Individual Capital Structure and Health Behaviors among Chinese Middle-Aged and Older Adults: A Cross-Sectional Analysis Using Bourdieu’s Theory of Capitals
Abstract
:1. Introduction
2. Theoretical Clarifications and Research Questions
- (1)
- Do economic, social, and cultural capital have significant influence on health behaviors in Chinese middle-aged and older adults? Which form of capital matters more?
- (2)
- Are the effects of individual capitals on different health behaviors consistent across urban/rural, gender, and age groups?
3. Materials and Methods
3.1. Data Source
3.2. Measurement
3.3. Statistical Models
4. Empirical Results
4.1. Results of Binary Logistic Regression Analysis
4.2. Relative Importance of Three Capitals on Health Behaviors, Based on the Sheaf Coefficients Model
4.3. Group Disparities in Relationship between Capitals and Health Behaviors
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Panel A: Sex | Exercise: OR | Smoking: OR | Drinking: OR | Staying up: OR | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |
Family income | 1.022 | 0.982 | 1.010 | 0.988 | 1.041 ** | 1.014 | 1.007 | 0.997 |
Family assets | 0.998 | 1.009 | 0.960 ** | 0.946 | 0.999 | 1.057 | 1.077 *** | 1.078 *** |
Objectified capital | 1.060 ** | 1.061 ** | 0.995 | 0.980 | 1.008 | 0.932 | 1.044 * | 1.044 * |
Embodied capital | 1.162 *** | 1.117 * | 0.999 | 0.969 | 0.964 | 0.957 | 1.073 | 1.099 * |
Institutionalized capital | 1.047 *** | 1.067 *** | 0.972 ** | 0.924 ** | 0.974 ** | 0.978 | 1.029 * | 1.014 |
General trust | 0.914 | 0.937 | 0.973 | 0.821 | 0.972 | 0.909 | 0.843 * | 0.917 |
Special trust | 1.008 | 1.005 | 0.984 ** | 0.993 | 0.991 | 1.011 | 0.999 | 1.004 |
Neighborhood cohesion | 1.047 * | 1.036 | 1.011 | 1.108 * | 1.023 | 0.946 | 0.942 * | 0.993 |
Control variables | √ | √ | √ | √ | √ | √ | √ | √ |
Pseudo_R2 | 0.123 | 0.087 | 0.043 | 0.057 | 0.028 | 0.027 | 0.096 | 0.076 |
n | 7598 | 7546 | 7599 | 7548 | 7599 | 7548 | 7596 | 7546 |
Panel B: Residence | urban | rural | urban | rural | urban | rural | urban | rural |
Family income | 1.010 | 0.990 | 1.012 | 0.998 | 1.039 * | 1.033 * | 0.989 | 1.042 * |
Family assets | 1.001 | 1.007 | 0.951 ** | 0.975 | 1.007 | 1.012 | 1.082 *** | 1.065 ** |
Objectified capital | 1.064 *** | 1.052 ** | 0.991 | 1.014 | 1.001 | 1.000 | 1.034 | 1.077 ** |
Embodied capital | 1.142 ** | 1.150 ** | 0.976 | 1.062 | 0.944 | 1.031 | 1.108 ** | 1.006 |
Institutionalized capital | 1.043 *** | 1.083 *** | 0.961 ** | 0.973 * | 0.980 | 0.967 ** | 1.024 * | 1.010 |
General trust | 0.927 | 0.938 | 0.923 | 1.000 | 0.919 | 1.043 | 0.837 * | 0.972 |
Special trust | 1.006 | 1.008 | 0.990 | 0.981 ** | 0.992 | 1.002 | 1.002 | 0.999 |
Neighborhood cohesion | 1.026 | 1.079 *** | 1.036 | 1.019 | 1.039 | 0.964 | 0.973 | 0.953 * |
Control variables | √ | √ | √ | √ | √ | √ | √ | √ |
Pseudo_R2 | 0.092 | 0.049 | 0.243 | 0.307 | 0.161 | 0.180 | 0.079 | 0.028 |
n | 6988 | 8156 | 6988 | 8159 | 6988 | 8159 | 6986 | 8156 |
Panel C: Age | 45–59 | 60–90 | 45–59 | 60–90 | 45–59 | 60–90 | 45–59 | 60–90 |
Family income | 1.000 | 1.008 | 1.018 | 1.005 | 1.059 ** | 1.023 | 1.018 | 0.989 |
