Association between Neighborhood Food Environment and Body Mass Index among Older Adults in Beijing, China: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample
2.3.1. Sampling Method
2.3.2. Sample Size Calculation
2.4. Ethical Review
2.5. Participants’ Basic Information
2.6. Physical Measurement
2.7. Neighborhood Food Environment Measurement
2.7.1. Usage of Baidu Map API
2.7.2. Classification of Food Outlets
2.8. Variables
2.8.1. Body Mass Index
2.8.2. Neighborhood Food Environment Variables
2.8.3. Confounders
2.9. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Neighborhood Food Environment Characteristics
3.3. Association between Neighborhood Food Environment and BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Song, M.N.; Cheng, X.; Kong, J.X.; Wang, H.M. Prevalence and influencing factors of overweight and obesity among middle-aged and elderly people in China. Chin. J. Dis. Control Prev. 2018, 22, 804–808. [Google Scholar]
- Yan, H.M.; Zhang, L.; Mi, Y.L.; Liu, X.P. Analysis of Health Checkup Results of the Elderly in Changying Community of Chaoyang District. Contin. Med. Educ. 2020, 34, 71–73. [Google Scholar]
- Wang, H.L. Analysis on the data of health examination of aged people at a community station in Beijing. Basic Clin. Med. 2019, 39, 1045–1047. [Google Scholar]
- Shi, M.M.; Zhang, Y.; Zhang, Z.G.; Han, L. Analysis of the results of physical examination of the elderly aged 65 and above in Yufa district of Beijing. Contin. Med. Educ. 2018, 32, 99–101. [Google Scholar]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. Obesity 1: The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–813. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22 (Suppl. 7), s176–s185. [Google Scholar] [PubMed]
- Zhang, J.; Shi, X.M.; Liang, X.F. Economic costs of both overweight and obesity among Chinese urban and nlral residents, in 2010. Chin. J. Epidemiol. 2013, 34, 598–600. [Google Scholar]
- Yan, X.F.; Shi, J.Z.; Cheng, W.W.; Liu, X.F. Out-of-pocket Care Expenditures Due to Excess of Body Weight in the Chinese Population Aged 45 and Older. Chin. J. Health Stat. 2019, 36, 22–27. [Google Scholar]
- James, W.P. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32 (Suppl. 7), S120–S126. [Google Scholar] [CrossRef] [Green Version]
- Bleich, S.; Cutler, D.; Murray, C.; Adams, A. Why is the developed world obese? Annu. Rev. Public Health 2008, 29, 273–295. [Google Scholar] [CrossRef] [Green Version]
- Swinburn, B.; Vandevijvere, S.; Kraak, V.; Sacks, G.; Snowdon, W.; Hawkes, C.; Barquera, S.; Friel, S.; Kelly, B.; Kumanyika, S.; et al. Informas, Monitoring and benchmarking government policies and actions to improve the healthiness of food environments: A proposed Government Healthy Food Environment Policy Index. Obes. Rev. 2013, 14 (Suppl. 1), 24–37. [Google Scholar] [CrossRef] [PubMed]
- Story, M.; Kaphingst, K.M.; Robinson-O’Brien, R.; Glanz, K. Creating Healthy Food and Eating Environments: Policy and Environmental Approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glanz, K.; Sallis, J.F.; Saelens, B.E.; Frank, L.D. Healthy nutrition environments: Concepts and measures. Am. J. Health Promot. 2005, 19, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Sallis, J.F.; Saelens, B.E.; Frank, L.D. Nutrition Environment Measures Survey in Stores (NEMS-S) Development and Evaluation. Am. J. Prev. Med. 2007, 32, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Horacek, T.M.; Erdman, M.B.; Byrd-Bredbenner, C.; Carey, G.; Colby, S.M.; Greene, G.W.; Guo, W.; Kattelmann, K.K.; Olfert, M.; Walsh, J.; et al. Assessment of the dining environment on and near the campuses of fifteen post-secondary institutions. Public Health Nutr. 2013, 16, 1186–1196. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.V.; Diez Roux, A.V.; Franco, M. Measuring availability of healthy foods: Agreement between directly measured and self-reported data. Am. J. Epidemiol. 2012, 175, 1037–1044. [Google Scholar] [CrossRef]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K.; Japan Dietetic Students’ Study for Nutrition; Biomarkers Group. Neighborhood food store availability in relation to food intake in young Japanese women. Nutrition 2009, 25, 640–646. [Google Scholar] [CrossRef]
