]
- Leal Filho, W.; Osano, P.M.; Said, M.Y.; de Leeuw, J.; Moiko, S.S.; Kaelo, D.O.; Birner, R.; Ogutu, J.O. Pastoralism and ecosystem-based adaptation in Kenyan Masailand. Int. J. Clim. Chang. Str. 2013. [Google Scholar] [CrossRef]
- Kajiado County Office of the Controller of Budget Report. 2016. Available online: http://cob.go.ke/counties/kajiado-county/ (accessed on 8 May 2016).
- Lavrakas, P.J. Within-Household Respondent Selection: How Best to Reduce Total Survey Error. Media Rating Council Respondent Selection Report. 2008. Available online: http://mediaratingcouncil.org/MRC%20Point%20of%20View%20-%20Within%20HH%20Respondent%20Selection%20Methods.pdf (accessed on 9 October 2016).
- United Nations Educational, Scientific and Cultural Organization. Guide to the Analysis and Use of Household. UNESCO Institute of Statistics. 2004. Available online: http://uis.unesco.org/sites/default/files/documents/guide-to-the-analysis-and-use-of-household-survey-and-census-education-data-en_0.pdf (accessed on 10 October 2016).
- Wiegand, H.; Kish, L. Survey Sampling; John Wiley & Sons Inc.: New York, NY, USA; London, UK, 1965; pp. 88–89. [Google Scholar] [CrossRef]
- Joshi, M.D.; Ayah, R.; Njau, E.K.; Wanjiru, R.; Kayima, J.K.; Njeru, E.K.; Mutai, K.K. Prevalence of hypertension and associated cardiovascular risk factors in an urban slum in Nairobi, Kenya: A population-based survey. BMC Public Health 2014, 14, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogola, E.N. Healthy Heart Africa Report: The Kenyan Experience. Astra Zeneca. 2015. Available online: http://www.pascar.org/uploads/files/HEALTHY_HEART_AFRICA_Elijah_Ogola.pdf (accessed on 4 July 2017).
- Olack, B.; Wabwire-Mangen, F.; Smeeth, L.; Montgomery, J.M.; Kiwanuka, N.; Breiman, R.F. Risk factors of hypertension among adults aged 35-64 years living in an urban slum Nairobi, Kenya. BMC Public Health 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 159–174. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Organisation STEPwise Approach to NCD Risk Factor Surveillance. 2003. Available online: https://www.who.int/ncd_surveillance/en/steps_framework_dec03.pdf (accessed on 12 April 2016).
- World Health Organisation. Global Recommendations on Physical Activity for Health. 2010. Available online: https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf (accessed on 8 June 2016).
- World Health Organisation. World Health Organisation NCDs | STEPwise Approach to Chronic Disease Risk Factor Surveillance. 2017. Available online: https://www.who.int/ncds/surveillance/steps/kenya/en/ (accessed on 2 September 2018).
- Tolonen, H.; Koponen, P.; Aromaa, A.; Conti, S.; Graff-Iversen, S.; Grøtvedt, L.; Kanieff, M.; Mindell, J.; Natunen, S.; Primatesta, P. Recommendations for the Health Examination Surveys in Europe. 2008. Available online: https://discovery.ucl.ac.uk/id/eprint/13758/1/13758.pdf (accessed on 11 June 2016).
- World Health Organisation. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes. Mellitus. 2011. Available online: https://www.who.int/diabetes/publications/report-hba1c_2011.pdf (accessed on 3 November 2016).
- Expert Panel on Detection, Evaluation. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K.; Trials of Hypertension Prevention Collaborative Research Group. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease: The Trials of Hypertension Prevention Follow-up Study. Arch Intern Med. 2009, 169, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahori, T.; Miura, K.; Ueshima, H. Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Brashear, M.M.; Johnson, W.D. Coexisting prehypertension and prediabetes in healthy adults: A pathway for accelerated cardiovascular events. Hypertens Res. 2011, 34, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Wang, S.; Cai, X.; Mai, W.; Hu, Y.; Tang, H.; Xu, D. Prehypertension and incidence of cardiovascular disease:a meta-analysis. BMC Med. 2013, 11, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, P.; Messerli, F.H.; Baumbach, A.; Lansky, A.J. Pre-hypertension:another ‘pseudodisease?’. BMC Med. 2013, 46, 2–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. The Surprising Truth About Prediabetes Features. The National Center for Chronic Disease Prevention and Health Promotion. 2018. Available online: https://www.cdc.gov/features/diabetesprevention/index.html (accessed on 25 May 2019).