Family assets | 1.016 | 0.994 | 0.954 ** | 0.962 * | 1.006 | 1.009 | 1.083 *** | 1.076 *** |
Objectified capital | 1.053 ** | 1.063 ** | 0.998 | 1.000 | 1.022 | 0.979 | 1.082 *** | 1.012 |
Embodied capital | 1.210 *** | 1.035 | 1.027 | 0.975 | 0.928 | 1.042 | 1.067 | 1.186 ** |
Institutionalized capital | 1.057 *** | 1.055 *** | 0.960 ** | 0.978 | 0.977 * | 0.977 | 1.022 * | 1.027 * |
General trust | 0.990 | 0.888 | 0.961 | 0.929 | 0.958 | 0.963 | 0.940 | 0.791 * |
Special trust | 0.998 | 1.015 * | 0.986 * | 0.985 * | 1.005 | 0.986 | 0.998 | 1.001 |
Neighborhood cohesion | 1.054 ** | 1.028 | 1.009 | 1.043 | 0.983 | 1.034 | 0.967 | 0.970 |
Control variables | √ | √ | √ | √ | √ | √ | √ | √ |
Pseudo_R2 | 0.092 | 0.110 | 0.330 | 0.206 | 0.206 | 0.140 | 0.083 | 0.062 |
n | 8335 | 6809 | 8337 | 6810 | 8337 | 6810 | 8336 | 6806 |
References
- World Health Organization. China Country Assessment Report on Ageing and Health. Available online: https://www.who.int/ageing/publications/china-country-assessment/en/ (accessed on 25 May 2020).
- He, J.; Wang, M.; Song, P.; Xu, P.; Chen, R. China has faster pace than Japan in population aging in next 25 years. Biosci. Trends 2019, 13, 287–291. [Google Scholar]
- Popkin, B.M. Synthesis and Implications: China’s Nutrition Transition in the Context of Changes across Other Low- and Middle-Income Countries. Obes. Rev. 2014, 15 (Suppl. S1), 60–67. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zeng, Q.; Jin, S.; Cheng, G. The impact of changes in dietary knowledge on adult overweight and obesity in China. PLoS ONE 2017, 12, e0179551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Howard, A.G.; Wang, H.; Su, C.; Zhang, B. The Physical Activity Transition in China: 1991–2011. Obes. Rev. 2014, 15, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Norton, E.C.; Popkin, B.M. Why have physical activity levels declined among Chinese adults? Findings from the 1991–2006 China health and nutrition surveys. Soc. Sci. Med. 2009, 68, 1305–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.T.; Park, B. Alcohol use disorder and health-related quality of life in Korean night-shift workers: A cross-sectional study using the KNHANES 2007–2015 data. PLoS ONE 2019, 14, e0214593. [Google Scholar] [CrossRef]
- Ordway, M.R.; Wang, G.; Jeon, S.; Owens, J. Role of Sleep Duration in the Association Between Socioecological Protective Factors and Health Risk Behaviors in Adolescents. J. Dev. Behav. Pediatr. 2020, 41, 117–127. [Google Scholar] [CrossRef]
- Li, F. Physical activity and health in the presence of China’s economic growth: Meeting the public health challenges of the aging population. J. Sport Health Sci. 2016, 3, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.M. National health surveys and the behavioral model of health services use. Med. Care 2008, 46, 647–653. [Google Scholar] [CrossRef]
- Dey, M.; Jorm, A.F. Social determinants of mental health service utilization in Switzerland. Int. J. Public Health 2017, 62, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, T.K.T.; Parkinson, L.; Cunich, M.; Byles, J. Factors associated with the health care cost in older Australian women with arthritis: An application of the Andersen’s behavioural model of health services use. Public Health 2016, 134, 64–71. [Google Scholar] [CrossRef]
