Radon Exposure and Neurodegenerative Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Search of the Studies Included in the Review
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
3. Results
3.1. Bibliographic Search Results
3.1.1. Radon Exposure and MS
3.1.2. Radon Exposure and ALS
3.1.3. Radon Exposure and AD and PD
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor forneurodegenerativedisease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoidsystem in neurodegenerative disorders. J. Neurochem. 2017, 142, 624–648. [Google Scholar] [CrossRef] [PubMed]
- Kister, I.; Chamot, E.; Salter, A.R.; Cutter, G.R.; Bacon, T.E.; Herbert, J. Disability in multiple sclerosis: A reference for patients and clinicians. Neurology 2013, 80, 1018–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brück, W.; Stadelmann, C. The spectrum of multiple sclerosis: New lessons from pathology. Curr. Opin. Neurol. 2005, 18, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Smith, T.W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015, 5, e00362. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part I: The role of infection. Ann. Neurol. 2007, 61, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann. Neurol. 2007, 61, 504–513. [Google Scholar] [CrossRef]
- Simpson, S.; Blizzard, L.; Otahal, P.; Van Der Mei, I.; Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1132–1141. [Google Scholar] [CrossRef]
- Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.L.; Cole, G. Alzheimer disease. JAMA 2002, 287, 2335–2338. [Google Scholar] [CrossRef]
- Seeley, W.W.; Miller, B.L. Enfermedad de Alzheimer. In Harrison Principios de Medicina Interna, 20th ed.; Jameson, J.L., Kasper, D.L., Longo, D.L., Fauci, A.S., Hauser, S.L., Loscalzo, J., Eds.; McGraw-HillEducation: Madrid, Spain, 2018; Volume 2, pp. 3108–3114. [Google Scholar]
- Angot, E.; Brundin, P. Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat. Disord. 2009, 15 (Suppl. 3), S143–S147. [Google Scholar] [CrossRef]
- Bisaglia, M.; Mammi, S.; Bubacco, L. Structural insights on physiological functions and pathological effects of ± alpha-synuclein. FASEB J. 2008, 23, 329–340. [Google Scholar] [CrossRef] [PubMed]
- De Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2014, 29, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Klein, C.; Schapira, A.H.V. Enfermedad de Parkinson. In Harrison Principios de MedicinaInterna, 20th ed.; Jameson, J.L., Kasper, D.L., Longo, D.L., Fauci, A.S., Hauser, S.L., Loscalzo, J., Eds.; McGraw-HillEducation: Madrid, Spain, 2018; Volume 2, pp. 3120–3132. [Google Scholar]
- Ritz, B.; Ascherio, A.; Checkoway, H.; Marder, K.S.; Nelson, L.M.; Rocca, W.A.; Ross, G.W.; Strickland, D.; Eeden, S.K.V.D.; Gorell, J. Pooled Analysis of Tobacco Use and Risk of Parkinson Disease. Arch. Neurol. 2007, 64, 990–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken, R.L., Jr.; Mandel, J.S. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0151841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Handbook on Indoor Radon: A Public Health Perspective; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Nussbaum, E. Radon solubility in body tissues and in fatty acids. In Research and Development Reports UR503; University of Rochester: Rochester, NY, USA, 1957. [Google Scholar]