- Groenwold, R.H.H.; White, I.R.; Donders, A.R.T.; Carpenter, J.R.; Altman, D.G.; Moons, K.G.M. Missing covariate data in clinical research: When and when not to use the missing-indicator method for analysis. CMAJ 2012, 184, 1265–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organization PAHO. Non-Communicable Diseases and Gender Success in NCD Prevention and Control Depends on Attention to Gender Roles. PAHO Fact Sheet 2011. Available online: https://www.paho.org/hq/dmdocuments/2011/gdr-ncd-gender-factsheet-final.pdf (accessed on 13 July 2018).
- World Health Organisation. Women and Health Today’s Evidence Tomorrow’s Agenda. 2009. Available online: https://www.who.int/gender-equity-rights/knowledge/9789241563857/en/ (accessed on 13 August 2017).
- World Health Organisation, Gender, Health, Tobacco and Equity FCTC Report. 2011. Available online: https://www.who.int/tobacco/publications/gender/gender_tobacco_2010.pdf (accessed on 10 February 2017).
- Pathania, V.S. Women and the smoking epidemic: Turning the tide. Bull World Health Organ. 2011, 89, 162. [Google Scholar] [CrossRef] [PubMed]
- DeVon, H.A.; Ryan, C.J.; Ochs, A.L.; Shapiro, M. Symptoms across the continuum of acute coronary syndromes: Differences between women and men. Am. J. Crit. Care 2008, 17, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.F.; Mutua, M.K.; Wamai, R.; Wekesah, F.; Haregu, T.; Juma, P.; Nyanjau, L.; Kyobutungi, C.; Ogola, E. Prevalence, awareness, treatment and control of hypertension and their determinants: Results from a national survey in Kenya. BMC Public Health 2018, 18, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, S.F.; Mwangi, M.; Mutua, M.K.; Kibachio, J.; Hussein, A.; Ndegwa, Z.; Asiki, G.; Kyobutungi, C. Prevalence and factors associated with pre-diabetes and diabetes mellitus in Kenya: Results from a national survey. BMC Public health 2018, 18, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health, Kenya. Division of Non-Communicable diseases. Kenya STEPwise Survey for Non-Communicable Diseases Risk Factors 2015 Report. Available online: http://aphrc.org/wp-content/uploads/2016/04/Steps-Report-NCD-2015.pdf (accessed on 10 December 2016).
- Cappuccio, F.P.; Miller, M.A. Cardiovascular disease and hypertension in sub-Saharan Africa: Burden, risk and interventions. Intern. Emerg. Med. 2016, 11, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BeLue, R.; Okoror, T.A.; Iwelunmor, J.; Taylor, K.D.; Degboe, A.N.; Agyemang, C.; Ogedegbe, G. An overview of cardiovascular risk factor burden in sub-Saharan African countries: A socio-cultural perspective. Global Health 2009, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, G.S.; Mwangi, A.; Chege, P.; Simiyu, C.J.; Aswa, D.F.; Odhiambo, D.; Obala, A.A.; Ayuo, P.; Khwa-Otsyula, B.O. Multiple cardiovascular risk factors in Kenya: Evidence from a health and demographic surveillance system using the WHO STEPwise approach to chronic disease risk factor surveillance. Heart 2013, 99, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Gichu, M.; Asiki, G.; Juma, P.; Kibachio, J.; Kyobutungi, C.; Ogola, E. Prevalence and predictors of physical inactivity levels among Kenyan adults (18–69 years): An analysis of STEPS survey 2015. BMC Public Health 2018, 18, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healthy Active Kids Kenya (HAKK). Kenya’s 2016 Report Card on Physical Activity and Body Weight of Children and Youth Healthy Active Kids Kenya. 2016. Available online: https://www.activehealthykids.org/wp-content/uploads/2016/11/kenya-report-card-long-form-2016.pdf (accessed on 14 March 2018).