- Baernholdt, M.; Hinton, I.; Yan, G.; Rose, K.; Mattos, M. Factors associated with quality of life in older adults in the United States. Qual. Life Res. 2012, 21, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travers, J.L.; Hirschman, K.B.; Naylor, M.D. Adapting Andersen’s expanded behavioral model of health services use to include older adults receiving long-term services and supports. BMC Geriatr. 2020, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Westgard, C.M.; Rogers, A.; Bello, G.; Rivadeneyra, N. Health service utilization, perspectives, and health-seeking behavior for maternal and child health services in the Amazon of Peru, a mixed-methods study. Int. J. Equity Health 2019, 18, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, B.; Wilcox, H.C.; Hilimire, M.; DeVylder, J.E. Perceived need for care and mental health service utilization among college students with suicidal ideation. J. Am. Coll. Health 2018, 66, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Doblyte, S. Bourdieu’s theory of fields: Towards understanding help-seeking practices in mental distress. Soc. Theor. Health 2019, 17, 273–290. [Google Scholar] [CrossRef]
- Bourdieu, P. Language and Symbolic Power; Polity Press: Cambridge, UK, 1991. [Google Scholar]
- Kelly, M.P.; Field, D. Medical sociology, chronic illness and the body. Sociol. Health Illn. 1996, 18, 241–257. [Google Scholar] [CrossRef]
- Cockerham, W.C. Health lifestyle theory and the convergence of agency and structure. J. Health Soc. Behav. 2005, 46, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Paccoud, I.; Nazroo, J.; Leist, A. A Bourdieusian approach to class-related inequalities: The role of capitals and capital structure in the utilisation of healthcare services in later life. Sociol. Health Illn. 2020, 42, 510–525. [Google Scholar] [CrossRef]
- De Clercq, B.; Abel, T.; Moor, I.; Elgar, F.J.; Lievens, J.; Sioen, I.; Braeckman, L.; Deforche, B. Social inequality in adolescents’ healthy food intake: The interplay between economic, social and cultural capital. Eur. J. Public Health 2017, 27, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinxten, W.; Lievens, J. The importance of economic, social and cultural capital in understanding health inequalities: Using a Bourdieu-based approach in research on physical and mental health perceptions. Sociol. Health Illn. 2014, 36, 1095–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdieu, P. The forms of capital. In Handbook of Theory and Research for the Sociology of Education; Richardson, J.G., Ed.; Greenwood Press: New York, NY, USA, 1986. [Google Scholar]
- Gilleard, C. Bourdieu’s forms of capital and the stratification of later life. J. Aging Stud. 2020, 53. [Google Scholar] [CrossRef]
- Hiscock, R.; Bauld, L.; Amos, A.; Fidler, J.A.; Munafò, M. Socioeconomic status and smoking: A review. Ann. N. Y. Acad. Sci. 2012, 1248, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Kuntsche, E.; Rehm, J.; Gmel, G. Characteristics of binge drinkers in Europe. Soc. Sci. Med. 2004, 59, 113–127. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, W. Income gradient in health-related quality of life—The role of social networking time. Int. J. Equity Health 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Beck, U. Risk Society: Towards a New Modernity; Sage Publications: London, UK, 1992. [Google Scholar]
