PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Sample Preparation and Analysis
2.3. PAHs Source Analysis
2.4. Backward Trajectory Calculation
2.5. Health Risk Assessment
2.6. Sensitivity Analysis
3. Results and Discussion
3.1. Characteristics of PM2.5-Bound PAHs and Meteorology
3.2. Source Identification
3.2.1. Diagnostic Ratios Analysis
3.2.2. PCA Analysis
3.2.3. Backward Trajectory Analysis
3.3. Health Risks Assessment of PM2.5-Bound PAHs
3.4. Sensitivity Analysis
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.W.; Deng, F.R.; Huang, W.; Huang, J.; Wang, X.; Zheng, C.J.; Qin, Y.; Lv, H.B.; Shima, M.; Guo, X.B. Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: A combined analysis from the Healthy Volunteer Natural Relocation (HVNR) study. Environ. Sci. Technol. 2014, 48, 3438–3448. [Google Scholar] [CrossRef]
- Ostro, B.; Malig, B.; Broadwin, R.; Basu, R.; Gold, E.B.; Bromberger, J.T.; Derby, C.; Feinstein, S.; Greendale, G.A.; Jackson, E.A.; et al. Chronic PM2.5 exposure and inflammation: Determining sensitive subgroups in mid-life women. Environ. Res. 2014, 132, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liacos, J.W.; Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. Sci. Total Environ. 2012, 435, 159–166. [Google Scholar] [CrossRef] [PubMed]
- IARC (International Agency for Research on Cancer). Polynuclear Aromatic Compounds: Chemical, Environmental and Experimental Data. 1983. Available online: https://www.iarc.fr/ (accessed on 11 January 2020).
- Pongpiachan, S.; Tipmanee, D.; Khumsup, C.; Kittikoon, I.; Hirunyatrakul, P. Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Sci. Total Environ. 2015, 508, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Suzuki, G.; Zhang, L.L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Shima, M.; Yoda, Y.; Nakatsubo, R.; Hiraki, T.; et al. The Characteristics of Polycyclic Aromatic Hydrocarbons in Different Emission Source Areas in Shenyang, China. Int. J. Environ. Res. Public Health 2019, 16, 2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazzalunga, A.; Anzano, M.; Collina, E.; Lasagni, M.; Lollobrigida, F.; Pannocchia, A.; Fermo, P.; Pitea, D. Contribution of wood combustion to PAH and PCDD/F concentrations in two urban sites in Northern Italy. J. Aerosol Sci. 2013, 56, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Vassura, I.; Venturini, E.; Marchetti, S.; Piazzalunga, A.; Bernardi, E.; Fermo, P.; Passarini, F. Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmos. Environ. 2014, 82, 218–225. [Google Scholar] [CrossRef]
- Shen, M.L.; Xing, J.; Ji, Q.P.; Li, Z.H.; Wang, Y.H.; Zhao, H.W.; Wang, Q.R.; Wang, T.; Yu, L.W.; Zhang, X.C.; et al. Declining pulmonary function in populations with long-term exposure to polycyclic aromatic hydrocarbons-enriched PM2.5. Environ. Sci. Technol. 2018, 52, 6610–6616. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Jiang, Z.Y.; Gu, A. Association of polycyclic aromatic hydrocarbons and asthma among children 6–19 years: NHANES 2001–2008 and NHANES 2011–2012. Respir. Med. 2016, 110, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Y.; Wang, W.C.; Sun, Z.L.; Chen, C.J.; Chen, J.K.; Zou, Q.; Lin, Y.H.; Lin, C.H. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Sci. Total Environ. 2017, 574, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Y.; Zhao, B.; Zhao, Y.J.; Luo, Q.Z.; Wang, S.X.; Zhao, B.; Bai, S.H. Reduction in population exposure to PM2.5 and cancer risk due to PM2.5-bound PAHs exposure in Beijing, China during the APEC meeting. Environ. Pollut. 2017, 225, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.H.; Cook, R.L.; Ilacqua, V.A.; Kan, H.D.; Talbott, E.O.; Kearney, G. Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Sci. Total Environ. 2010, 408, 4943–4948. [Google Scholar] [CrossRef] [PubMed]