- World Health Organization. WHO Global Infobase Kenya Global School-Based Student Health Survey 2003. Available online: https://extranet.who.int/ncdsmicrodata/index.php/catalog/13 (accessed on 23 March 2018).
- Group ICR. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24-hour urinary sodium and potassium excretion. BMJ 1988, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.; Rose, G.; Stamler, R.; Elliott, P.; Dyer, A.; Marmot, M. INTERSALT study findings. Public health and medical care implications. Hypertension 1989, 14, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzzard, M. 24-hour dietary recall and food record methods. In Nutritional Epidemiology; Walter, W., Ed.; Oxford University Press: New York, NY, USA, 1998; pp. 50–73. [Google Scholar] [CrossRef]
- Patel, S.A.; Ali, M.K.; Alam, D.; Yan, L.L.; Levitt, N.S.; Bernabe-Ortiz, A.; Checkley, W.; Wu, Y.; Irazola, V.; Gutierrez, L.; et al. Obesity and its relation with diabetes and hypertension: A cross-sectional study across 4 geographical regions. Glob. Heart 2016, 11, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group NRFCAW. Trends in obesity and diabetes across Africa from 1980 to 2014: An analysis of pooled population-based studies. Int. J. Epidemiol. 2017, 46, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dua, S.; Bhuker, M.; Sharma, P.; Dhall, M.; Kapoor, S. Body mass index relates to blood pressure among adults. N. Am. J. Med. Sci. 2014, 6, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudie, K.; Lawlor, D.A.; Pearce, N.; Crampin, A.; Tomlinson, L.; Tafatatha, T.; Musicha, C.; Nitsch, D.; Smeeth, L.; Nyirenda, M.J. How does the association of general and central adiposity with glycaemia and blood pressure differ by gender and area of residence in a Malawian population: A cross-sectional study. Int. J. Epidemiol. 2018, 47, 887–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demmler, K.M.; Ecker, O.; Qaim, M. Supermarket shopping and nutritional outcomes: A panel data analysis for urban Kenya. World Dev. 2018, 102, 292–303. [Google Scholar] [CrossRef]
- Kayima, J.; Wanyenze, R.K.; Katamba, A.; Leontsini, E.; Nuwaha, F. Hypertension awareness, treatment and control in Africa: A systematic review. BMC Cardiovasc. Disord. 2013, 13, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colangelo, L.A.; Vu, T.-H.T.; Szklo, M.; Burke, G.L.; Sibley, C.; Liu, K. Is the association of hypertension with cardiovascular events stronger among the lean and normal weight than among the overweight and obese? The multi-ethnic study of atherosclerosis. Hypertension 2015, 66, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandberg, K.; Ji, H. Sex differences in primary hypertension. Biol.Sex Differ. 2012, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Ogola, E.; Yonga, G.; Njau, K. A14369 High Burden of Prehypertension in Kenya: Results from the Healthy Heart Africa (HHA) program. J. Hypertens. 2018, 36, e330. [Google Scholar] [CrossRef]