- Lin, X.; Lu, R.; Guo, L.; Liu, B. Social capital and mental health in rural and urban China: A composite hypothesis approach. Int. J. Environ. Res. Public Health 2019, 16, 665. [Google Scholar] [CrossRef] [Green Version]
- Pattussi, M.P.; Olinto, M.T.A.; Canuto, R.; Garcez, A.S.; Paniz, V.M.V.; Kawachi, I. Workplace social capital, mental health and health behaviors among Brazilian female workers. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1321–1330. [Google Scholar] [CrossRef]
- Turner, B. Social capital, inequality and health: The Durkheimian revival. Soc. Theory Health 2003, 1, 4–20. [Google Scholar] [CrossRef]
- Suzuki, E.; Fujiwara, T.; Takao, S.; Subramanian, S.V.; Yamamoto, E.; Kawachi, I. Multi-level, cross-sectional study of workplace social capital and smoking among Japanese employees. BMC Public Health 2010, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.E.; Repetti, R.L.; Seeman, T. Health psychology: What is an unhealthy environment and how does it get under the skin? Annu. Rev. Psychol. 1997, 48, 411–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, K.J.; Li, F.; Michael, Y.; Cleveland, M. Neighborhood-level influences on physical activity among older adults: A multilevel analysis. J. Aging Phys. Act. 2004, 12, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Mohnen, S.M.; Völker, B.; Flap, H.; Groenewegen, P.P. Health-related behavior as a mechanism behind the relationship between neighborhood social capital and individual health—A multilevel analysis. BMC Public Health 2012, 12, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.K. Cultural health capital: A theoretical approach to understanding health care interactions and the dynamics of unequal treatment. J. Health Soc. Behav. 2010, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Oncini, F.; Guetto, R. Cultural capital and gender differences in health behaviours: A study on eating, smoking and drinking patterns. Health Sociol. Rev. 2018, 27, 15–30. [Google Scholar] [CrossRef]
- Gagné, T.; Frohlich, K.L.; Abel, T. Cultural capital and smoking in young adults: Applying new indicators to explore social inequalities in health behaviour. Eur. J. Public Health 2015, 25, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Hindhede, A.L.; Larsen, K. Prestige hierarchies of diseases and specialities in a field perspective. Soc. Theory Health 2019, 17, 213–230. [Google Scholar] [CrossRef]
- Collyer, F.M.; Willis, K.F.; Franklin, M.; Harley, K.; Short, S.D. Healthcare choice: Bourdieu’s capital, habitus and field. Curr. Sociol. Monogr. 2015, 63, 685–699. [Google Scholar] [CrossRef]
- Schneider-Kamp, A. Health capital: Toward a conceptual framework for understanding the construction of individual health. Soc. Theory Health 2020. [Google Scholar] [CrossRef]
- Xie, Y.; Hannum, E. Regional variation in earnings inequality in reform-era urban China. Am. J. Sociol. 1996, 101, 950–992. [Google Scholar] [CrossRef]
