Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection and Analytical Methods
2.3. Assessment of Sediment Contamination
2.4. Statistical Analysis
3. Results and Discussion
3.1. Metal Concentrations in Surface Water
3.2. Metal Concentrations in Sediments
3.3. Assessment of Metal Pollution in Sediments
3.4. Source Identification of Metals in Sediments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soliman, N.F.; Younis, A.M.; Elkady, E.M. An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere 2019, 222, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, L.; Zhao, Y.; Wei, Z.; Chen, X.; Yao, C.; Meng, Q.; Zhao, R. A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresour. Technol. 2019, 293, 122095. [Google Scholar] [CrossRef] [PubMed]
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourret, O.; Bollinger, J.-C.; van Hullebusch, E.D. On the difficulties of being rigorous in environmental geochemistry studies: Some recommendations for designing an impactful paper. Environ. Sci. Pollut. Res. 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Dong, X.; Chen, J.N. Toxicity assessment of metals in sediment from the lower reaches of the Haihe River Basin in China, International Journal of Sediment Research. Int. J. Sediment Res. 2013, 28, 172–181. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; Zaki, M.M.; Saleh, M.M. Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water. Int. J. Biol. Macromol. 2019, 137, 455–468. [Google Scholar] [CrossRef]
- Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K. Correction to: Impacts and policy implications of metals effluent discharge into rivers within industrial zones: A sub-Saharan perspective from Ethiopia. Environ. Manag. 2018, 61, 700–715. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Sun, G.H.; Yang, C.P.; Liang, K.; Ma, S.Z.; Huang, L.; Luo, W.D. Source apportionment and source-to-sink transport of major and trace elements in coastal sediments: Combining positive matrix factorization and sediment trend analysis. Sci. Total Environ. 2019, 651, 344–356. [Google Scholar] [CrossRef]
- Lee, G.; Suonan, Z.; Kim, S.H.; Hwang, D.W.; Lee, K.S. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems. Mar. Pollut. Bull. 2019, 149, 110509. [Google Scholar] [CrossRef]
- Mirza, R.; Moeinaddini, M.; Pourebrahim, S.; Ali Zahed, M. Contamination, ecological risk and source identification of metals by multivariate analysis in surface sediments of the khouran Straits, the Persian Gulf. Mar. Pollut. Bull. 2019, 145, 526–535. [Google Scholar] [CrossRef]
- He, W.; Bai, Z.L.; Liu, W.X.; Kong, X.Z.; Yang, B.; Yang, C.; Jørgensen, S.E.; Xu, F.L. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu). Environ. Sci. Pollut. Res. Int. 2016, 23, 10335–10348. [Google Scholar] [CrossRef]
- Tang, J.; Chai, L.; Li, H.; Yang, Z.; Yang, W. A 10-year statistical analysis of heavy metals in river and sediment in Hengyang segment, Xiangjiang river basin, China. Sustainability 2018, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Varol, M.; Şen, B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena 2012, 92, 1–10. [Google Scholar] [CrossRef]
- Ge, M.; Wang, D.; Yang, J.; Jin, Q.; Chen, Z.; Wu, W.; Guo, Z. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength. Water Res. 2018, 147, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B.G.; Ashley, P.M. Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J. Geochem. Explor. 2005, 85, 119–137. [Google Scholar] [CrossRef]