- Shareck, M.; Lewis, D.; Smith, N.R.; Clary, C.; Cummins, S. Associations between home and school neighbourhood food environments and adolescents’ fast-food and sugar-sweetened beverage intakes: Findings from the Olympic Regeneration in East London (ORiEL) Study. Public Health Nutr. 2018, 21, 2842–2851. [Google Scholar] [CrossRef] [Green Version]
- McInerney, M.; Csizmadi, I.; Friedenreich, C.M.; Uribe, F.A.; Nettel-Aguirre, A.; McLaren, L.; Potestio, M.; Sandalack, B.; McCormack, G.R. Associations between the neighbourhood food environment, neighbourhood socioeconomic status, and diet quality: An observational study. BMC Public Health 2016, 16, 984. [Google Scholar] [CrossRef] [Green Version]
- Moayyed, H.; Kelly, B.; Feng, X.; Flood, V. Is Living near Healthier Food Stores Associated with Better Food Intake in Regional Australia? Int. J. Environ. Res. Public Health 2017, 14, 884. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.; Hutchinson, P.L.; Bodor, J.N.; Swalm, C.M.; Farley, T.A.; Cohen, D.A.; Rice, J.C. Neighborhood food environments and Body Mass Index: The importance of in-store contents. Am. J. Prev. Med. 2009, 37, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.F.; Huang, H.N.; Li, J.H.; Xu, H. A research on rail traffic generation forecasting based on Baidu Map API. Shandong Sci. 2017, 30, 82–88. [Google Scholar]
- Du, C.M. Application of BaiDu Map API in Small Geographic Information System. Geomat. Spat. Inf. Technol. 2011, 34, 152–153. [Google Scholar]
- Yang, S.Y.; Xie, R.S.; Deng, Y.S.; Zong, Y.N.; Liu, L.; Gao, Y.H.; Liang, J.P.; Yang, J.W.; Yang, Y. Application of Baidu map API for the study on obesogenic food environment among middle school students. Chin. J. Sch. Health 2018, 39, 990–992. [Google Scholar]
- Cobb, L.K.; Appel, L.J.; Franco, M.; Jones-Smith, J.C.; Nur, A.; Anderson, C.A. The relationship of the local food environment with obesity: A systematic review of methods, study quality, and results. Obesity 2015, 23, 1331–1344. [Google Scholar] [CrossRef] [Green Version]
- Fraser, L.K.; Edwards, K.L.; Tominitz, M.; Clarke, G.P.; Hill, A.J. Food outlet availability, deprivation and obesity in a multi-ethnic sample of pregnant women in Bradford, UK. Soc. Sci. Med. 2012, 75, 1048–1056. [Google Scholar] [CrossRef]
- Fraser, L.K.; Edwards, K.L.; Cade, J.; Clarke, G.P. The geography of Fast Food outlets: A review. Int. J. Environ. Res. Public Health 2010, 7, 2290–2308. [Google Scholar] [CrossRef] [Green Version]
- Gamba, R.J.; Schuchter, J.; Rutt, C.; Seto, E.Y. Measuring the food environment and its effects on obesity in the United States: A systematic review of methods and results. J. Community Health 2015, 40, 464–475. [Google Scholar] [CrossRef]
- Holsten, J.E. Obesity and the community food environment: A systematic review. Public Health Nutr. 2009, 12, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.I.; Story, M.T.; Nelson, M.C. Neighborhood environments: Disparities in access to healthy foods in the U.S. Am. J. Prev. Med. 2009, 36, 74–81. [Google Scholar] [CrossRef]
- Hanibuchi, T.; Kondo, K.; Nakaya, T.; Nakade, M.; Ojima, T.; Hirai, H.; Kawachi, I. Neighborhood food environment and body mass index among Japanese older adults: Results from the Aichi Gerontological Evaluation Study (AGES). Int. J. Health Geogr. 2011, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruchno, R.; Wilson-Genderson, M.; Gupta, A.K. Neighborhood food environment and obesity in community-dwelling older adults: Individual and neighborhood effects. Am. J. Public Health 2014, 104, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Farley, T.A.; Rice, J.; Bodor, J.N.; Cohen, D.A.; Bluthenthal, R.N.; Rose, D. Measuring the food environment: Shelf space of fruits, vegetables, and snack foods in stores. J. Urban Health Bull. N. Y. Acad. Med. 2009, 86, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.C.; Cutumisu, N.; Edwards, J.; Raine, K.D.; Smoyer-Tomic, K. Relation between local food environments and obesity among adults. BMC Public Health 2009, 9, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papas, M.A.; Alberg, A.J.; Ewing, R.; Helzlsouer, K.J.; Gary, T.L.; Klassen, A.C. The built environment and obesity. Epidemiol. Rev. 2007, 29, 129–143. [Google Scholar] [CrossRef] [Green Version]