- Ichida, Y.; Kondo, K.; Hirai, H.; Hanibuchi, T.; Yoshikawa, G.; Murata, C. Social capital, income inequality and self-rated health in Chita peninsula, Japan: A multilevel analysis of older people in 25 communities. Soc. Sci. Med. 2009, 69, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hu, J. An Introduction to the China Family Panel Studies (CFPS). Chin. Sociol. Rev. 2014, 47, 3–29. [Google Scholar]
- Alessie, R.; Lusardi, A.; Aldershof, T. Income and wealth over the life cycle: Evidence from panel data. Rev. Income Wealth 1997, 43, 1–32. [Google Scholar] [CrossRef]
- Missinne, S.; Neels, K.; Bracke, P. Reconsidering inequalities in preventive health care: An application of cultural health capital theory and the life-course perspective to the take-up of mammography screening. Sociol. Health Illn. 2014, 36, 1259–1275. [Google Scholar] [CrossRef] [Green Version]
- Heise, D.R. Employing nominal variables, induced variables, and block variables in path analyses. Sociol. Methods Res. 1972, 1, 147–173. [Google Scholar] [CrossRef]
- Atella, V.; Kopinska., J. Body weight, eating patterns, and physical activity: The role of education. Demography 2014, 51, 1225–1249. [Google Scholar] [CrossRef]
- Xue, X.; Cheng, M. Social capital and health in China: Exploring the mediating role of lifestyle. BMC Public Health 2017, 17, 863. [Google Scholar] [CrossRef] [Green Version]
- Garrett, B.E.; Martell, B.N.; Caraballo, R.S.; King, B.A. Socioeconomic differences in cigarette smoking among sociodemographic groups. Prev. Chronic Dis. 2019, 16, 180553. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Zhu, Y.; Fu, H.; Dai, J.; Gao, J. The “dark side” effects of social capital on harmful drinking among Chinese community residents: A multilevel study. Int. J. Environ. Res. Public Health 2018, 15, 2249. [Google Scholar] [CrossRef] [Green Version]
- Calling, S.; Ohlsson, H.; Sundquist, J.; Sundquist, K.; Kendler, K.S. Socioeconomic status and alcohol use disorders across the lifespan: A co-relative control study. PLoS ONE 2019, 14, e0224127. [Google Scholar] [CrossRef] [Green Version]
- Larm, P.; Aslund, C.; Starrin, B.; Nilsson, K.W. How are social capital and sense of coherence associated with hazardous alcohol use? Findings from a large population-based Swedish sample of adults. Scand. J. Public Health 2016, 44, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Reed, W.R.; Menclova, A. Social capital and health: A meta-analysis. J. Health Econ. 2020, 72, 102317. [Google Scholar] [CrossRef] [PubMed]
- Katikireddi, S.V.; Higgins, M.; Smith, K.E.; Williams, G. Health inequalities: The need to move beyond bad behaviours. J. Epidemiol. Commun. Health 2013, 67, 715–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greener, I. Expert patients and human agency: Long-term conditions and Giddens’ structuration theory. Soc. Theory Health 2008, 6, 273–290. [Google Scholar] [CrossRef] [Green Version]
Variables | Coding | Mean | SD |
---|---|---|---|
Economic Capital | |||
Annual household income (CNY) | continuous variable | 76,580 | 228,966 |
Household net assets (CNY) | continuous variable | 578,059 | 1,742,381 |
Cultural Capital | |||