- Kiplagat, S.V.; Lydia, K.; Jemimah, K.; Drusilla, M. Prevalence of Dyslipidemia and the Associated Factors Among Type 2 Diabetes Patients in Turbo Sub-County, Kenya. J. Endocrinol. Diab. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Abalkhail, B.A.; Shawky, S.; Ghabrah, T.M.; Milaat, W.A. Hypercholesterolemia and 5-year risk of development of coronary heart disease among university and school workers in Jeddah, Saudi Arabia. Prev Med. 2000, 31, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Palaoğlu, K.E.; Atak, Z.; Dawson-Pepin, J.; Langlois, A.M.; Cheung, V.; Onat, H.; Fulks, P.; Mahley, L.L.; Vakar, F. Turkish Heart Study: Lipids, lipoproteins, and apolipoproteins. J. Lipid Res. 1995, 36, 839–859. [Google Scholar] [PubMed]
- Yarnell, J.; Yu, S.; McCrum, E.; Arveiler, D.; Hass, B.; Dallongeville, J.; Montaye, M.; Amouyel, P.; Ferrières, J.; Ruidavets, J.-B.; et al. Education, socioeconomic and lifestyle factors, and risk of coronary heart disease: The PRIME Study. Int. J. Epidemiol. 2004, 34, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Crampin, A.C.; Kayuni, N.; Amberbir, A.; Musicha, C.; Koole, O.; Tafatatha, T.; Branson, K.; Saul, J.; Mwaiyeghele, E.; Nkhwazi, L.; et al. Hypertension and diabetes in Africa: Design and implementation of a large population-based study of burden and risk factors in rural and urban Malawi. Emerg. Themes Epidemiol. 2016, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Jousilahti, P.; Peltonen, M.; Lindström, J.; Tuomilehto, J. Urinary sodium and potassium excretion and the risk of type 2 diabetes: A prospective study in Finland. Diabetologia 2005, 48, 1477–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorburn, A.W.; Brand, J.C.; Truswell, A.S. Salt and the glycaemic response. Br. Med. J. 1986, 292, 1697–1699. [Google Scholar] [CrossRef] [Green Version]
Variables | Total | Men | Women | |||
---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | |
Unweighted | 593 | 221 | 372 | |||
Weighted | 596 | 316 | 280 | |||
Age (years) | ||||||
25–34 | 236 | (39.6) | 114 | (36.1) | 122 | (43.6) |
35–54 | 246 | (41.2) | 119 | (37.7) | 127 | (45.2) |
55–64 | 114 | (19.1) | 83 | (26.2) | 31 | (11.2) |
Marital status | ||||||
Single (Never married/ divorced/widowed) | 97 | (16.3) | 54 | (17.2) | 43 | (15.2) |
Married | 499 | (83.8) | 262 | (82.8) | 237 | (84.8) |
Ethnicity | ||||||
Maasai | 257 | (43.1) | 143 | (45.2) | 114 | (40.6) |
Kikuyu | 116 | (19.5) | 47 | (15.1) | 69 | (24.5) |
Other | 223 | (37.4) | 126 | (39.7) | 97 | (34.9) |
Residence | ||||||
Rural | 370 | (62.1) | 196 | (62.2) | 174 | (62.1) |
Urban | 226 | (37.9) | 120 | (37.8) | 106 | (37.9) |
Education | ||||||
Basic | 377 | (63.3) | 192 | (60.8) | 185 | (66.1) |
High school/higher | 219 | (36.7) | 124 | (39.2) | 95 | (33.9) |
Occupation | ||||||