- National Research Council. Biological Effects of Ionizing Radiation (BEIR) VI Report: The Health Effects of Exposure to Radon; National Academy Press: Washington, DC, USA, 1999. [Google Scholar]
- Committee on the Biological Effects of Ionizing Radiations. Health Risks of Radon and Other Internally Deposited Alpha-Emitters: BEIR IV; National Academy Press: Washington, DC, USA, 1988. [Google Scholar]
- Hopke, P.K. The indoor radon problem explained for the layman. In Radon and Its Decay Products; Hopke, P.K., Ed.; American Chemical Society: Washington, DC, USA, 1987; pp. 572–586. [Google Scholar]
- Barros-Dios, J.M.; Ruano-Ravina, A.; Gastelu-Iturri, J.; Figueiras, A. Factors underlying residential radon concentration: Results from Galicia, Spain. Environ. Res. 2007, 103, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Radford, E.P.; Whitley, E. Radon exposure and cancers other than lung cancer in Swedish iron miners. Environ. Health Perspect. 1995, 103 (Suppl. 2), 45–47. [Google Scholar]
- Salgado-Espinosa, T.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon exposure and oropharyngeal cancer risk. Cancer Lett. 2015, 369, 45–49. [Google Scholar] [CrossRef]
- Ruano-Ravina, A.; Aragonés, N.; Kelsey, K.T.; Pérez-Ríos, M.; Piñeiro, M.; López-Abente, G.; Barros-Dios, J.M. Residential radon exposure and brain cancer: An ecological study in a radon prone area (Galicia, Spain). Sci. Rep. 2017, 7, 3595. [Google Scholar] [CrossRef] [Green Version]
- Bräuner, E.V.; Andersen, Z.J.; Andersen, C.E.; Pedersen, C.; Gravesen, P.; Ulbak, K.; Hertel, O.; Loft, S.; Raaschou-Nielsen, O. Residential Radon and Brain Tumour Incidence in a Danish Cohort. PLoS ONE 2013, 8, e74435. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Ravina, A.; Dacosta-Urbieta, A.; Barros-Dios, J.M.; Kelsey, K.T. Radon exposure and tumors of the central nervous system. Gac. Sanit. 2017, 32, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Lorenzo, R.; Barros-Dios, J.M.; Aldrey, M.R.; Caramés, S.C.; Ruano-Ravina, A. Residential radon and cancers other than lung cancer: A cohort study in Galicia, a Spanish radon-prone area. Eur. J. Epidemiol. 2016, 31, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Groves-Kirkby, C.J.; Denman, A.R.; Campbell, J.; Crockett, R.G.; Phillips, P.S.; Rogers, S. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales. J. Environ. Radioact. 2016, 154, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaum, E.; Harsh, J.B. Radon Solubility in Fatty Acids and Triglycerides. J. Phys. Chem. 1958, 62, 81–84. [Google Scholar] [CrossRef]
- Lykken, G.K.; Momčilović, B. Environmental radon, high energy alpha particle radiation and multiple sclerosis connection revisited. In Proceedings of the 48th Annual Meeting of the Health Physics Society, San Diego, CA, USA, 20–24 July 2003. [Google Scholar]
- Cooper, R. Multiple sclerosis: An immune legacy? Med. Hypotheses 1997, 49, 307–311. [Google Scholar] [CrossRef]
- Lykken, G.I.; Ong, H.S.; Penland, J.G. Radon in humans: More dynamic than we thought. Health Phys. 1990, 58, S31. [Google Scholar]
- Momcilović, B.; Lykken, G.I.; Cooley, M. Natural distribution of environmental radon daughters in the different brain areas of an Alzheimer Disease victim. Mol. Neurodegener. 2006, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Momcilović, B.; Alkhatib, H.A.; Duerre, J.A.; Cooley, M.A.; Long, W.M.; Harris, R.T.; Lykken, G.I. Environmental radon daughters reveal pathognomonic changes in the brain proteins and lipids in patients with Alzheimer’s disease and Parkinson’s disease, and cigarette smokers. Arh. Hig. Toksikol. 1999, 50, 347–369. [Google Scholar]
