Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. L. monocytogenes Strains, Culture Preparation, and Inoculation Procedures
2.2. Application of Nisin, Mild Heat, and Elevated Hydrostatic Pressure
2.3. Neutralization, and Microbiological and pH Analyses
2.4. Experimental Design and Descriptive and Inferential Statistics
3. Results and Discussion
3.1. Inactivation of L. monocytogenes by High-Pressure Pasteurization
3.2. Inactivation of L. monocytogenes by Nisin
3.3. Synergism of Nisin, Mild Heat, and Elevated Hydrostatic Pressure
3.4. Inactivation Indices for Inactivation of L. monocytogenes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fouladkhah, A. The need for evidence-based outreach in the current food safety regulatory landscape. J. Ext. 2017, 55, 2COM1. [Google Scholar]
- Fouladkhah, A.C.; Thompson, B.; Camp, J.S. Safety of food and water supplies in the landscape of changing climate. Microorganisms 2019, 7, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Outbreak Reporting System (NORS). Centers for Disease Control and Prevention. 2019. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 15 November 2019).
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Listeriosis—Annual Epidemiological Report for 2016. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2016-listeriosis.pdf (accessed on 24 December 2019).
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Mahon, B.E.; Jones, T.F.; Griffin, P.M. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol. Infect. 2015, 143, 2795–2804. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Listeria (Listeriosis) Symptoms. 2019. Available online: https://www.cdc.gov/listeria/symptoms.html (accessed on 15 November 2019).
- Punyauppa-path, S.; Phumkhachorn, P.; Rattanachaikunsopon, P. Nisin: Production and mechanism of antimicrobial action. Int. J. Curr. Res. 2015, 7, 47. [Google Scholar]
- Food and Drug Administration. Direct Food Substance Affirmed as Generally Recognized as Safe. Revised 1 April 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?CFRPart=184&showFR=1 (accessed on 15 November 2019).
- Samelis, J.; Bedie, G.K.; Sofos, J.N.; Belk, K.E.; Scanga, J.A.; Smith, G.C. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at 4 °C in vacuum packages. LWT-Food Sci. Technol. 2005, 38, 21–28. [Google Scholar] [CrossRef]
- Gou, J.; Lee, H.Y.; Ahn, J. Inactivation kinetics and virulence potential of Salmonella Typhimurium and Listeria monocytogenes treated by combined high pressure and nisin. J. Food Prot. 2010, 73, 2203–2210. [Google Scholar] [CrossRef]
- García, P.; Martínez, B.; Rodríguez, L.; Rodríguez, A. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int. J. Food Microbiol. 2010, 141, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kaletunç, G. Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. Int. J. Food Microbiol. 2010, 140, 49–56. [Google Scholar] [CrossRef]
- Klangpetch, W.; Noma, S. Inhibitory effects of nisin combined with plant-derived antimicrobials on pathogenic bacteria and the interaction with complex food systems. J. Food Sci. Technol. 2018, 24, 609–617. [Google Scholar] [CrossRef]
- Moshtaghi, H.; Rashidimehr, A.; Shareghi, B. Antimicrobial activity of nisin and Lysozyme on foodborne pathogens Listeria monocytogenes, Staphylococcus Aureus, Salmonella Typhimurium, and Escherichia coli at different pH. J. Nutr. Food Secur. 2018, 3, 193–201. [Google Scholar] [CrossRef]
- Modugno, C.; Kmiha, S.; Simonin, H.; Aouadhi, C.; Cañizares, E.D.; Lang, E.; André, S.; Mejri, S.; Maaroufi, A.; Perrier-Cornet, J.M. High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin. Food Microbiol. 2019, 84, 103244. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Almeida, A.; Delgadillo, I.; Saraiva, J.; Cunha, A. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Rev. Int. 2016, 32, 377–399. [Google Scholar] [CrossRef]
- Ting, E. High Pressure Food Processing: Past, Current, and Future. In Session: Industrial Adoption and Validation of High Pressure Based Minimal Processing Technologies (A. Fouladkhah, Session Organizer). Annual Meeting of Institute of Food Technologists, Chicago, IL. 2018. Available online: https://www.pressurebiosciences.com/documents/food (accessed on 15 November 2019).