Unemployed | 135 | (22.6) | 48 | (15.1) | 87 | (31.0) |
Employed | 141 | (23.7) | 95 | (30.1) | 46 | (16.4) |
Self-employed | 320 | (53.8) | 173 | (54.8) | 147 | (52.6) |
Ever measured blood pressure | ||||||
Yes | 308 | (51.6) | 161 | (50.8) | 147 | (52.5) |
No | 278 | (46.7) | 153 | (48.4) | 125 | (44.9) |
Missing data | 10 | (1.7) | 3 | (0.8) | 7 | (2.6) |
Ever measured blood glucose | ||||||
Yes | 229 | (38.4) | 134 | (42.3) | 95 | (34.0) |
No | 360 | (60.4) | 180 | (57.1) | 180 | (64.2) |
Missing data | 7 | (1.2) | 2 | (0.7) | 5 | (1.7) |
Variable | Total | Men | Women | ||||
---|---|---|---|---|---|---|---|
n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | p-Value * | |
Unweighted | 593 | 221 | 372 | ||||
Weighted | 596 | 316 | 280 | ||||
Blood pressure (mmHg) | <0.01 | ||||||
Normal (<120 and <80) | 163 | 27.3 (21.9, 33.5) | 61 | 19.4 (13.9, 26.4) | 102 | 36.2 (29.2, 44.0) | |
Pre-hypertension (120–139/80–89) | 277 | 46.5 (41.9, 51.2) | 155 | 49.0 (42.6, 55.5) | 122 | 43.7 (38.4, 49.1) | |
Hypertension (≥140 and ≥90) | 156 | 26.2 (21.5, 31.4) | 100 | 31.6 (24.0, 40.3) | 56 | 20.1 (15.5, 25.5) | |
HbA1c (%) | 0.59 | ||||||
Normal (<6.0) | 491 | 82.4 (76.5, 87.0) | 264 | 83.6 (75.9, 89.1) | 227 | 81.1 (73.8, 86.6) | |
Pre-diabetes (6.0–6.4) | 59 | 9.9 (7.0, 14.0) | 27 | 8.4 (4.76, 14.7) | 32 | 11.6 (8.2, 16.1) | |
Diabetes (≥6.5) | 46 | 7.7 (5.1, 11.6) | 25 | 8.0 (4.6, 13.4) | 21 | 7.4 (4.1, 13.0) | |
Total cholesterol (mg/dl) | 0.14 | ||||||
Optimal (≤239) | 568 | 95.4 (92.4, 97.2) | 297 | 93.9 (88.3, 96.2) | 271 | 97.0 (94.2, 98.5) | |
High (≥240) | 28 | 4.6 (2.8, 7.6) | 19 | 6.1 (3.1, 11.7) | 9 | 3.0 (1.5, 5.8) | |
Low density lipoprotein (mg/dL) | 0.12 | ||||||
Optimal (≤129) | 487 | 81.7 (77.0, 85.7) | 254 | 80.4 (73.2, 86.1) | 233 | 83.2 (78.0, 87.4) | |
High (≥130) | 82 | 13.7 (10.2, 18.3) | 52 | 16.4 (11.1, 23.7) | 30 | 10.7 (7.0, 16.0) | |
Missing data | 27 | 4.5 (2.9, 7.1) | 10 | 3.2 (1.3, 7.3) | 17 | 6.1 (3.6, 10.1) | |
High density lipoprotein (mg/dL) | 0.35 | ||||||
Low (<40) | 15 | 2.4 (1.2, 5.1) | 8 | 2.5 (0.8, 7.3) | 7 | 2.3 (1.1,4.9) | |
Optimal (≥40) | 554 | 93.1 (89.2, 95.6) | 298 | 94.4 (88.6, 97.3) | 256 | 91.6 (86.4, 94.9) | |
Missing data | 27 | 4.5 (2.9, 7.1) | 10 | 3.1 (1.3, 7.3) | 17 | 6.1 (3.6, 10.1) | |
Triglycerides | 0.44 | ||||||
Optimal (≤199) | 484 | 81.2 (75.5, 85.9) | 262 | 82.9 (73.8, 89.3) | 222 | 79.4 (73.2, 84.5) | |
High (≥200) | 112 | 18.8 (14.1, 24.5) | 54 | 17.1 (10.7, 26.2) | 58 | 20.6 (15.5, 26.8) | |
Sodium-potassium ratio | 0.22 | ||||||
Lower (<1.0) | 41 | 6.7 (4.1, 10.9) | 16 | 5.0 (2.1, 11.1) | 25 | 8.7 (5.1, 14.5) | |
Higher (>1.0) | 555 | 93.3 (89.2, 95.9) | 300 | 95.0 (88.9, 97.9) | 255 | 91.3 (85.5, 95.0) |
Variable | Total | Men | Women | ||||
---|---|---|---|---|---|---|---|
n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | p-Value * | |
Unweighted | 593 | 221 | 372 | ||||
Weighted | 596 | 316 | 280 | ||||