- Momčilović, B.; Alkhatib, H.A.; Duerre, J.A.; Cooley, M.; Long, W.M.; Harris, T.R.; Lykken, G.I. Environmental lead-210 and bismuth-210 accrue selectively in the brain proteins in Alzheimer Disease and brain lipids in Parkinson’s Disease. Alzheimer Dis. Assoc. Disord. 2001, 15, 106–115. [Google Scholar] [CrossRef]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef]
- Rey, N.L.; Wesson, D.W.; Brundin, P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol. Dis. 2018, 109, 226–248. [Google Scholar] [CrossRef]
- Sharma, N.K.; Sharma, R.; Mathur, D.; Sharad, S.; Minhas, G.; Bhatia, K.; Anand, A.; Ghosh, S.P. Role of ionizing radiation in neurodegenerative diseases. Front. Aging Neurosci. 2018, 10, 134. [Google Scholar] [CrossRef]
- Urrútia, G.; Bonfill, X. DeclaraciónPRISMA: Unapropuesta para mejorar la publicación de revisionessistemáticas y metaanálisis. Med. Clínica 2010, 135, 507–511. [Google Scholar] [CrossRef]
- Neuberger, J.; Lynch, S.; Nazir, N.; Keighley, J. Residential case-control study of radon and multiple sclerosis. Mult. Scler. 2009, 15, 1402. [Google Scholar]
- Bartlett, D.T.; Gilvin, P.J.; Still, R.; Dixon, D.W.; Miles, J.C.H. The NRPB radon personal dosimetry service. J. Radiol. Prot. 1988, 8, 19–24. [Google Scholar] [CrossRef]
- Strand, T.; Green, B.M.R.; Lomås, P.R.; Magnus, K.; Stranden, E. Radon Inorskeboliger; National Institute of Radiation Hygiene: Akershus, Norway, 1991; (In Norwegian with an English Abstract). [Google Scholar]
- Lykken, G.I.; Magness, A.T.; Momcilovic, B. Whole body Bi-214 and bedroom radon concentration in Multiple Sclerosis. FASEB J. 2008, 22, 708–709. [Google Scholar]
- Gilmore, M.; Grennan, E. A pilot study of the relationship between multiple sclerosis and the physical environment in northwest Ireland. Environ. Geochem. Health 2003, 25, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Bølviken, B.; Celius, E.; Nilsen, R.; Strand, T. Radon: A Possible Risk Factor in Multiple Sclerosis. Neuroepidemiology 2003, 22, 87–94. [Google Scholar] [CrossRef]
- Neilson, S.; Robinson, I.; Rose, F.C. The correlation of motor neuron disease with radiation: An objection to the hypothesis of Neilson et al. J. Neurol. 1997, 244, 57–58. [Google Scholar]
- Schwartz, G.G.; Klug, M.G. Motor neuron disease mortality rates in U.S. states are associated with well water use. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, N.V.; Vieira, C.L.; Saldiva, P.H.N.; Mazzilli, B.P.; Saiki, M.; Saueia, C.H.; De André, C.D.S.; Justo, L.T.; Nisti, M.B.; Koutrakis, P. Levels of Polonium-210 in brain and pulmonary tissues: Preliminary study in autopsies conducted in the city of Sao Paulo, Brazil. Sci. Rep. 2020, 10, 180. [Google Scholar] [CrossRef]
- Mauro, J.; Briggs, N.M. Assessment of Variations in Radiation Exposure in the United States; U.S. Environmental Protection Agency Office of Radiation and Indoor Air: Washington, DC, USA, 2005; pp. 1–35.
- Douglas, P.S.; Carr, J.J.; Cerqueira, M.D.; Cummings, J.E.; Gerber, T.C.; Mukherjee, D.; Taylor, A.J. Developing an Action Plan for Patient Radiation Safety in Adult Cardiovascular Medicine. Available online: https://www.ahajournals.org/doi/full/10.1161/HCI.0b013e318252e9d9 (accessed on 13 October 2020).
