Significant Associations between AXIN1 rs1805105, rs12921862, rs370681 Haplotypes and Variant Genotypes of AXIN2 rs2240308 with Risk of Congenital Heart Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotype Investigation
2.2. Data Analysis
3. Results
3.1. AXIN1 rs1805105, rs12921862, and rs370681 Haplotypes and Their Associations with CHD Risk
3.2. Epistatic Pairwise Interactions between AXIN1 rs1805105, rs12921862, rs370681 and AXIN2 rs2240308
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Christensen, K.E.; Zada, Y.F.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.L.; Bigras, J.-L.; Richter, A.; Dubé, M.-P.; Rozen, R. Risk of congenital heart defects is influenced by genetic variation in folate metabolism. Cardiol. Young 2012, 23, 89–98. [Google Scholar] [CrossRef]
- Cowan, J.R.; Ware, S.M. Genetics and Genetic Testing in Congenital Heart Disease. Clin. Perinatol. 2015, 42, 373–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales-Reynoso, M.A.; Saucedo-Sariñana, A.M.; Contreras-Díaz, K.B.; Márquez-González, R.M.; Barros-Núñez, P.; Pineda-Razo, T.D.; Marin-Contreras, M.E.; Durán-Anguiano, Ó.; Gallegos-Arreola, M.P.; Flores-Martínez, S.E.; et al. Genetic Polymorphisms in APC, DVL2, and AXIN1 Are Associated with Susceptibility, Advanced TNM Stage or Tumor Location in Colorectal Cancer. Tohoku J. Exp. Med. 2019, 249, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, P.; Wang, Y.; Zhang, Y.; Li, K.; Song, Y.; Su, M.; Zhou, B.; Zhang, L. Association between AXIN1 Gene Polymorphisms and Bladder Cancer in Chinese Han Population. Dis. Markers 2019, 2019, 3949343. [Google Scholar] [CrossRef]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
- Erbilgin, Y.; Ng, O.H.; Mavi, N.; Ozbek, U.; Sayitoglu, M. Genetic alterations in members of the Wnt pathway in acute leukemia. Leuk. Lymphoma 2011, 53, 508–510. [Google Scholar] [CrossRef]
- Zhou, B.; Tang, T.; Chen, P.; Pu, Y.; Ma, M.; Zhang, D.; Li, L.; Zhang, P.; Song, Y.; Zhang, L. The variations in the AXIN1 gene and susceptibility to cryptorchidism. J. Pediatr. Urol. 2015, 11, 132.e1–132.e5. [Google Scholar] [CrossRef]
- Hernández-Almaguer, M.D.; Calvo-Anguiano, G.; Cerda-Flores, R.M.; Salinas-Torres, V.M.; Orozco-Galicia, F.; Glenn, E.; García-Guerra, J.; Sánchez-Cortés, G.; Lugo-Trampe, J.; Martínez-Garza, L.E. Genetic Variants at the rs4720169 Locus of TBX20 and the rs12921862 Locus of AXIN1 May Increase the Risk of Congenital Heart Defects in the Mexican Population: A Pilot Study. Genet. Test. Mol. Biomark. 2019, 23, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Abitbol, S.; Dahmani, R.; Coulouarn, C.; Ragazzon, B.; Mlecnik, B.; Senni, N.; Savall, M.; Bossard, P.; Sohier, P.; Drouet, V.; et al. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation. J. Hepatol. 2018, 68, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xie, S.; Zhang, W.; Zhang, C.; Gao, C.; Sun, Q.; Cai, Y.; Xu, Z.; Xiao, M.; Xu, Y.; et al. Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Res. 2017, 27, 1422–1440. [Google Scholar] [CrossRef]