- Taghvaee, S.; Sowlat, M.H.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environ. Int. 2018, 120, 321–332. [Google Scholar] [CrossRef]
- Chang, J.R.; Shen, J.N.; Tao, J.; Li, N.; Xu, C.Y.; Li, Y.P.; Liu, Z.; Wang, Q. The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Sci. Total Environ. 2019, 688, 1413–1421. [Google Scholar] [CrossRef]
- Lu, H.; Wang, S.S.; Li, Y.; Gong, H.; Han, J.Y.; Wu, Z.L.; Yao, S.L.; Zhang, X.M.; Tang, X.J.; Jiang, B.Q. Seasonal variations and source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China. Environ. Sci. Pollut. Res. 2017, 24, 16195–16205. [Google Scholar] [CrossRef]
- Han, B.; You, Y.; Liu, Y.T.; Xu, J.; Zhou, J.; Zhang, J.F.; Niu, C.; Zhang, N.; He, F.; Ding, X.; et al. Inhalation cancer risk estimation of source-specific personal exposure for particulate matter-bound polycyclic aromatic hydrocarbons based on positive matrix factorization. Environ. Sci. Pollut. Res. 2019, 26, 10230–10239. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung cancer risk from PAhs emitted from biomass combustion. Environ. Res. 2015, 137, 147–156. [Google Scholar] [CrossRef]
- USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual Supplemental Guidance “Standard Default Exposure Factors”: (Interim Final); PB91-921314; OSWER 9285.6-03; USEPA: Washington, DC, USA, 1991. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-volume-i-human-health-evaluation-manual-supplemental (accessed on 11 January 2020).
- USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002; OSWER 9285.7-82; USEPA: Washington, DC, USA, 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 11 January 2020).
- Zhang, N.; Han, B.; He, F.; Xu, J.; Niu, C.; Zhou, J.; Kong, S.; Bei, Z.; Xu, H. Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: An exposure panel study in Tianjin, China. Air Qual. Atmos. Health 2015, 8, 347–357. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yuan, Z.B.; Li, Y.; Lau, A.K.H.; Louie, P.K.K. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000–2011. Atmos. Environ. 2015, 122, 892–899. [Google Scholar] [CrossRef]
- McNaughton, C.S.; Vandenberg, J.; Thiede, P. Reanalysis of aerial deposition of metals and polycyclic aromatic compounds to snow in the Athabasca Oil Sands Region of Alberta Canada. Sci. Total Environ. 2019, 682, 692–708. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Song, Z.H.; Zhang, L.M.; Zhang, Z.L.; Hough, R.; Fu, Q.; An, L.H.; Shen, Z.X.; Li, Y.F.; Liu, D.; et al. Polycyclic aromatic hydrocarbons in fresh snow in the city of Harbin in northeast China. Atmos. Environ. 2019, 215, 116915. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, G.Y.; Liu, Y.L.; Hao, Y.L.; Gao, H.X.; Li, Q.Z.; Jiang, S.F.; Wang, M.M.; Bai, Y.P. Establishment of high performance liquid chromatography approach for 18 PAHs in ambient PM2.5. J. Environ. Occup. Med. 2016, 33, 278–282. [Google Scholar] [CrossRef]
- Vaio, P.D.; Cocozziello, B.; Corvino, A.; Fiorino, F.; Frecentese, F.; Magli, E.; Onorati, G.; Saccone, I.; Santagada, V.; Settimo, G.; et al. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples. Atmos. Environ. 2016, 129, 186–196. [Google Scholar] [CrossRef]
- Gadi, R.; Sharma, S.K.; Mandal, T.K. Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India. Chemosphere 2019, 221, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xie, J.F.; Wang, Z.T.; Li, M. Determination and source identification of priority polycyclic aromatic hydrocarbons in PM2.5 in Taiyuan, China. Atmos. Res. 2016, 178, 401–414. [Google Scholar] [CrossRef]
- European Commission. Polycyclic Aromatic Hydrocarbons (PAH) Position Paper (July 2001) (Prepared by the Working Group on Polycyclic Aromatic Hydrocarbons). 2001. Available online: https://ec.europa.eu/info/index_en (accessed on 11 January 2020).