Embodied state | continuous variable | 0.646 | 0.912 |
Objectified state | continuous variable | 61.944 | 541.685 |
Institutionalized state | continuous variable | 4.619 | 4.323 |
Social Capital | |||
General trust | not trust = 0; trust = 1 | 0.541 | 0.498 |
Special trust | continuous variable | 29.887 | 6.933 |
Neighborhood cohesion | continuous variable | 9.462 | 1.889 |
Health Behaviors | |||
Physical exercise | no = 0; yes = 1 | 0.422 | 0.494 |
Smoking | non-smoker = 0; ex-smoker or current smoker = 1 | 0.297 | 0.457 |
Drinking | no = 0; yes = 1 | 0.173 | 0.378 |
Stay-up | no = 0; yes = 1 | 0.203 | 0.402 |
Control Variables | |||
Sex | female = 0; male = 1 | 0.492 | 0.500 |
Age | continuous variable | 59.865 | 10.561 |
Residence | rural = 0; urban = 1 | 0.465 | 0.499 |
Household registration | agricultural registration = 0; non-agricultural registration = 1 | 0.279 | 0.448 |
Marital status | not married = 0; married = 1 | 0.849 | 0.358 |
Political status | member of Communist Party of China (no = 0; yes = 1) | 0.094 | 0.292 |
Work status | no job = 0; employment = 1 | 0.670 | 0.470 |
Self-rated health (SRH) | very poor/poor/fair = 0; good/very good = 1 | 0.526 | 0.499 |
Chronic disease | no = 0; yes = 1 | 0.245 | 0.430 |
Depression | continuous variable | 5.487 | 4.412 |
Model 1: Physical Exercise | Model 2: Smoking | Model 3: Drinking | Model 4: Staying Up | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Economic capital | ||||
Family income | 1.003 | 1.005 | 1.036 * | 1.001 |
(0.981, 1.024) | (0.980, 1.032) | (1.008, 1.065) | (0.977, 1.027) | |
Family assets | 1.004 | 0.958 ** | 1.008 | 1.077 *** |
(0.983, 1.025) | (0.933, 0.983) | (0.981, 1.036) | (1.051, 1.104) | |
Cultural capital | ||||
Objectified capital | 1.060 *** | 0.996 | 0.999 | 1.044 ** |
(1.034, 1.086) | (0.966, 1.027) | (0.969, 1.030) | (1.015, 1.074) | |
Embodied capital | 1.144 *** | 0.996 | 0.967 | 1.085* |
(1.078, 1.214) | (0.930, 1.066) | (0.899, 1.040) | (1.018, 1.156) | |
Institutionalized capital | 1.055 *** | 0.967 *** | 0.976 ** | 1.021 ** |
(1.040, 1.070) | (0.951, 0.984) | (0.959, 0.993) | (1.005, 1.037) | |
Social capital | ||||
General trust | 0.926 | 0.950 | 0.963 | 0.876 * |
(0.836, 1.024) | (0.837, 1.077) | (0.846, 1.096) | (0.778, 0.986) | |
Special trust | 1.007 | 0.987 ** | 0.995 | 1.001 |
(0.999, 1.014) | (0.977, 0.997) | (0.985, 1.006) | (0.992, 1.010) | |
Neighborhood cohesion | 1.041 ** | 1.031 | 1.012 | 0.967 * |
(1.012, 1.070) | (0.996, 1.067) | (0.975, 1.050) | (0.936, 1.000) | |
Control variables | ||||
Sex | 0.920 | 22.126 *** | 10.208 *** | 0.976 |
(0.829, 1.021) | (18.418, 26.579) | (8.558, 12.177) | (0.866, 1.101) | |
Age | 1.013 *** | 0.983 *** | 0.996 | 0.966 *** |
(1.006, 1.019) | (0.975, 0.991) | (0.989, 1.004) | (0.959, 0.974) | |
Residence | 1.397 *** | 1.037 | 0.999 | 1.683 *** |
(1.262, 1.547) | (0.913, 1.177) | (0.875, 1.140) | (1.485, 1.908) | |
Hukou | 1.327 *** | 1.023 | 0.917 * | 1.356 *** |
(1.243, 1.416) | (0.940, 1.114) | (0.841, 1.000) | (1.260, 1.459) | |
Marital status | 1.094 | 0.744 * | 0.859 | 1.079 |
(0.928, 1.291) | (0.591, 0.937) | (0.679, 1.086) | (0.879, 1.324) | |
Work status | 0.616 *** | 1.356 *** | 1.414 *** | 1.012 |