- Fang, L.; Cai, J.; Chen, B.; Wu, S.; Li, R.; Xu, X.; Yang, Y.; Guan, H.; Zhu, X.; Zhang, L.; et al. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling. Nat. Commun. 2015, 6, 8640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, A.; Taylor, S.K.B.; Ranawade, A.; Gupta, B.P. Axin Family of Scaffolding Proteins in Development: Lessons from C. elegans. J. Dev. Biol. 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, L.; Lu, B.; Zamponi, R.; Charlat, O.; Aversa, R.; Yang, Z.; Sigoillot, F.; Zhu, X.; Hu, T.; Reece-Hoyes, J.S.; et al. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin. Nat. Commun. 2019, 10, 4184. [Google Scholar] [CrossRef]
- Li, K.; Zhong, Y.; Peng, Y.; Zhou, B.; Wang, Y.; Li, Q.; Zhang, Y.; Song, H.; Rao, L. Association Between AXIN1 Gene Polymorphisms and Dilated Cardiomyopathy in a Chinese Han Population. DNA Cell Biol. 2019, 38, 436–442. [Google Scholar] [CrossRef]
- Pu, Y.; Mi, X.; Chen, P.; Zhou, B.; Zhang, P.; Wang, Y.; Song, Y.; Zhang, L. Genetic association of polymorphisms in AXIN1 gene with clear cell renal cell carcinoma in a Chinese population. Biomark. Med. 2017, 11, 947–955. [Google Scholar] [CrossRef]
- Ma, C.; Liu, C.; Huang, P.; Kaku, H.; Chen, J.; Guo, K.; Ueki, H.; Sakai, A.; Nasu, Y.; Kumon, H.; et al. Significant association between the Axin2 rs2240308 single nucleotide polymorphism and the incidence of prostate cancer. Oncol. Lett. 2014, 8, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Chen, P.; Zhou, B.; Wang, Y.; Song, Y.; Peng, Y.; Rao, L.; Zhang, L. Association between polymorphisms in AXIN1 gene and atrial septal defect. Biomarkers 2014, 19, 674–678. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 13 February 2012).
- Warnes, G.; Gorjanc, G.; Leisch, F.; Man, M. Genetics: Population Genetics. R Package Version 1.3.8.1.2. 2019. Available online: https://CRAN.R-project.org/package=genetics (accessed on 10 September 2020).
- González, J.R.; Armengol, L.; Guinó, E.; Solé, X.; Moreno, V. SNPassoc: SNPs-Based Whole Genome Association Studies. R Package Version 1.9-2. 2014. Available online: https://CRAN.R-project.org/package=SNPassoc (accessed on 10 September 2020).
- Pedone, E.; Marucci, L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes 2019, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Foulquier, S.; Daskalopoulos, E.P.; Lluri, G.; Hermans, K.C.M.; Deb, A.; Blankesteijn, W.M. WNT Signaling in Cardiac and Vascular Disease. Pharmacol. Rev. 2017, 70, 68–141. [Google Scholar] [CrossRef] [PubMed]
- Hermansand, K.C.M.; Blankesteijn, W.M. Wnt Signaling in Cardiac Disease. Compr. Physiol. 2015, 5, 1183–1209. [Google Scholar] [CrossRef]
- Manisastry, S.M.; Han, M.; Linask, K.K. Early temporal-specific responses and differential sensitivity to lithium and Wnt-3A exposure during heart development. Dev. Dyn. 2006, 235, 2160–2174. [Google Scholar] [CrossRef]