- Ministry of Environmental Protection of the People’s Republic of China (MEP). Environmental Monitoring-Technical Guideline on Drawing and Revising Analytical Method Standards, Inspection and Quarantine of the People’s Republic of China. Other Environmental Protection Standards (HJ168-2010). 2010. Available online: http://english.mee.gov.cn/include/iframetop/index.shtml (accessed on 11 January 2020).
- Zhao, P.S.; Dong, F.; He, D.; Zhao, X.J.; Zhang, X.L.; Zhang, W.Z.; Yao, Q.; Liu, H.Y. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4631–4644. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.L.; Liu, L.Y.; Jia, H.L.; Yang, M.; Li, Y.F. PAHs in Chinese atmosphere part I: Concentration, source and temperature dependence. Atmos. Environ. 2018, 173, 330–337. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2012; China Statistical Press: Beijing, China, 2012; pp. 335–368.
- He, J.; Fan, S.; Meng, Q.; Sun, Y.; Zhang, J.; Zu, F. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmos. Environ. 2014, 89, 207–215. [Google Scholar] [CrossRef]
- Khan, M.B.; Masiol, M.; Bruno, C.; Pasqualetto, A.; Formenton, G.M.; Agostinelli, C.; Pavoni, B. Potential sources and meteorological factors affecting PM2.5-bound polycyclic aromatic hydrocarbon levels in six main cities of northeastern Italy: An assessment of the related carcinogenic and mutagenic risks. Environ. Sci. Pollut. Res. 2018, 25, 31987–32000. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J. Hazard. Mater. 2009, 170, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Formenton, G.; Pasqualetto, A.; Pavoni, B. Seasonal trends and spatial variations of PM10-bounded polycyclic aromatic hydrocarbons in Veneto region, northeast Italy. Atmos. Environ. 2013, 79, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, X.H.; Zhu, T.L.; Han, Y.J.; Lv, D. PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Sci. Total Environ. 2017, 586, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Jiang, N.; Zhang, R.Q.; Tang, X.Y. Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days. Atmos. Environ. 2015, 104, 228–236. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Li, H.L. Polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 within boundary layer: Cloud/fog and regional transport. Sci. Total Environ. 2018, 627, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Guo, S.J.; Ma, Y.L.; Duan, J.C.; Cheng, Y.; He, K.B.; Yang, F.M. Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmos. Res. 2011, 102, 91–98. [Google Scholar] [CrossRef]
- Wang, J.Z.; Xu, H.M.; Guinot, B.; Li, L.J.; Hang, S.S.; Liu, S.X.; Liu, S.X.; Li, X.P.; Cao, J.J. Concentrations, sources and health effects of parent, oxygenated- and nitrated-polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi’an, China. Atmos. Res. 2017, 192, 1–10. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Z.S.; Chen, J.H.; Kong, S.F.; Fu, X.; Deng, H.Y.; Deng, H.B.; Shao, G.F.; Wu, G. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmos. Res. 2014, 149, 217–229. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chiang, H.C.; Hsu, C.Y.; Yang, T.T.; Lin, T.Y.; Chen, M.J.; Chen, N.T.; Wu, Y.S. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment, China. Environ. Pollut. 2016, 218, 372–382. [Google Scholar] [CrossRef]