Anthropometric | |||||||
Body mass index (kg/m2) | <0.01 | ||||||
Normal (<25.0) | 302 | 50.7 (41.4, 59.9) | 190 | 60.3 (47.8, 71.6) | 111 | 39.8 (31.8, 48.4) | |
Overweight (25.0–29.9) | 172 | 28.8 (23.7, 34.6) | 84 | 26.4 (18.3, 36.5) | 89 | 31.6 (27.4, 36.2) | |
Obese (30.0 and above) | 122 | 20.5 (15.5, 26.7) | 42 | 13.3 (8.8, 19.7) | 80 | 28.6 (22.1, 36.1) | |
Waist–hip ratio | 0.04 | ||||||
Normal (<0.9/men and <0.85/women) | 274 | 46.0 (37.6, 54.7) | 164 | 51.9 (39.4, 64.1) | 110 | 39.4 (32.3, 47.0) | |
High (≥0.9/men and ≥0.85/women) | 311 | 52.2 (43.7, 60.5) | 145 | 45.9 (34.2, 58.1) | 166 | 59.2 (51.5, 66.5) | |
Missing data | 11 | 1.8 (0.6, 5.7) | 7 | 2.2 (0.6, 8.1) | 4 | 1.4 (0.5, 4.0) | |
Behavioural | |||||||
Smoking | <0.01 | ||||||
Not smoking | 542 | 90.9 (8.6, 94.3) | 267 | 84.4 (75.5, 90.5) | 275 | 98.3 (94.5, 99.5) | |
Currently smoking | 54 | 9.1(5.7. 14.1) | 49 | 15.6 (9.5, 24.5) | 5 | 1.7 (0.5, 5.5) | |
Alcohol consumption | <0.01 | ||||||
Not drinking | 505 | 84.6 (77.9, 89.6) | 236 | 74.5(64.2, 82.6) | 269 | 96.1(91.9, 98.2) | |
Currently drinking | 91 | 15.4 (10.4, 22.1) | 80 | 25.5 (17.4, 35.8) | 11 | 3.9 (1.8, 8.1) | |
Adequate physical activity | 0.07 | ||||||
Yes | 235 | 39.5 (33.0, 46.4) | 142 | 45.0 (34.5, 56.0) | 93 | 33.2 (26.8, 40.4) | |
No | 346 | 58.1 (51.1, 64.7) | 166 | 52.6 (41.6, 63.4) | 180 | 64.2 (56.9, 70.8) | |
Missing data | 15 | 2.5 (1.2, 5.1) | 8 | 2.4 (0.9, 6.4) | 7 | 2.6 (1.4, 4.7) | |
Dietary | |||||||
Fruits and veg daily intake | 0.51 | ||||||
Yes | 91 | 15.3 (10.5, 21.6) | 48 | 15.2 (9.3, 23.7) | 43 | 15.3 (10.5, 21.9) | |
No | 501 | 84.1 (77.5, 88.9) | 267 | 84.5 (76.0, 90.4) | 234 | 83.7 (76.6, 88.6) | |
Missing data | 4 | 0.7 (0.3, 2.1) | 1 | 0.3 (N/A) | 3 | 1.0 (0.4, 3.9) | |
High sugary foods and drinks | 0.25 | ||||||
Daily | 78 | 13.0 (9.2, 18.2) | 38 | 12.0 (6.7, 20.8) | 40 | 14.2 (9.9, 19.8) | |
Weekly | 216 | 36.2 (30.1, 42.8) | 115 | 36.3 (27.3, 46.3) | 101 | 36.2 (29.8, 43.0) | |
Occasionally | 295 | 49.4 (44.7, 54.2) | 163 | 51.4 (44.4, 58.3) | 132 | 47.2 (41.6, 52.8) | |
Missing data | 8 | 1.3 (0.6, 3.1) | 1 | 0.3 (N/A) | 7 | 2.5 (1.0, 6.0) | |
Use cooking fat/oil | 0.02 | ||||||
Mainly use cooking oil | 395 | 66.4 (52.4, 77.9) | 193 | 61.0 (44.9, 75.0) | 202 | 72.4 (59.5, 82.4) | |
Mainly use cooking fat | 188 | 31.5 (19.9, 46.0) | 116 | 36.7 (22.5, 53.7) | 72 | 25.6 (15.8, 38.5) | |
Missing data | 13 | 2.2 (1.0, 4.7) | 7 | 2.3 (0.9, 6.0) | 6 | 2.0 (0.9, 4.6) |
Variable | Total (n = 593) | Men (n = 221) | Women (n = 372) | |||
---|---|---|---|---|---|---|
AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | |
Age (Years) | ||||||
25–34 | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
35–54 | 1.36 (0.88–2.08) | 0.16 | 0.72 (0.31–1.70) | 0.46 | 1.81 (1.08–3.04) | 0.03 |
55–64 | 3.54 (1.56–8.00) | <0.01 | 2.08 (0.56–7.70) | 0.28 | 4.89 (1.62–14.79) | 0.01 |
Sex | ||||||
Women | 1 (Ref.) | |||||