- Lickert, H.; Kutsch, S.; Kanzler, B.; Tamai, Y.; Taketo, M.M.; Kemler, R. Formation of Multiple Hearts in Mice following Deletion of β-catenin in the Embryonic Endoderm. Dev. Cell 2002, 3, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Salahshor, S.; Woodgett, J.R. The links between Axin and carcinogenesis. J. Clin. Pathol. 2005, 58, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Mahaffey, J.P.; Alcorn, H.L.; Anderson, K.V. Tissue-specific roles of Axin2 in the inhibition and activation of Wnt signaling in the mouse embryo. Proc. Natl. Acad. Sci. USA 2011, 108, 8692–8697. [Google Scholar] [CrossRef] [Green Version]
- Mártha, K.; Kerekes-Máthé, B.; Moldovan, V.G.; Bănescu, C. Study of rs12532, rs8670 Polymorphism of Msh Homeobox 1 (MSX1), rs61754301, rs4904155 Polymorphism of Paired Box Gene 9 (PAX9), and rs2240308 Polymorphism of Axis Inhibitor Protein 2 (AXIN2) Genes in Nonsyndromic Hypodontia. BioMed Res. Int. 2019, 2019, 2183720. [Google Scholar] [CrossRef]
- Otero-Mendoza, L.; Lacunza, E.; Vasquez, V.; Arbelaez, V.; Cardier, F.; González, F. Variations in AXIN2 predict risk and prognosis of colorectal cancer. BDJ Open 2019, 5, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Ordóñez, W.O.; Carvalho, T.I.; Carrara, H.H.; De Andrade, J.M.; Takahashi, C.S. AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility. Asian Pac. J. Cancer Prev. 2015, 16, 7277–7284. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Zhang, J.; Wang, W.; Zhang, Z.; Huang, Y.; Zhang, S. Association of single nucleotide polymorphisms of Axis inhibitor-2 gene rs224030, rs8081536, rs9913621 with Hirschsprung disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2008, 25, 697–700. (In Chinese) [Google Scholar]
- Zhu, M.-J.; Ma, X.-Y.; Ding, P.-C.; Tang, H.-F.; Peng, R.; Lu, L.; Li, P.-Q.; Qiao, B.; Yang, X.-Y.; Zheng, Y.-F.; et al. Novel mutations of AXIN2 identified in a Chinese Congenital Heart Disease Cohort. J. Hum. Genet. 2019, 64, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.; Manlhiot, C.; Naik, S.; Rosenberg, H.; Smythe, J.; Lougheed, J.; Mondal, T.; Chitayat, D.; McCrindle, B.W.; Mital, S. Impact of Prenatal Risk Factors on Congenital Heart Disease in the Current Era. J. Am. Hear. Assoc. 2013, 2, e000064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variants | Gene Models | Genotypes | Controls (%), n = 111 | CHD Cases (%), n = 103 | OR Crude a (95% CI) | OR Adjusted b (95% CI) | ASD Cases (%), n = 72 | OR Crude a (95% CI) | OR Adjusted b (95% CI) |
---|---|---|---|---|---|---|---|---|---|
AXIN1rs1805105 | Codominant | TT | 14 (12.6) | 15 (14.6) | 1.00 | 1.00 | 11 (15.3) | 1.00 | 1.00 |
TC | 59 (53.2) | 63 (61.2) | 1.00 (0.44–2.24) | 1.16 (0.50–2.68) | 46 (63.9) | 0.99 (0.41–2.39) | 1.15 (0.46–2.90) | ||
CC | 38 (34.2) | 25 (24.3) | 0.61 (0.25–1.49) | 0.66 (0.27–1.64) | 15 (20.8) | 0.50 (0.19–1.35) | 0.54 (0.19–1.51) | ||