- Wang, N.; Han, J.; Wei, Y.; Li, G.; Sun, Y. Potential ecological risk and health risk assessment of heavy metals and metalloid in soil around Xunyang mining areas. Sustainability 2019, 11, 4828. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.S.; Kelecom, A.G.A.C.; da Silva, A.X.; do Carmo, A.S.; Py Júnior, D.A. Assessment of uranium release to the environment from a disabled uranium mine in Brazil. J. Environ. Radioact. 2018, 188, 18–22. [Google Scholar] [CrossRef]
- Mandeng, E.P.B.; Bidjeck, L.M.B.; Bessa, A.Z.E.; Ntomb, Y.D.; Wadjou, J.W.; Doumo, E.P.E.; Dieudonné, L.B. Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district, Southern Cameroon. Heliyon 2019, 5, e02591. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qin, H.; Liu, X. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 5904–5912. [Google Scholar] [CrossRef]
- Yao, G.Y.; Hua, E.X.; Gao, B.; Wang, Y.; Zhan, L.Z.; Jiang, J.Q. Distribution characteristics of radionuclides in soils around tailings dump sites of a uranium mining field in south China. J. Ecol. Rural Environ. 2015, 31, 963–966. [Google Scholar]
- Xiang, L.; Liu, P.; Jiang, X.; Chen, P. Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No.721 uranium mining, East China. J. Geochem. Explor. 2019, 207, 106360. [Google Scholar] [CrossRef]
- Ma, W.; Gao, B.; Guo, Y.D.; Liu, Y.Y.; Chen, J.Y.; Zhang, C.Y.; Wang, Z. Chemical compositions and health risk assessment of toxic metals in the groundwater surrounding a uranium tailings ponds. Fresen. Environ. Bull. 2018, 27, 8938–8945. [Google Scholar]
- He, L.; Gao, B.; Luo, X.; Jiao, J.; Qin, H.; Zhang, C.; Dong, Y. Health risk assessment of heavy metals in surface water near a uranium tailing pond in Jiangxi province, South China. Sustainability 2018, 10, 1113. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.H.; Chen, M.Z. Analysis on metallogenic conditions of conditions of Xiangshan uranium ore field. Uranium Geol. 1999, 15, 329–337. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Sekabira, K.; Oryem Origa, H.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Malik, A.; Sinha, S.; Singh, V.K.; Murthy, R.C. Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water Air Soil Pollut. 2005, 166, 321–341. [Google Scholar] [CrossRef]
- Wang, Z.S.; Yan, X.H. Regional geochemical characteristics of sediments in Jiangxi province. Sci. Technol. Innov. 2018, 10, 44–45. [Google Scholar]
- Pandey, L.K.; Park, J.; Son, D.H.; Kim, W.; Islam, M.S.; Choi, S.; Lee, H.; Han, T. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci. Total Environ. 2019, 651, 323–333. [Google Scholar] [CrossRef]
- Tomilson, D.C.; Wilson, D.J.; Harris, C.R.; Jeffrey, D.W. Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tan, İ.; Aslan, E. Metal pollution status and ecological risk assessment in marine sediments of the inner Izmit Bay. Reg. Stud. Mar. Sci. 2019, 33, 100850. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Sun, Y.R.; Zheng, S.H.; Wu, X.R.; Li, X.D.; Li, Y.; Yang, M.Z.; Wan, M.; Zhang, S.M. Inverstigation of natural radioactivity level of the waters in Jiangxi province. Radiat. Prot. 1991, 5, 358–364. [Google Scholar]
- USEPA. Calculation and Evaluation of Sediment Effect Concentrations for the Amphipod Hyalella Azteca and the Midge Chironomus Riparius; Great Lakes National Program Office, Region V: Chicago, IL, USA, 1996. [Google Scholar]
- Chen, M.; Li, F.; Tao, M.; Hu, L.; Shi, Y.; Liu, Y. Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Mar. Pollut. Bull. 2019, 146, 893–899. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Qu, L.; Song, Q.; Ji, X.; Mei, K.; Dahlgren, R.A.; Zhang, M. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard. Mater. 2020, 381, 121230. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.; Elnazer, A.A. Multivariate statistics and contamination factor to identify trace elements pollution in soil around Gerga City. Egypt. Bull. Natl. Res. Cent. 2019, 43, 43. [Google Scholar] [CrossRef] [Green Version]