- Westlund, K. Distribution and mortality time trend of multiple sclerosis and some other diseases in norway. Acta Neurol. Scand. 1970, 46, 455–483. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rheinstein, P.H.; Rosenzweig, K.E. Association of Radon Background and Total BackgroundIonizingRadiationwithAlzheimer’s Disease Deaths in U.S. States. J. Alzheimers. Dis. 2017, 59, 737–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandan, R.; Robison, S.; Munzer, J.; Bradley, W.G. Deficient DNA repair in amyotrophic lateral sclerosis cells. J. Neurol. Sci. 1987, 79, 189–203. [Google Scholar] [CrossRef]
- Wilson, R.; Bell, M.V. Molecular species composition of glicerol phospholipids from white matter human brain. Lipids 1993, 28, 13–17. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P.H. A derangement of the brain wound healing process may cause some cases of Alzheimer’s disease. Discov. Med. 2016, 22, 43–46. [Google Scholar]
- Berlivet, J.; Hémon, D.; Cléro, É.; Ielsch, G.; Laurier, D.; Guissou, S.; Lacour, B.; Clavel, J.; Goujon, S. Ecologicalassociationbetweenresidential natural backgroundradiationexposure and theincidencerate of childhood central nervoussystemtumors in France, 2000–2012. J. Environ. Radioact. 2020, 211, 106071. [Google Scholar] [CrossRef]
- Martins, M.C.H.; Fatigati, F.L.; Véspoli, T.C.; Martins, L.C.; Pereira, L.A.; Saldiva, P.H.N.; Braga, A.L.F. Influence of socioeconomic conditions on air pollution adverse health effects in elderly people: An analysis of six regions in Sao Paulo, Brazil. J. Epidemiol. Community Health 2004, 58, 41–46. [Google Scholar] [CrossRef]
- Forastiere, F.; Stafoggia, M.; Tasco, C.; Picciotto, S.; Agabiti, N.; Cesaroni, G.; Perucci, C.A. Socioeconomic status, particulate air pollution, and daily mortality: Differential exposure or differential susceptibility. Am. J. Ind. Med. 2007, 50, 208–216. [Google Scholar] [CrossRef]
- Evans, G.W.; Kantrowitz, E. Socioeconomic status and health: The potential role of environmental risk exposure. Annu. Rev. Public Health 2002, 23, 303–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagà, V.; Lygidakis, C.; Chaouachi, K.; Gattavecchia, E. Polonium and Lung Cancer. J. Oncol. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed]
Study Design (SD) | Score |
---|---|
Cross-sectional (CS) | 1 |
Cases and controls (CC) | 2 |
Cohorts (CHO) | 3 |
Experimental (Exp) | 4 |
Sample Size (N) | |
15 ≤ N < 30 | 1 |
30 ≤ N < 50 | 2 |
N ≥ 50 | 3 |
Bias Control (BC) | |
Completed | 1 |
No completed | 0 |
Authores [Ref] | Publication | Publication Year | Country | Study Design | Sample Size | Study Objective | Exposure Characteristic | Statistic Association | QI |
---|---|---|---|---|---|---|---|---|---|
Groves-Kirkby, C.J. et al. [31] | J. Environ Radioact | 2016 | England and Wales | Retrospective Cohort | 1512 | Investigate the possible association between gas radon concentration at home and the increasing MS incidence | Radon Atlas for England and Wales | NO | 2.7 |
Neuberger, J. et al. [43] | MULTIPLE SCLEROSIS | 2009 | United States | Cases and Controls | 148 Cases: 97 Controls: 51 | Evaluate the relationship between MS prevalence and radon gas exposure, taking into account other risk identified factors | Arithmetic mean of the Rn (Bq/m3) concentration obtained between 1987–1989 from the different rural municipalities aggregates where houses are located [44,45] | YES (Significative association between radon gas exposure and MS prevalence) | 2.1 |
Lykken, G. I. et al. [46] | Journal of neuropathology and experimental neurology | 2008 | Croatia | Cases and Controls | 30 Cases: 15 Controls: 15 | Investigate radon exposure as an inductor factor of MS | Canisters | YES (222Rn exposure and la 214Biretention is higher in the cases) | 1.5 |