- An, R.; He, L.; Shen, M.J. Impact of neighbourhood food environment on diet and obesity in China: A systematic review. Public Health Nutr. 2020, 23, 457–473. [Google Scholar] [CrossRef]
- Du, S.F.; Wang, H.J.; Zhang, B.; Zhai, F.Y.; Popkin, B.M. China in the period of transition from scarcity and extensive undernutrition to emerging nutrition-related non-communicable diseases, 1949–1992. Obes. Rev. 2014, 15 (Suppl. 1), 8–15. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Wang, H.; Zhao, L.; Jiang, H.; Zhang, B.; Ding, G. Nutrition transition and related health challenges over decades in China. Eur. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Yao, Y.C.; Gong, Y.W.; Song, C.; Zhang, Y.; Ma, Y.N.; Yuan, F.; Liu, A.L. Out-of-home eating behavior analysis of Chinese adult residents, 2010–2012. Acta Nutr. Sin. 2019, 41, 10–14. [Google Scholar]
- Du, W.W.; Wang, H.J.; Su, C.; Zhang, Z.G.; Wang, Z.H.; Zhang, B. Study and Analysis of Chinese Adult Residents’ Dining Out and Vegetable Intake. In Proceedings of the 14th National Nutrition Science Conference of the Chinese Nutrition Society and the 11th Asia-Pacific Clinical Nutrition Conference, Nanjing, China, 20–22 September 2019. [Google Scholar]
- Du, W.W. Dynamics of Eating Away from Home and Association with Nutritional Outcomes Among Chinese Adults; Chinese Center for Disease Control and Prevention: Beijing, China, 2014. [Google Scholar]
- Ma, R.; Wang, C.; Zhao, Y.; Yu, Y.J.; Liu, F. Analysis on eating away from home of adults in Beijing in 2010–2012. J. Hyg. Res. 2017, 46, 251–255. [Google Scholar]
- Li, J.; Wang, G.H.; Pan, Y.; Wang, Z. Outside eating behaviors of the residents in Tianjin. Acta Nutr. Sin. 2014, 36, 125–130. [Google Scholar]
- Du, W.W.; Su, C.; Wang, H.J.; Wang, Z.H.; Zhang, J.G.; Zhang, J.; Jiang, H.R.; Zhang, Y.G.; Zhang, B. Situation on ‘eating out’ and its related risk factors among 1013 Chinese adults in 3 provinces. Chin. J. Epidemiol. 2013, 34, 1159–1163. [Google Scholar]
- Shen, J.; He, L.; An, R.P. Food environment and its relation to diet behavior and obesity in China. Chin. J. Epidemiol. 2019, 40, 1296–1303. [Google Scholar]
- Yen, I.H.; Michael, Y.L.; Perdue, L. Neighborhood environment in studies of health of older adults: A systematic review. Am. J. Prev. Med. 2009, 37, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistical Communiqué on China’s 2019 National Economic and Social Development. Available online: http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html (accessed on 1 October 2020).
- Zhang, M.; Jiang, Y.; Li, Y.C.; Wang, L.M.; Zhao, W.H. Prevalence of overweight and obesity among Chinese elderly aged 60 and above in 2010. Chin. J. Epidemiol. 2014, 35, 365–369. [Google Scholar]
- Announcement on the Update of the National Statistical Division Codes and Urban-Rural Division Codes. Available online: http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2019/index.html (accessed on 1 October 2020).
- General Administration of Sport of China. National Physical Fitness Standard Handbook; Senior Part; People’s Sports Publishing House of China: Beijing, China, 2003. [Google Scholar]
- Baidu Map Open Platform. Available online: https://lbsyun.baidu.com (accessed on 30 November 2019).
- Hong, C. Space and Environment of Chinese Urban Elderly Communities. Architect 2003, 21–27. [Google Scholar]
- Chai, Y.W.; Li, C.X. The spatial characteristics of shopping behavior of the Chinese urban elderly: A case study of Beijing, Shenzhen, and Shanghai. Acta Geogr. Sin. 2005, 60, 401–408. [Google Scholar]
- General Administration of Quality Supervision; China National Standardization Management Committee. Industrial Classification for National Economic Activities; GB T 4754-2017; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Tian Yancha. Available online: https://www.tianyancha.com/?jsid=SEM-BAIDU-PZ0824-SY-000001 (accessed on 30 November 2019).