Dominant | TT | 14 (12.6) | 15 (14.6) | 1.00 | 1.00 | 11 (15.3) | 1.00 | 1.00 | |
TC + CC | 97 (87.4) | 88 (58.4) | 0.85 (0.39–1.85) | 0.95 (0.42–2.13) | 61 (84.7) | 0.80 (0.34–1.88) | 0.90 (0.37–2.19) | ||
Recessive | TT + TC | 73 (65.8) | 78 (75.7) | 1.00 | 1.00 | 57 (79.2) | 1.00 | 1.00 | |
CC | 38 (34.2) | 25 (24.3) | 0.62 (0.0.34–1.12) | 0.59 (0.0.32–1.09) | 15 (20.8) | 0.51 (0.25–1.01) | 0.48 (0.24–0.99) | ||
Overdominant | TT + CC | 52 (46.8) | 40 (38.8) | 1.00 | 1.00 | 26 (36.1) | 1.00 | 1.00 | |
TC | 59 (53.2) | 63 (61.2) | 1.39 (0.81–2.39) | 1.53 (0.87–2.70) | 46 (63.9) | 1.56 (0.85–2.87) | 1.73 (0.92–3.28) | ||
AXIN1rs12921862 | Codominant | CC | 64 (57.7) | 68 (66.0) | 1.00 | 1.00 | 47 (65.3) | 1.00 | 1.00 |
CA | 45 (40.5) | 31 (30.1) | 0.65 (0.37–1.15) | 0.62 (0.35–1.12) | 24(33.3) | 0.73 (0.39–1.35) | 0.68 (0.35–1.29) | ||
AA | 2 (1.8) | 4 (3.9) | 1.88 (0.33–10.63) | 1.68 (0.29–9.83) | 1 (1.4) | 0.68 (0.06–7.73) | 0.63 (0.05–7.95) | ||
Dominant | CC | 64 (57.7) | 68 (66.0) | 1.00 | 1.00 | 47 (65.3) | 1.00 | 1.00 | |
CA + AA | 47 (42.3) | 35 (34.0) | 0.70 (0.40–1.22) | 0.67 (0.38–1.19) | 25 (34.7) | 0.72 (0.39–1.34) | 0.67 (0.36–1.28) | ||
Recessive | CC + CA | 119 (98.2) | 99 (96.1) | 1.00 | 1.00 | 71 (98.6) | 1.00 | 1.00 | |
AA | 2 (1.8) | 4 (3.9) | 2.20 (0.39–12.29) | 2.00 (0.35–11.54) | 1 (1.4) | 0.77 (0.07–8.62) | 0.73 (0.06–9.06) | ||
Overdominant | CC + AA | 66 (59.5) | 72 (69.9) | 1.00 | 1.00 | 48 (66.7) | 1.00 | 1.00 | |
CA | 45 (40.5) | 31 (30.1) | 0.63 (0.36–1.11) | 0.61 (0.34–1.09) | 24 (33.3) | 0.73 (0.39–1.36) | 0.68(0.36–1.30) | ||
AXIN1rs370681 | Codominant | CC | 7 (6.3) | 20 (19.4) | 1.00 | 1.00 | 16 (22.2) | 1.00 | 1.00 |
CT | 49 (44.1) | 61 (59.2) | 0.44 (0.17–1.11) | 0.43 (0.16–1.14) | 44 (61.1) | 0.39 (0.15–1.04) | 0.37 (0.13–1.03) | ||
TT | 55 (49.5) | 22 (21.4) | 0.14 (0.05–0.38) | 0.13 (0.05–0.37) | 12 (16.7) | 0.10 (0.03–0.28) | 0.09 (0.03–0.27) | ||
Dominant | CC | 7 (6.3) | 20 (19.4) | 1.00 | 1.00 | 16 (22.2) | 1.00 | 1.00 | |
CT + TT | 104 (93.7) | 83 (80.6) | 0.28 (0.11–0.69) | 0.28 (0.11–0.72) | 57 (77.8) | 0.24 (0.09–0.61) | 0.22 (0.08–0.60) | ||
Recessive | CC + CT | 56 (50.5) | 81 (78.6) | 1.00 | 1.00 | 60 (83.3) | 1.00 | 1.00 | |
TT | 55 (49.5) | 22 (21.4) | 0.28 (0.15–0.50) | 0.27 (0.14–0.49) | 12 (16.7) | 0.20 (0.10–0.42) | 0.19 (0.09–0.41) | ||
Overdominant | CC + TT | 62 (55.9) | 42 (40.8) | 1.00 | 1.00 | 28 (38.9) | 1.00 | 1.00 | |
CT | 49 (44.1) | 61 (59.2) | 1.84 (1.07–3.16) | 1.90 (1.08–3.32) | 44 (61.1) | 1.99 (1.09–3.64) | 2.02 (1.08–3.77) | ||
AXIN2rs2240308 | Codominant | GG | 34(30.6) | 18 (17.5) | 1.00 | 1.00 | 11 (15.3) | 1.00 | 1.00 |
GA | 55 (49.5) | 60 (58.3) | 2.06 (1.05-4.06) | 2.00 (1.00–4.00) | 41 (56.9) | 2.30 (1.04–5.08) | 2.22 (0.99–5.01) | ||
AA | 22 (19.8) | 25 (24.3) | 2.15 (0.96–4.82) | 2.04 (0.90–4.65) | 20 (27.8) | 2.81 (1.13–6.98) | 2.69 (1.06–6.85) | ||