Gilmore M. et al. [47] | Environ Geochem Health | 2003 | Ireland | Study 1:Relationship between MS Ireland members and radon levels Study 2: Survey about MS characteristic houses | Study 2: 67 | Investigate if some ambient factor, as the radon gas exposure in the infant period, increases the genetic predisposition for MS | Radioactivity map published in 1995 by Appleton and Ball | Not specified | 1.5 |
Bølviken B et al. [48] | Neuroepidemiology | 2003 | Norway | Ecologic | >100 | Investigate radon gas exposure as a risk factor for MS | Radtrack® | YES | 1.5 |
Neilson, S. et al. [49] | FC journal of neurology | 1997 | England and Wales | Ecologic | >100 | Investigate the possible relationship between thesourcesof radiation distribution and epidemiological MND mortality data in England and Wales | Rn concentrations were monitored byNRPB (National Radiological Protection Board) | YES | 1.5 |
Gary G. Schwartz et al. [50] | Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration | 2016 | United States | Ecologic | >100 | Investigate the relationship between the MND age adjusted mortality rates in United States, residential radon levels, well water use and other variables using a multivariable analysis. | US EPA (United States—Environmental Protection Agency) | YES (MND age adjusted mortality rate vs. Residential radon levels) NO (MND agemortality rate adjusted forother factors (such as: race, well water use) vs. residential radon levels | 1.5 |
Momcilović B. et al. [37] | Arch higradatoksikol | 1999 | Croatia | Cases and Controls | 29 Cases: 21 Controls: 8 (no smokers) | Analyze thedistribution of 222Rn decay products (210Po and 210Bi) in the lipid and protein fractions of the cortical gray matter and subcortical white matter of the frontal and temporal lobes of the brain of died individuals who had suffered from AD, PD, smokers and no smokers | EGε-G ORTEC system | YES The 222Rn decay products is mainly found in the protein fraction of the cortical gray matter and subcortical white matter of AD and smoker patients, compared to PD patients, where these products would accumulate in the lipid fraction of subcortical white matter. | 1.5 |
Lehrer S [51] | Journal of Alzheimer’s Disease | 2017 | United States | Ecologic | >100 | Investigate the possible association between AD mortality rate in USA with radiation exposure (both total and the radon respective one) | “Assessment of Variations in Radiation Exposure in the United States” [52], and from article nº 160 - Ionizing Radiation Exposure of the Population of the United States [53] | YES (AD mortality rate vs. radon background radiation and total background radiation in USA) | 1.5 |
Santos, N.V.d. et al. [54] | Scientific Report | 2020 | Brazil | Descriptive | 30 | Analyze the levels of emitted α particles by 210Po, a 222Rn decay product, in the olfactory epithelium, olfactory bulb, frontal lobe, and lung tissues in cadavers from the city of Sao Paulo, Brazil. | The 210Po determination in human samples was performed by α particle spectrometry | YES The 210Po accumulation in the cadavers´ tissues, suggest that these radionuclides could influence the development of certain diseases such as neurodegenerative ones | 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Anca, S.; Barros-Dios, J.M. Radon Exposure and Neurodegenerative Disease. Int. J. Environ. Res. Public Health 2020, 17, 7439. https://doi.org/10.3390/ijerph17207439
Gómez-Anca S, Barros-Dios JM. Radon Exposure and Neurodegenerative Disease. International Journal of Environmental Research and Public Health. 2020; 17(20):7439. https://doi.org/10.3390/ijerph17207439
Chicago/Turabian StyleGómez-Anca, Silvia, and Juan Miguel Barros-Dios. 2020. "Radon Exposure and Neurodegenerative Disease" International Journal of Environmental Research and Public Health 17, no. 20: 7439. https://doi.org/10.3390/ijerph17207439
APA StyleGómez-Anca, S., & Barros-Dios, J. M. (2020). Radon Exposure and Neurodegenerative Disease. International Journal of Environmental Research and Public Health, 17(20), 7439. https://doi.org/10.3390/ijerph17207439