- Dianping. Available online: https://www.dianping.com (accessed on 30 November 2019).
- Beijing Statistical Yearbook-2019. Available online: http://nj.tjj.beijing.gov.cn/nj/main/2019-tjnj/zk/indexch.htm. (accessed on 2 October 2020).
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, R.A.; Reedy, J.; Handy, S.L.; Rodgers, A.B. Measuring the food and physical activity environments: Shaping the research agenda. Am. J. Prev. Med. 2009, 36 (Suppl. 4), S81–S85. [Google Scholar] [CrossRef]
- Mehta, N.K.; Chang, V.W. Weight status and restaurant availability a multilevel analysis. Am. J. Prev. Med. 2008, 34, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.F.; Zhang, B.; Wang, Z.H.; Su, C.; Zhang, J.G.; Du, W.W.; Jiang, H.R.; Huang, F.F.; Jia, X.F.; Wang, Y.; et al. Intake of vegetables and fruits among the Chinese aged 60 and above in 15 provinces (autonomous region and municipatily) in 2015. J. Hyg. Res. 2019, 48, 23–27. [Google Scholar]
- Yang, D.F.; Liu, Z.Y. The Influence of Built Environment On Senior Activities: Daily Shopping Activity Analysis. Planners 2015, 31, 101–105. [Google Scholar]
- Feng, J.; Glass, T.A.; Curriero, F.C.; Stewart, W.F.; Schwartz, B.S. The built environment and obesity: A systematic review of the epidemiologic evidence. Health Place 2010, 16, 175–190. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, D.F. Preliminary Study on the Differences and Reasons of the Use Frequency of Indoor and Outdoor Vegetable Markets among the Elderly. In Proceedings of the Sharing and Quality-2018 China Urban Planning Annual Conference, Hangzhou, China, 23–26 November 2018. [Google Scholar]
- Tian, X.; Zhong, L.; von Cramon-Taubadel, S.; Tu, H.; Wang, H. Restaurants in the Neighborhood, Eating Away from Home and BMI in China. PLoS ONE 2016, 11, e0167721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitzel, L.R.; Okamoto, H.; Hernandez, D.C.; Regan, S.D.; McNeill, L.H.; Obasi, E.M. The Built Food Environment and Dietary Intake among African-American Adults. Am. J. Health Behav. 2016, 40, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickson, D.A.; Diez Roux, A.V.; Smith, A.E.; Tucker, K.L.; Gore, L.D.; Zhang, L.; Wyatt, S.B. Associations of Fast Food Restaurant Availability With Dietary Intake and Weight Among African Americans in the Jackson Heart Study, 2000–2004. Am. J. Public Health 2011, 101 (Suppl. 1), 301–309. [Google Scholar] [CrossRef] [PubMed]
- Caspi, C.E.; Sorensen, G.; Subramanian, S.V.; Kawachi, I. The local food environment and diet: A systematic review. Health Place 2012, 18, 1172–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; De Schutter, O.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- Kelly, B.; Flood, V.M.; Yeatman, H. Measuring local food environments: An overview of available methods and measures. Health Place 2011, 17, 1284–1293. [Google Scholar] [CrossRef]
- Powell, L.M.; Han, E.; Zenk, S.N.; Khan, T.; Quinn, C.M.; Gibbs, K.P.; Pugach, O.; Barker, D.C.; Resnick, E.A.; Myllyluoma, J.; et al. Field validation of secondary commercial data sources on the retail food outlet environment in the U.S. Health Place 2011, 17, 1122–1131. [Google Scholar] [CrossRef]