Dominant | GG | 34 (30.6) | 18 (17.5) | 1.00 | 1.00 | 11 (15.3) | 1.00 | 1.00 | |
GA + AA | 77 (69.4) | 85 (82.5) | 2.09 (1.09–3.99) | 2.01 (1.04–3.90) | 61 (84.7) | 2.45 (1.15–5.23) | 2.36 (1.08–5.14) | ||
Recessive | GG + GA | 89 (80.2) | 78 (75.7) | 1.00 | 1.00 | 52 (72.2) | 1.00 | 1.00 | |
AA | 22 (19.8) | 25 (24.3) | 1.30 (0.68–2.48) | 1.26 (0.65–2.45) | 20 (27.8) | 1.56 (0.78–3.12) | 1.54 (0.75–3.15) | ||
Overdominant | GG + AA | 56 (50.5) | 43 (41.7) | 1.00 | 1.00 | 31(43.1) | 1.00 | 1.00 | |
GA | 55 (49.5) | 60 (58.3) | 1.42 (0.83–2.44) | 1.41 (0.81–2.45) | 41 (56.9) | 1.35 (0.74–2.45) | 1.32 (0.71–2.46) |
Variants | Variant Alleles | Overall Variant Allele Frequency/European Allele Frequency/East Asian Allele Frequency (% gnomAD v2.1.1) a | Variant Allele Frequency in Control Group (95% CI) | Variant Allele Frequency in CHD Group (95% CI) | OR Crude b (95% CI) | Variant Allele Frequency in ASD Group (95% CI) | OR Crude b (95% CI) |
---|---|---|---|---|---|---|---|
AXIN1 rs1805105 | C allele | 61.5/64.2/29.9 | 60.8 (54.1–67.3) | 54.9(47.8–61.8) | 0.78 (0.53–1.15) | 52.8 (44.3–61.1) | 0.72 (0.47–1.10) |
AXIN1 rs12921862 | A allele | 17.4/18.3/20.4 | 22.1 (16.8–28.1) | 18.9(13.8–24.9) | 0.83 (0.52–1.32) | 18.1 (12.1–25.3) | 0.36 (0.21–0.62) |
AXIN1 rs370681 | T allele | 48.2/54.3/30.6 | 71.6 (65.2–77.5) | 50.9(43.9–57.9) | 0.41 (0.28–0.61) | 47.2 (38.9–55.7) | 0.36 (0.23–0.55) |
AXIN2 rs2240308 | A allele | 46.6/52.5/32.6 | 44.6 (37.9–51.4) | 53.4 (46.3–60.4) | 1.42 (0.97–2.08) | 56.3 (47.7–64.5) | 1.60 (1.05–2.44) |
Haplotypes rs12921862 rs370681 rs1805105 | Hap-Freq in Control Group | Hap-Freq in CHD Patients | Hap-Score a | pb | OR Crude c, 95% CI (Lower-Upper Limit) | OR Adjusted d, 95% CI (Lower-Upper Limit) |
---|---|---|---|---|---|---|
Global test of association for additive model with covariate: Statistics = 21.22, df = 6, Global p-value = 0.0016 | ||||||
C-T-C | 0.339 | 0.258 | −2.226 | 0.0260 | 1.00 (Reference) | 1.00 (Reference) |
C-T-T | 0.207 | 0.134 | −1.958 | 0.0502 | 1.21 (0.54–2.73) | 1.18 (0.52–2.71) |
A-T-C | 0.142 | 0.118 | −1.807 | 0.0708 | 0.96 (0.41–2.26) | 0.98 (0.41–2.35) |
A-T-T | 0.028 | 0.000 | −1.293 | 0.1962 | 0.69 (0.12–4.04) | 0.73 (0.12–4.67) |
A-C-C | 0.051 | 0.052 | 1.365 | 0.1722 | 2.63 (0.87–7.91) | 2.59 (0.84–7.97) |
C-C-C | 0.076 | 0.126 | 2.247 | 0.0246 | 3.49 (1.12–10.87) | 3.84 (1.16–12.67) |
C-C-T | 0.157 | 0.293 | 3.448 | 0.0006 | 2.88 (1.51–5.51) | 2.96 (1.52–5.77) |
A-C-T | 0.000 | 0.020 | NA | NA | NA | NA |
Haplotypes rs12921862 rs370681 rs1805105 | Hap-Freq in Control Group | Hap-Freq in ASD Patients | Hap-Score a | pb | OR Crude c, 95% CI (Lower-Upper Limit) | OR Adjusted d, 95% CI (Lower-Upper Limit) |
---|---|---|---|---|---|---|
Global test of association for additive model with covariate: Statistics = 25.80, df = 6, Global p-value = 0.0002 | ||||||
C-T-C | 0.339 | 0.236 | −2.641 | 0.0083 | 1.00 (Reference) | 1.00 (Reference) |