- Li, Z.; Sjodin, A.; Porter, E.N.; Patterson, D.G.; Needham, L.L.; Lee, S.; Russell, A.G.; Mulholland, J.A. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlantad Seasonal variations at urban, suburban, and rural ambient air monitoring sites. Atmos. Environ. 2009, 43, 1043–1050. [Google Scholar] [CrossRef]
- Vidal, M.V.; Lertxundi, A.; Dicastillo, M.L.; Alvarez, J.I.; Marina, L.S.; Ayerdi, M.; Basterrechea, M.; Lbarluzea, J. Air polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment. Chemosphere 2014, 99, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Fasani, D.; Fermo, P.J.; Barroso, J.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Analytical Method for Biomonitoring of PAH Using Leaves of Bitter Orange Trees (Citrus aurantium): A Case Study in South Spain. Water Air Soil Pollut. 2016, 227, 360. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.M.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Gu, Z.P.; Feng, J.L.; Han, W.L.; Li, L.; Wu, M.H.; Fu, J.M.; Sheng, G.Y. Diurnal variations of polycyclic aromatic hydrocarbons associated with PM2.5 in Shanghai, China. J. Environ. Sci. 2010, 22, 389–396. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Stephanou, E.G. Particle size distribution of organic primary and secondary aerosol constituents in urban, background marine, and forest atmosphere. J. Geophys. Res. 2002, 107, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.L.; Chen, J.W.; Qiao, X.L.; Wang, Z.; Yang, P.; Wang, D.G.; Ge, L. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmos. Environ. 2009, 43, 2747–2753. [Google Scholar] [CrossRef]
- Wang, X.F.; Cheng, H.X.; Xu, X.B.; Zhuang, G.M.; Zhao, C.D. A wintertime study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in Beijing: Assessment of energy structure conversion. J. Hazard. Mater. 2008, 157, 47–56. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Mccarry, B.E.; Marvin, C.H. Source apportionment of PAH in Hamilton Harbour suspended sediments: Comparison of two factor analysis methods. Environ. Sci. Technol. 2008, 42, 6007–6014. [Google Scholar] [CrossRef]
- Kong, S.F.; Ding, X.; Bai, Z.P.; Han, B.; Chen, L.; Shi, J.W.; Li, Z.Y. A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. J. Hazard. Mater. 2010, 183, 70–80. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Appendix A to 40 CFR. Part 423el 26 Priority Pollutants. 2003. Available online: http://www.epa.gov/ (accessed on 11 January 2020).
County | City | Periods | PM2.5 | ∑PAHs | Type of Location | References |
---|---|---|---|---|---|---|
China | Tangshan | 2014 | 23.0–367 | 86.8–608 | Urban | This work |
China | Beijing | 2014–2016 | 13.6–266 | 5.10–788 | Urban | [39] |
China | Zhengzhou | 2011–2013 | 55.0–697 | 7.00–961 | Suburb | [40] |
China | Lushan | 2012 | 63.9–428 | 1.47–25.2 | Mount | [41] |
China | Guangzhou | 2007–2008 | 9.37–148 | 8.54–122 | Urban | [42] |
China | Taiyuan | 2012 | - a | 10.4–216 | University | [29] |
China | Xi’an | 2012 | - a | 49.6–140 | Middle-school | [43] |
China | Inner Mongolia | 2005 | - a | 0.580–180 | Urban | [44] |
China | Taiwan | 2014–2015 | 9.40–88.6 | 1.33–6.04 | Urban | [45] |
USA | Atlanta | 2014 | - a | 0.380–6.85 | Urban | [46] |
Spain | Basque | 2006–2011 | - a | 0.300–8.29 | Urban | [47] |
PAHs | Non-Heating Period | Heating Period | |||||