- Charreire, H.; Casey, R.; Salze, P.; Simon, C.; Chaix, B.; Banos, A.; Badariotti, D.; Weber, C.; Oppert, J.M. Measuring the food environment using geographical information systems: A methodological review. Public Health Nutr. 2010, 13, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Mejia, N.; Lightstone, A.S.; Basurto-Davila, R.; Morales, D.M.; Sturm, R. Neighborhood Food Environment, Diet, and Obesity Among Los Angeles County Adults, 2011. Prev. Chronic Dis. 2015, 12, E143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | n | % |
---|---|---|
BMI (kg/m2) 1 | ||
Underweight: <18.5 | 7 | 0.4 |
Normal: 18.5–24.9 | 638 | 36.2 |
Overweight: 25–29.9 | 620 | 35.1 |
Obese: ≥30 | 499 | 28.3 |
Gender | ||
Male | 730 | 41.4 |
Female | 1034 | 58.6 |
Age | ||
65–69 | 983 | 55.7 |
70–74 | 483 | 27.4 |
75–79 | 298 | 16.9 |
Marital status | ||
Unmarried | 3 | 0.2 |
Married | 1482 | 84.0 |
Widowed | 260 | 14.7 |
Divorced or separated | 19 | 1.1 |
Education level | ||
≥Bachelor’s degree | 190 | 10.8 |
Middle school 2 | 923 | 52.3 |
≤Primary school | 651 | 36.9 |
Income level (RMB) 3 | ||
≤2000 | 409 | 23.2 |
2000–3500 | 652 | 37.0 |
3500–5000 | 376 | 21.3 |
5000–10,000 | 223 | 12.6 |
≥10,000 | 24 | 1.4 |
Missing | 80 | 4.5 |
Neighborhood socioeconomic level | ||
Urban | 899 | 51.0 |
Suburban | 865 | 49.0 |
Frequency of exercise | ||
Never | 198 | 11.2 |
1–2/week | 55 | 3.1 |
3–4/week | 83 | 4.7 |
5–6/week | 35 | 2.0 |
Everyday | 1387 | 78.6 |
Missing | 6 | 0.3 |
Smoking 4 | ||
No | 1464 | 83.0 |
Yes | 300 | 17.0 |
Drinking | ||
≥Once a week | 436 | 24.7 |
<Once a week | 1325 | 75.1 |
Missing | 3 | 0.2 |
Numbers of Food Outlets | 250 m Buffer Zone | 500 m Buffer Zone | 800 m Buffer Zone | 1000 m Buffer Zone | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Number of supermarkets | 0.2 | 0.4 | 0.6 | 0.8 | 1.7 | 1.5 | 2.4 | 2.3 |
Number of convenience stores | 1.5 | 2.1 | 3.8 | 4.4 | 6.6 | 7.4 | 9.6 | 9.9 |
Number of greengrocers | 0.8 | 1.2 | 1.9 | 2.8 | 4.2 | 4.5 | 5.2 | 6.1 |
Number of sit-down restaurants | 0.7 | 1.2 | 4.3 | 8.0 | 8.0 | 10.4 | 12.2 | 12.1 |
Number of Chinese fast-food restaurants | 0.5 | 0.7 | 2.6 | 2.7 | 7.7 | 7.0 | 13.7 | 14.8 |
Number of western fast-food restaurants | 0.0 | 0.0 | 0.4 | 0.8 | 1.2 | 1.8 | 2.3 | 3.3 |
Nearest Distance to Food Outlets (m) | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Nearest distance to supermarkets (m) | 568.9 | 428.2 | 91.0 | 1676.0 |
Nearest distance to convenience stores (m) | 269.8 | 240.1 | 0.1 | 825.0 |
Nearest distance to greengrocers (m) | 350.3 | 218.0 | 77.0 | 705.0 |
Nearest distance to sit-down restaurants (m) | 403.5 | 279.7 | 52.0 | 992.0 |
Nearest distance to Chinese fast-food restaurants (m) | 682.2 | 947.0 | 169.0 | 3563.0 |
Nearest distance to western fast-food restaurants (m) | 2100.0 | 2901.4 | 339.0 | 8332.0 |
Number of Food Outlets within Different Buffer Zones | Model 1 1 | Model 2 2 | ||||
---|---|---|---|---|---|---|
β | SE | p | β | SE | p | |
Within 250 m bufferzone | ||||||
Number of supermarkets | −0.001 | 0.030 | 0.973 | 0.011 | 0.036 | 0.763 |
Number of convenience stores | −0.060 | 0.036 | 0.096 | −0.044 | 0.037 | 0.230 |
Number of greengrocers | 0.326 | 0.072 | <0.001 | 0.281 | 0.072 | <0.001 |
Number of sit-down restaurants | 0.298 | 0.073 | <0.001 | 0.304 | 0.072 | <0.001 |
Number of Chinese fast-food restaurants | −0.029 | 0.031 | 0.355 | −0.026 | 0.033 | 0.427 |
Within 500 m buffer zone | ||||||
Number of supermarkets | 0.603 | 0.108 | <0.001 | 0.593 | 0.108 | <0.001 |
Number of convenience stores | −0.018 | 0.056 | 0.747 | −0.008 | 0.055 | 0.884 |