- Allison, A.; Daniels, E.; Chowdhury, S.; Fouladkhah, A. Effects of elevated hydrostatic pressure against mesophilic background microflora and habituated Salmonella serovars in orange juice. Microorganisms 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.N.; Aras, S.; Allison, A.; Adhikari, J.; Chowdhury, S.; Fouladkhah, A. Interactions of carvacrol, caprylic acid, habituation, and mild heat for pressure-based inactivation of O157 and non-O157 serogroups of Shiga toxin-producing Escherichia coli in acidic environment. Microorganisms 2019, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Tramer, J.; Fowler, G.G. Estimation of nisin in foods. J. Sci. Food Agric. 1964, 15, 522–528. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Shelef, L.A. Sensitivity of six strains of Listeria monocytogenes to nisin. J. Food Prot. 1997, 60, 867–869. [Google Scholar] [CrossRef]
- Reunanen, J.; Saris, P.E.J. Survival of nisin activity in intestinal environment. Biotechnol. Lett. 2019, 31, 1229–1232. [Google Scholar] [CrossRef]
- Allison, A.; Chowdhury, S.; Fouladkhah, A. Synergism of mild heat and high-pressure pasteurization against Listeria monocytogenes and natural microflora in phosphate-buffered saline and raw milk. Microorganisms 2018, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Ting, E.; Balasubramaniam, V.M.; Raghubeer, E. Determining thermal effects in high-pressure processing. Food Technol. 2002, 56, 31–35. [Google Scholar]
- Prudêncio, C.V.; Dos Santos, M.T.; Vanetti, M.C.D. Strategies for the use of bacteriocins in gram-negative bacteria: Relevance in food microbiology. J. Food Sci. Technol. 2015, 52, 5408–5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, A.; Fouladkhah, A. Sensitivity of Salmonella serovars and natural microflora to high-pressure pasteurization: Open access data for risk assessment and practitioners. Data Brief 2018, 21, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef]
- Fouladkhah, A.; Geornaras, I.; Yang, H.; Sofos, J.N. Lactic acid resistance of Shiga toxin-producing Escherichia coli and multidrug-resistant and susceptible Salmonella Typhimurium and Salmonella Newport in meat homogenate. Food Microbiol. 2013, 36, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Allnutt, T.R.; Bradbury, M.I.; Fanning, S.; Chandry, P.S.; Fox, E.M. Draft genome sequences of 15 isolates of Listeria monocytogenes Serotype 1/2a, Subgroup ST204. Genome Announc. 2016, 4, e00935-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.M.; Allnutt, T.; Bradbury, M.I.; Fanning, S.; Chandry, P.S. Comparative genomics of the Listeria monocytogenes ST204 subgroup. Front. Microbiol. 2016, 7, 2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leistner, L.; Gorris, L.G. Food preservation by hurdle technology. Trends Food Sci. Technol. 1995, 6, 41–46. [Google Scholar] [CrossRef]
- Fouladkhah, A.; Geornaras, I.; Sofos, J.C. Effects of Reheating against Listeria monocytogenes inoculated on cooked chicken breast meat stored aerobically at 7 °C. Food Prot. Trends 2012, 32, 697–704. [Google Scholar]
- Fouladkhah, A.; Geornaras, I.; Nychas, G.J.; Sofos, J.N. Antilisterial properties of marinades during refrigerated storage and microwave oven reheating against post-cooking inoculated chicken breast meat. J. Food Sci. 2013, 78, M285–M289. [Google Scholar] [CrossRef]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol. 2008, 25, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Fleming, H.P.; Klaenhammer, T.R. Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to nisin. J. Food Prot. 1991, 54, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Kalchayanand, N.; Sikes, A.; Dunne, C.P.; Ray, B. Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol. 1998, 15, 207–214. [Google Scholar] [CrossRef]
- Gou, J.; Jung, L.S.; Lee, S.H.; Ahn, J. Effects of nisin and acid on the inactivation and recovery of Listeria monocytogenes biofilms treated by high hydrostatic pressure. Food Sci. Biotechnol. 2011, 20, 1361. [Google Scholar] [CrossRef]
- Pokhrel, P.R.; Toniazzo, T.; Boulet, C.; Oner, M.E.; Sablani, S.S.; Tang, J.; Barbosa-Cánovas, G.V. Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innov. Food Sci. Emerg. Technol. 2019, 54, 93–102. [Google Scholar] [CrossRef]
- Sikin, A.M.; Walkling-Ribeiro, M.; Rizvi, S.S. Synergistic processing of skim milk with high pressure nitrous oxide, heat, nisin, and lysozyme to inactivate vegetative and spore-forming bacteria. Food Bioprocess Technol. 2017, 10, 2132–2145. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Zhao, F.; Wang, Y.; Liao, X. Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innov. Food Sci. Emerg. Technol. 2016, 33, 180–186. [Google Scholar] [CrossRef]
- Jayaweera, T.S.P.; Jayasinghe, J.M.C.S.; Madushanka, D.N.N.; Yasawathie, D.G.; Ruwandeepika, H.A.D. Assessment of the inhibitory effect of nisin (E234) on Salmonella Typhimurium and Bacillus subtilis in chicken sausage. Asian Food Sci. J. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Campion, A.; Morrissey, R.; Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157: H7. Food Microbiol. 2017, 65, 254–263. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aras, S.; Kabir, M.N.; Chowdhury, S.; Fouladkhah, A.C. Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat. Int. J. Environ. Res. Public Health 2020, 17, 563. https://doi.org/10.3390/ijerph17020563
Aras S, Kabir MN, Chowdhury S, Fouladkhah AC. Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat. International Journal of Environmental Research and Public Health. 2020; 17(2):563. https://doi.org/10.3390/ijerph17020563
Chicago/Turabian StyleAras, Sadiye, Md Niamul Kabir, Shahid Chowdhury, and Aliyar Cyrus Fouladkhah. 2020. "Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat" International Journal of Environmental Research and Public Health 17, no. 2: 563. https://doi.org/10.3390/ijerph17020563
APA StyleAras, S., Kabir, M. N., Chowdhury, S., & Fouladkhah, A. C. (2020). Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat. International Journal of Environmental Research and Public Health, 17(2), 563. https://doi.org/10.3390/ijerph17020563