Men | 2.37 (1.48–3.80) | <0.01 | a | a | a | a |
Ethnicity | ||||||
Maasai | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Kikuyu | 2.05 (1.09–3.82) | 0.03 | 1.60 (0.45–5.62) | 0.47 | 2.62 (1.22–5.62) | 0.01 |
Other | 1.92 (1.08–3.42) | 0.03 | 1.59 (0.57–4.42) | 0.38 | 2.48 (1.18–5.21) | 0.02 |
Residence | ||||||
Rural | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Urban | 1.14 (0.68–1.91) | 0.61 | 0.93 (0.36–2.39) | 0.89 | 1.17 (0.62–2.22) | 0.63 |
Occupation | ||||||
Unemployed | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Employed | 1.07 (0.60–1.91) | 0.82 | 2.69 (0.78–9.27) | 0.12 | 0.79 (0.39–1.59) | 0.51 |
Self employed | 1.72 (1.06–2.80) | 0.03 | 3.72 (1.13–12.22) | 0.03 | 1.57 (0.91–2.70) | 0.10 |
Smoking | ||||||
Not smoking | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | ||
Currently smoking | 1.09 (0.42–2.82) | 0.87 | 1.14 (0.38–3.44) | 0.81 | N/A | * |
Alcohol consumption | ||||||
Not drinking | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Currently drinking | 1.47 (0.72–3.02) | 0.29 | 2.33 (0.90–6.07) | 0.08 | 1.08 (0.34–3.50) | 0.89 |
BMI (Kg/m2) | ||||||
Normal (<25.0) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Overweight (25.0–29.9) | 1.87 (1.20–2.94) | 0.01 | 3.23 (1.20–8.68) | 0.02 | 1.47 (0.86–2.51) | 0.16 |
Obese (30.0 and above) | 2.97 (1.68–5.24) | <0.01 | 17.13 (1.85–158.46) | 0.01 | 2.30 (1.23–4.33) | 0.01 |
Waist–hip ratio | ||||||
Normal (<0.9/men and <0.85/women) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
High (≥0.9/men and ≥0.85/women) | 1.11 (0.73–1.69) | 0.62 | 1.31 (0.56–3.06) | 0.54 | 1.01 (0.61–1.68) | 0.95 |
Missing data | 1.63 (0.31–8.56) | 0.56 | N/A | * | 0.74 (0.11–4.81) | 0.76 |
HbA1c (%) | ||||||
Normal (<6.0) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Pre-diabetes (6.0-6.4) | 1.00 (0.52–1.95) | 0.10 | 1.97 (0.40–9.76) | 0.41 | 0.86 (0.40–1.84) | 0.69 |
Diabetes (≥6.5) | 2.37 (0.75–7.50) | 0.14 | 0.86 (0.82–9.07) | 0.90 | 2.56 (0.66–9.83) | 0.17 |
Variable | Total (n = 593) | Men (n = 221) | Women (n = 372) | |||
---|---|---|---|---|---|---|
AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | |
Age (Years) | ||||||
25–34 | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
35–54 | 1.51 (0.86–2.65) | 0.15 | 2.32 (0.82–6.56) | 0.11 | 1.20 (0.60–2.42) | 0.61 |
55–64 | 3.59 (1.78–7.25) | <0.01 | 3.94 (1.15–13.48) | 0.03 | 3.96 (1.58–9.95) | <0.01 |
Education | ||||||
Basic | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
High school/higher | 0.98 (0.58–1.66) | 0.95 | 1.19 (0.50–2.84) | 0.70 | 0.87 (0.43–1.75) | 0.69 |
Occupation | ||||||
Unemployed | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Employed | 0.43 (0.20–0.91) | 0.03 | 0.41 (0.09–1.87) | 0.25 | 0.58 (0.21–1.57) | 0.28 |
Self-employed | 0.57 (0.33–1.00) | 0.05 | 0.91 (0.24–3.38) | 0.89 | 0.50 (0.26–1.00) | 0.05 |
BMI (Kg/m2) | ||||||