Number of greengrocers | 0.063 | 0.045 | 0.166 | 0.046 | 0.046 | 0.313 |
Number of sit-down restaurants | 0.010 | 0.025 | 0.686 | 0.017 | 0.026 | 0.515 |
Number of Chinese fast-food restaurants | −0.024 | 0.027 | 0.377 | −0.010 | 0.028 | 0.723 |
Number of western fast-food restaurants | 0.004 | 0.022 | 0.856 | 0.015 | 0.025 | 0.551 |
Within 800 m buffer zone | ||||||
Number of supermarkets | 0.049 | 0.054 | 0.367 | 0.073 | 0.054 | 0.179 |
Number of convenience stores | 0.057 | 0.012 | <0.001 | 0.057 | 0.012 | <0.001 |
Number of greengrocers | 0.048 | 0.067 | 0.473 | 0.033 | 0.067 | 0.622 |
Number of sit-down restaurants | 0.026 | 0.025 | 0.299 | 0.033 | 0.026 | 0.203 |
Number of Chinese fast-food restaurants | −0.003 | 0.025 | 0.904 | 0.008 | 0.026 | 0.756 |
Number of western fast-food restaurants | −0.038 | 0.023 | 0.105 | −0.028 | 0.025 | 0.262 |
Within 1000 m buffer zone | ||||||
Number of supermarkets | 0.003 | 0.038 | 0.938 | −0.023 | 0.042 | 0.582 |
Number of convenience stores | 0.036 | 0.034 | 0.293 | 0.022 | 0.037 | 0.549 |
Number of greengrocers | 0.036 | 0.034 | 0.284 | 0.008 | 0.037 | 0.829 |
Number of sit-down restaurants | −0.028 | 0.041 | 0.500 | −0.021 | 0.040 | 0.602 |
Number of Chinese fast-food restaurants | 0.102 | 0.017 | <0.001 | 0.071 | 0.021 | 0.001 |
Number of western fast-food restaurants | −0.497 | 0.079 | <0.001 | −0.400 | 0.084 | <0.001 |
Nearest Distance to Food Outlets | Model 1 1 | Model 2 2 | ||||
---|---|---|---|---|---|---|
β | SE | p | β | SE | p | |
Nearest distance to supermarkets | 0.119 | 0.079 | 0.132 | 0.099 | 0.083 | 0.233 |
Nearest distance to convenience stores | 0.006 | 0.028 | 0.830 | −0.033 | 0.031 | 0.287 |
Nearest distance to greengrocers | −0.004 | 0.001 | <0.001 | −0.004 | 0.001 | <0.001 |
Nearest distance to sit-down restaurants | −0.004 | 0.028 | 0.884 | −0.028 | 0.030 | 0.356 |
Nearest distance to Chinese fast-food restaurants | −0.007 | 0.030 | 0.813 | 0.046 | 0.034 | 0.175 |
Nearest distance to western fast-food restaurants | −0.048 | 0.029 | 0.103 | −0.014 | 0.033 | 0.670 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Guo, W.; Zhang, N.; He, H.; Zhang, Y.; Zhou, M.; Zhang, J.; Li, M.; Ma, G. Association between Neighborhood Food Environment and Body Mass Index among Older Adults in Beijing, China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 7658. https://doi.org/10.3390/ijerph17207658
Zhang M, Guo W, Zhang N, He H, Zhang Y, Zhou M, Zhang J, Li M, Ma G. Association between Neighborhood Food Environment and Body Mass Index among Older Adults in Beijing, China: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2020; 17(20):7658. https://doi.org/10.3390/ijerph17207658
Chicago/Turabian StyleZhang, Man, Wen Guo, Na Zhang, Hairong He, Yu Zhang, Mingzhu Zhou, Jianfen Zhang, Muxia Li, and Guansheng Ma. 2020. "Association between Neighborhood Food Environment and Body Mass Index among Older Adults in Beijing, China: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 17, no. 20: 7658. https://doi.org/10.3390/ijerph17207658
APA StyleZhang, M., Guo, W., Zhang, N., He, H., Zhang, Y., Zhou, M., Zhang, J., Li, M., & Ma, G. (2020). Association between Neighborhood Food Environment and Body Mass Index among Older Adults in Beijing, China: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 17(20), 7658. https://doi.org/10.3390/ijerph17207658