(0.545, 0.697) | (1.148, 1.602) | (1.188, 1.682) | (0.876, 1.169) | |
Political status | 1.591 *** | 0.908 | 1.025 | 1.180 |
(1.330, 1.903) | (0.751, 1.096) | (0.845, 1.245) | (0.978, 1.424) | |
SRH | 1.158 ** | 1.172 * | 1.191 * | 1.123 |
(1.041, 1.288) | (1.027, 1.339) | (1.037, 1.368) | (0.992, 1.271) | |
Chronic disease | 1.324 *** | 0.683 *** | 0.678 *** | 1.236 ** |
(1.173, 1.496) | (0.583, 0.800) | (0.572, 0.804) | (1.076, 1.419) | |
Depression | 0.976 *** | 1.015 | 0.983 | 1.021 * |
(0.964, 0.989) | (0.998, 1.032) | (0.965, 1.001) | (1.005, 1.037) | |
Intercept | 0.083 *** | 0.204 *** | 0.064 *** | 0.478 * |
(0.045, 0.151) | (0.098, 0.426) | (0.030, 0.139) | (0.235, 0.972) | |
Pseudo_R2 | 0.104 | 0.263 | 0.166 | 0.084 |
n | 15,144 | 15,147 | 15,147 | 15,142 |
Model 1: Physical Exercise | Model 2: Smoking | Model 3: Drinking | Model 4: Staying Up | |
---|---|---|---|---|
Sheafcoef (95% CI) | Sheafcoef (95% CI) | Sheafcoef (95% CI) | Sheafcoef (95% CI) | |
Economic capital | 0.016 | 0.116 ** | 0.117 ** | 0.216 *** |
(−0.040, 0.073) | (0.049, 0.183) | (0.044, 0.190) | (0.152, 0.280) | |
Cultural capital | 0.365 *** | 0.150 *** | 0.125 ** | 0.190 *** |
(0.303, 0.427) | (0.078, 0.222) | (0.048, 0.202) | (0.123, 0.257) | |
Social capital | 0.095 *** | 0.099 ** | 0.040 | 0.094 ** |
(0.045, 0.145) | (0.038, 0.161) | (−0.025, 0.105) | (0.037, 0.152) | |
Control variables | √ | √ | √ | √ |
Intercept | −2.491 *** | −1.588 *** | −2.746 *** | −0.739 * |
(−3.093, −1.889) | (−2.323, −0.852) | (−3.521, −1.971) | (−1.450, −0.028) | |
χ2 | 62.29 *** | 1.09 | 3.45 | 9.67 ** |
Pseudo_R2 | 0.104 | 0.263 | 0.166 | 0.084 |
n | 15,144 | 15,147 | 15,147 | 15,142 |
Model 1: Physical Exercise | Model 2: Smoking | Model 3: Drinking | Model 4: Staying Up | |||||
---|---|---|---|---|---|---|---|---|
Sheafcoef (95% CI) | Sheafcoef (95% CI) | Sheafcoef (95% CI) | Sheafcoef (95% CI) | |||||
Panel A: sex | male | female | male | female | male | female | male | female |
Economic Capital | 0.061 | 0.044 | 0.103 ** | 0.181 | 0.115 ** | 0.184 | 0.224 *** | 0.212 *** |
(−0.017, 0.140) | (−0.029, 0.116) | (0.032, 0.174) | (−0.011, 0.373) | (0.038, 0.192) | (−0.012, 0.380) | (0.131, 0.317) | (0.124, 0.300) | |
Cultural Capital | 0.344 *** | 0.391 *** | 0.127 ** | 0.370 *** | 0.125 ** | 0.215 | 0.208 *** | 0.171 *** |
(0.256, 0.431) | (0.304, 0.477) | (0.049, 0.205) | (0.164, 0.576) | (0.045, 0.204) | (−0.008, 0.439) | (0.115, 0.301) | (0.076, 0.265) | |
Social Capital | 0.113 ** | 0.081 * | 0.110 ** | 0.202 * | 0.065 | 0.120 | 0.152 *** | 0.046 |
(0.040, 0.186) | (0.012, 0.150) | (0.045, 0.175) | (0.049, 0.354) | (−0.004, 0.134) | (−0.044, 0.283) | (0.072, 0.232) | (−0.034, 0.126) | |
Control Variables | √ | √ | √ | √ | √ | √ | √ | √ |
χ2 | 21.50 *** | 47.09 *** | 0.19 | 1.88 | 1.41 | 0.45 | 1.62 | 9.09 * |
Pseudo_R2 | 0.123 | 0.087 | 0.043 | 0.057 | 0.028 | 0.027 | 0.096 | 0.076 |
n | 7598 | 7546 | 7599 | 7548 | 7599 | 7548 | 7596 | 7546 |
Panel B: residence | urban | rural | urban | rural | urban | rural | urban | rural |
Economic Capital | 0.029 | 0.025 | 0.130 ** | 0.068 | 0.120 * | 0.111 ** | 0.211 *** | 0.242 *** |