Normal (<25.0) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Overweight (25.0–29.9) | 1.10 (0.59–2.05) | 0.76 | 2.49 (0.89–6.91) | 0.08 | 0.74 (0.33–1.68) | 0.48 |
Obese (30.0 and above) | 3.01 (1.67–5.42) | <0.01 | 5.33 (1.78–16.00) | <0.01 | 2.43 (1.16–5.06) | 0.02 |
Waist–hip ratio | ||||||
Normal (<0.9/men and <0.85/women) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
High (≥0.9/men and ≥0.85/women) | 2.52 (1.43–4.43) | <0.01 | 1.73 (0.65–4.56) | 0.27 | 3.18 (1.52–6.64) | <0.01 |
Missing data | 1.40 (0.24–8.27) | 0.71 | 8.66 (0.80–93.97) | 0.08 | N/A | * |
Blood pressure(mmHg) | ||||||
Normal (<120 and <80) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
Pre-hypertension (120–139/80–89) | 1.06 (0.57–1.98) | 0.84 | 1.71 (0.42–6.90) | 0.45 | 0.89 (0.42–1.88) | 0.76 |
Hypertension (≥140 and ≥90) | 1.52 (0.78–2.95) | 0.22 | 1.70 (0.40–7.26) | 0.47 | 1.52 (0.68–3.38) | 0.31 |
Low density lipoprotein (mg/dl) | ||||||
Optimal (<100) | 1 (Ref.) | 1 (Ref.) | 1 (Ref.) | |||
High (≥130) | 1.11 (0.57–2.13) | 0.76 | 0.64 (0.21–1.99) | 0.44 | 1.41 (0.60–3.33) | 0.44 |
Missing data | 1.28 (0.52–3.17) | 0.59 | 0.71 (0.07–7.57) | 0.77 | 1.66 (0.60–4.56) | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ongosi, A.N.; Wilunda, C.; Musumari, P.M.; Techasrivichien, T.; Wang, C.-W.; Ono-Kihara, M.; Serrem, C.; Kihara, M.; Nakayama, T. Prevalence and Risk Factors of Elevated Blood Pressure and Elevated Blood Glucose among Residents of Kajiado County, Kenya: A Population-Based Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2020, 17, 6957. https://doi.org/10.3390/ijerph17196957
Ongosi AN, Wilunda C, Musumari PM, Techasrivichien T, Wang C-W, Ono-Kihara M, Serrem C, Kihara M, Nakayama T. Prevalence and Risk Factors of Elevated Blood Pressure and Elevated Blood Glucose among Residents of Kajiado County, Kenya: A Population-Based Cross-Sectional Survey. International Journal of Environmental Research and Public Health. 2020; 17(19):6957. https://doi.org/10.3390/ijerph17196957
Chicago/Turabian StyleOngosi, Anita Nyaboke, Calistus Wilunda, Patou Masika Musumari, Teeranee Techasrivichien, Chia-Wen Wang, Masako Ono-Kihara, Charlotte Serrem, Masahiro Kihara, and Takeo Nakayama. 2020. "Prevalence and Risk Factors of Elevated Blood Pressure and Elevated Blood Glucose among Residents of Kajiado County, Kenya: A Population-Based Cross-Sectional Survey" International Journal of Environmental Research and Public Health 17, no. 19: 6957. https://doi.org/10.3390/ijerph17196957
APA StyleOngosi, A. N., Wilunda, C., Musumari, P. M., Techasrivichien, T., Wang, C. -W., Ono-Kihara, M., Serrem, C., Kihara, M., & Nakayama, T. (2020). Prevalence and Risk Factors of Elevated Blood Pressure and Elevated Blood Glucose among Residents of Kajiado County, Kenya: A Population-Based Cross-Sectional Survey. International Journal of Environmental Research and Public Health, 17(19), 6957. https://doi.org/10.3390/ijerph17196957