- Devi, N.L.; Yadav, I.C.; Qi, S.; Yang, D.; Gan, Z.; Raha, P. Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 2016, 144, 493–502. [Google Scholar] [CrossRef]
Sites | Toxic Metals (μg·L−1) | |||||
---|---|---|---|---|---|---|
Cu | Cd | Cr | Pb | U | Th | |
H1 | 0.25 | 1.60 | 0.48 | 2.27 | 1.00 | 0.74 |
H2 | 4.71 | 1.58 | 0.29 | 1.88 | 1.1 | 1.74 |
H3 | 9.23 | 1.60 | 0.71 | 2.03 | 8.2 | 8.19 |
H4 | 7.54 | 1.62 | 0.39 | 1.83 | 6 | 1.24 |
H5 | 4.89 | 1.64 | 0.95 | 1.73 | 2.5 | 0.99 |
H6 | 2.59 | 1.61 | 0.38 | 1.74 | 1.2 | 0.5 |
Average | 4.87 | 1.61 | 0.53 | 1.91 | 3.33 | 2.23 |
Surface water quality standard I | 10 | 1 | 10 | 10 | - | - |
Surface water quality standard III | 1000 | 5 | 50 | 50 | - | - |
WHO | 2000 | 3 | 50 | 10 | 30 | - |
Background values | - | - | - | - | 0.62 | 0.2 |
Sites | Toxic Metals (mg·kg−1) | |||||
---|---|---|---|---|---|---|
Cu | Cd | Cr | Pb | U | Th | |
H1 | 1.02 | 2.04 | 246.44 | 2.04 | 4.72 | 3.23 |
H2 | 2.89 | 2.89 | 270.71 | 1.93 | 8.67 | 4.42 |
H3 | 3.69 | 1.85 | 400.37 | 6.46 | 13.24 | 8.2 |
H4 | 1.86 | 0.93 | 216.14 | 0.93 | 12.17 | 5.15 |
H5 | 0.99 | 1.8 | 228.42 | 2.7 | 4.64 | 2.14 |
H6 | 5.42 | 0.9 | 196.75 | 0.9 | 4.78 | 3.56 |
Average | 2.65 | 1.74 | 259.81 | 2.49 | 8.04 | 4.45 |
Background values | 19.8 | 0.117 | 47.7 | 29.6 | 2.69 | 13.8 |
TEL | 28 | 0.58 | 36 | 37 | - | - |
PEL | 100 | 3.2 | 120 | 82 | - | - |
Sites | RI | |||||
---|---|---|---|---|---|---|
Cu | Cd | Cr | Pb | U | ||
H1 | 0.26 | 523.08 | 10.33 | 0.34 | 70.19 | 604.20 |
H2 | 0.73 | 741.03 | 11.35 | 0.33 | 128.92 | 882.35 |
H3 | 0.93 | 474.36 | 16.79 | 1.09 | 196.88 | 690.05 |
H4 | 0.47 | 238.46 | 9.06 | 0.16 | 180.97 | 429.12 |
H5 | 0.25 | 461.54 | 9.58 | 0.46 | 69.00 | 540.82 |
H6 | 1.37 | 230.77 | 8.25 | 0.15 | 71.08 | 311.62 |
Elements | Cu | Cd | Cr | Pb | U | Th |
---|---|---|---|---|---|---|
Cu | 1 | |||||
Cd | −0.293 | 1 | ||||
Cr | 0.131 | 0.403 | 1 | |||
Pb | 0.068 | 0.295 | 0.951 ** | 1 | ||
U | 0.127 | −0.035 | 0.632 | 0.486 | 1 | |
Th | 0.369 | 0.007 | 0.803 * | 0.704 | 0.896 * | 1 |
Variable | Principal Component | |
---|---|---|
PC1 | PC2 | |
Cu | 0.24 | −0.72 |
Cd | 0.23 | 0.84 |
Cr | 0.96 | 0.22 |
Pb | 0.88 | 0.24 |
U | 0.81 | −0.23 |
Th | 0.95 | −0.27 |
Eigen value | 3.35 | 1.45 |
Explained variance (%) | 55.87 | 24.19 |
Cumulative variance (%) | 55.87 | 80.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Gao, B.; Liu, H.; Zhang, Y.; Du, C.; Li, Y. Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area. Int. J. Environ. Res. Public Health 2020, 17, 548. https://doi.org/10.3390/ijerph17020548
Yi L, Gao B, Liu H, Zhang Y, Du C, Li Y. Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area. International Journal of Environmental Research and Public Health. 2020; 17(2):548. https://doi.org/10.3390/ijerph17020548
Chicago/Turabian StyleYi, Ling, Bai Gao, Haiyan Liu, Yanhong Zhang, Chaochao Du, and Yanmei Li. 2020. "Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area" International Journal of Environmental Research and Public Health 17, no. 2: 548. https://doi.org/10.3390/ijerph17020548
APA StyleYi, L., Gao, B., Liu, H., Zhang, Y., Du, C., & Li, Y. (2020). Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area. International Journal of Environmental Research and Public Health, 17(2), 548. https://doi.org/10.3390/ijerph17020548