(−0.047, 0.105) | (−0.037, 0.087) | (0.044, 0.216) | (−0.011, 0.147) | (0.018, 0.223) | (0.028, 0.193) | (0.134, 0.289) | (0.153, 0.332) | |
Cultural Capital | 0.343 *** | 0.385 *** | 0.199 *** | 0.104 ** | 0.127 * | 0.126 ** | 0.213 *** | 0.152 ** |
(0.259, 0.427) | (0.314, 0.455) | (0.098, 0.299) | (0.028, 0.181) | (0.019, 0.234) | (0.044, 0.207) | (0.128, 0.299) | (0.066, 0.238) | |
Social Capital | 0.070 * | 0.162 *** | 0.092 * | 0.128 ** | 0.088 | 0.067 | 0.104 ** | 0.094 * |
(0.004, 0.137) | (0.095, 0.229) | (0.008, 0.176) | (0.054, 0.203) | (−0.003, 0.179) | (−0.014, 0.149) | (0.033, 0.175) | (0.012, 0.175) | |
Control Variables | √ | √ | √ | √ | √ | √ | √ | √ |
χ2 | 30.74 *** | 58.57 *** | 2.47 | 1.29 | 0.34 | 1.04 | 5.84 * | 5.90 * |
Pseudo_R2 | 0.092 | 0.049 | 0.243 | 0.307 | 0.161 | 0.180 | 0.079 | 0.028 |
n | 6988 | 8156 | 6988 | 8159 | 6988 | 8159 | 6986 | 8156 |
Panel C: age | 45–59 | 60–90 | 45–59 | 60–90 | 45–59 | 60–90 | 45–59 | 60–90 |
Economic Capital | 0.045 | 0.019 | 0.112 ** | 0.107 * | 0.166 *** | 0.086 | 0.249 *** | 0.199 *** |
(−0.020, 0.110) | (−0.057, 0.095) | (0.032, 0.192) | (0.002, 0.212) | (0.082, 0.250) | (−0.033, 0.205) | (0.176, 0.322) | (0.091, 0.307) | |
Cultural Capital | 0.406 *** | 0.310 *** | 0.162 ** | 0.106 * | 0.139 ** | 0.110 | 0.241 *** | 0.215 *** |
(0.332, 0.480) | (0.215, 0.405) | (0.071, 0.254) | (0.003, 0.209) | (0.052, 0.227) | (−0.005, 0.225) | (0.163, 0.318) | (0.115, 0.315) | |
Social Capital | 0.093 ** | 0.124 ** | 0.099 ** | 0.125 ** | 0.041 | 0.103 * | 0.078 * | 0.134 ** |
(0.030, 0.157) | (0.048, 0.200) | (0.025, 0.173) | (0.031, 0.219) | (−0.036, 0.118) | (0.000, 0.208) | (0.009, 0.147) | (0.040, 0.228) | |
Control Variables | √ | √ | √ | √ | √ | √ | √ | √ |
χ2 | 53.82 *** | 20.33 *** | 1.14 | 0.10 | 4.93 | 0.11 | 15.59 *** | 1.56 |
Pseudo_R2 | 0.092 | 0.110 | 0.330 | 0.206 | 0.206 | 0.140 | 0.083 | 0.062 |
n | 8335 | 6809 | 8337 | 6810 | 8337 | 6810 | 8336 | 6806 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Jiang, J. Individual Capital Structure and Health Behaviors among Chinese Middle-Aged and Older Adults: A Cross-Sectional Analysis Using Bourdieu’s Theory of Capitals. Int. J. Environ. Res. Public Health 2020, 17, 7369. https://doi.org/10.3390/ijerph17207369
Xu P, Jiang J. Individual Capital Structure and Health Behaviors among Chinese Middle-Aged and Older Adults: A Cross-Sectional Analysis Using Bourdieu’s Theory of Capitals. International Journal of Environmental Research and Public Health. 2020; 17(20):7369. https://doi.org/10.3390/ijerph17207369
Chicago/Turabian StyleXu, Peng, and Junfeng Jiang. 2020. "Individual Capital Structure and Health Behaviors among Chinese Middle-Aged and Older Adults: A Cross-Sectional Analysis Using Bourdieu’s Theory of Capitals" International Journal of Environmental Research and Public Health 17, no. 20: 7369. https://doi.org/10.3390/ijerph17207369
APA StyleXu, P., & Jiang, J. (2020). Individual Capital Structure and Health Behaviors among Chinese Middle-Aged and Older Adults: A Cross-Sectional Analysis Using Bourdieu’s Theory of Capitals. International Journal of Environmental Research and Public Health, 17(20), 7369. https://doi.org/10.3390/ijerph17207369