---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
Nap | 0.854 | −0.718 | |||||
Acy | 0.905 | 0.768 | |||||
Ace | 0.969 | 0.964 | |||||
Flu | 0.944 | 0.783 | |||||
Phe | 0.865 | ||||||
Ant | 0.932 | ||||||
Fln | 0.854 | 0.899 | |||||
Pyr | 0.835 | 0.875 | |||||
BaA | 0.745 | 0.936 | |||||
Chr | 0.910 | 0.909 | |||||
BbF | 0.846 | ||||||
BkF | 0.816 | 0.970 | |||||
BjF | 0.930 | 0.924 | |||||
BaP | |||||||
BeP | 0.915 | 0.852 | |||||
DbA | 0.845 | ||||||
BghiP | 0.799 | 0.944 | |||||
InD | 0.959 | ||||||
Total variance (%) | 43.4 | 25.5 | 13.5 | 27.6 | 24.3 | 22.2 | 10.2 |
Sources | Coal combustionand and vehicle | Vehicle | Biomass burning | Coal, fossil fuel and vehicle | Coal combustion | Coal combustion and vehicle | Coal combustion |
Parameters | Children (1–11) | Teenagers (12–17) | Adults (18–70) | |||
---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |
BW a | (17.2, 6.30) | (16.5, 6.20) | (47.1, 9.80) | (44.8, 7.40) | (60.2, 2.90) | (53.1, 2.80) |
IRi b | (14.1, 1.72) | (32.1, 1.04) | (32.7, 1.14) | |||
EF c | (252, 1.01) | (252, 1.01) | (252, 1.01) | |||
AT d | 25,550 | 25,550 | 25,550 | |||
ED e | 1–11 | 12–17 | 18–70 | |||
CSFi | 3.14 | 3.14 | 3.14 | |||
Non-heating period | 0.430 × 10−6– 4.74 × 10−6 | 0.440 × 10−6– 4.87 × 10−6 | 6.02 × 10−6– 8.53 × 10−6 | 6.22 × 10−6– 8.82 × 10−6 | 7.81 × 10−6– 30.4 × 10−6 | 8.20 × 10−6– 31.9 × 10−6 |
Heating period | 1.13 × 10−6– 12.4 × 10−6 | 1.16 × 10−6– 12.8 × 10−6 | 15.8 × 10−6– 22.4 × 10−6 | 16.3 × 10−6– 23.1 × 10−6 | 20.5 × 10−6– 79.7 × 10−6 | 21.5 × 10−6– 83.6 × 10−6 |
Seasons | Percentile | Children | Teenagers | Adults |
---|---|---|---|---|
Non-heating Period | 5% | 5.81 × 10−7 | 3.01 × 10−6 | 5.93 × 10−6 |
25% | 1.76 × 10−6 | 5.57 × 10−6 | 1.22 × 10−5 | |
50% | 3.78 × 10−6 | 8.34 × 10−6 | 2.02 × 10−5 | |
75% | 7.87 × 10−6 | 1.28 × 10−5 | 3.26 × 10−5 | |
95% | 1.96 × 10−5 | 2.31 × 10−5 | 6.31 × 10−5 | |
Heating Period | 5% | 1.58 × 10−6 | 7.81 × 10−6 | 1.58 × 10−5 |
25% | 4.74 × 10−6 | 1.44 × 10−5 | 3.22 × 10−5 | |
50% | 1.00 × 10−5 | 2.19 × 10−5 | 5.27 × 10−5 | |
75% | 2.04 × 10−5 | 3.30 × 10−5 | 8.56 × 10−5 | |
95% | 5.36 × 10−5 | 6.12 × 10−5 | 1.70 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, B.; Zhang, L.; Zeng, H.; Liu, J.; Yang, Z.; Wang, H.; Wang, Q.; Wang, M. PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China). Int. J. Environ. Res. Public Health 2020, 17, 483. https://doi.org/10.3390/ijerph17020483
Fang B, Zhang L, Zeng H, Liu J, Yang Z, Wang H, Wang Q, Wang M. PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China). International Journal of Environmental Research and Public Health. 2020; 17(2):483. https://doi.org/10.3390/ijerph17020483
Chicago/Turabian StyleFang, Bo, Lei Zhang, Hao Zeng, Jiajia Liu, Ze Yang, Hongwei Wang, Qian Wang, and Manman Wang. 2020. "PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China)" International Journal of Environmental Research and Public Health 17, no. 2: 483. https://doi.org/10.3390/ijerph17020483
APA StyleFang, B., Zhang, L., Zeng, H., Liu, J., Yang, Z., Wang, H., Wang, Q., & Wang, M. (2020). PM2.5-Bound Polycyclic Aromatic Hydrocarbons: Sources and Health Risk during Non-Heating and Heating Periods (Tangshan, China). International Journal of Environmental Research and Public Health, 17(2), 483. https://doi.org/10.3390/ijerph17020483