C-T-T | 0.207 | 0.121 | −1.977 | 0.0481 | 1.38 (0.53–3.61) | 1.32 (0.48–3.64) |
A-T-C | 0.142 | 0.115 | −1.759 | 0.0785 | 1.09 (0.39–3.00) | 0.98 (0.33–2.90) |
A-T-T | 0.028 | 0.000 | −1.152 | 0.2489 | 0.67 (0.07–6.43) | 0.46 (0.04–4.96) |
A-C-C | 0.051 | 0.052 | 1.431 | 0.1525 | 2.89 (0.73–11.38) | 3.05 (0.76–12.31) |
C-C-C | 0.076 | 0.125 | 2.278 | 0.0227 | 4.64 (1.20–17.96) | 4.97 (1.16–21.22) |
C-C-T | 0.157 | 0.337 | 4.062 | 0.00004 | 3.96 (1.86–8.40) | 3.90 (1.79–8.49) |
A-C-T | 0.000 | 0.014 | NA | NA | NA | NA |
Gene Polymorphisms | Genetic Model | AXIN1 rs1805105 | AXIN1 rs12921862 | AXIN1 rs370681 | AXIN2 rs2240308 |
---|---|---|---|---|---|
AXIN1 rs1805105 | Codominant | 0.281 | 0.144 | 0.669 | 0.278 |
Dominant | 0.678 | 0.048 | 0.897 | 0.189 | |
Recessive | 0.111 | 0.223 | 0.526 | 0.358 | |
Overdominant | 0.238 | 0.561 | 0.263 | 0.452 | |
AXIN1 rs12921862 | Codominant | 0.314 | 0.217 | 0.666 | 0.435 |
Dominant | 0.893 | 0.210 | 0.570 | 0.522 | |
Recessive | 0.241 | 0.359 | 0.181 | 0.892 | |
Overdominant | 0.237 | 0.111 | 0.445 | 0.941 | |
AXIN1 rs370681 | Codominant | 0.544 | 0.253 | <0.001 | 0.888 |
Dominant | 0.619 | 0.278 | 0.003 | 0.915 | |
Recessive | 0.280 | 0.229 | <0.001 | 0.425 | |
Overdominant | 0.307 | 0.106 | 0.027 | 0.612 | |
AXIN2 rs2240308 | Codominant | 0.330 | 0.376 | 0.078 | 0.080 |
Dominant | 0.729 | 0.380 | 0.031 | 0.024 | |
Recessive | 0.402 | 0.492 | 0.347 | 0.434 | |
Overdominant | 0.258 | 0.255 | 0.225 | 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crauciuc, G.A.; Iancu, M.; Olah, P.; Tripon, F.; Anciuc, M.; Gozar, L.; Togănel, R.; Bănescu, C. Significant Associations between AXIN1 rs1805105, rs12921862, rs370681 Haplotypes and Variant Genotypes of AXIN2 rs2240308 with Risk of Congenital Heart Defects. Int. J. Environ. Res. Public Health 2020, 17, 7671. https://doi.org/10.3390/ijerph17207671
Crauciuc GA, Iancu M, Olah P, Tripon F, Anciuc M, Gozar L, Togănel R, Bănescu C. Significant Associations between AXIN1 rs1805105, rs12921862, rs370681 Haplotypes and Variant Genotypes of AXIN2 rs2240308 with Risk of Congenital Heart Defects. International Journal of Environmental Research and Public Health. 2020; 17(20):7671. https://doi.org/10.3390/ijerph17207671
Chicago/Turabian StyleCrauciuc, George Andrei, Mihaela Iancu, Peter Olah, Florin Tripon, Mădălina Anciuc, Liliana Gozar, Rodica Togănel, and Claudia Bănescu. 2020. "Significant Associations between AXIN1 rs1805105, rs12921862, rs370681 Haplotypes and Variant Genotypes of AXIN2 rs2240308 with Risk of Congenital Heart Defects" International Journal of Environmental Research and Public Health 17, no. 20: 7671. https://doi.org/10.3390/ijerph17207671
APA StyleCrauciuc, G. A., Iancu, M., Olah, P., Tripon, F., Anciuc, M., Gozar, L., Togănel, R., & Bănescu, C. (2020). Significant Associations between AXIN1 rs1805105, rs12921862, rs370681 Haplotypes and Variant Genotypes of AXIN2 rs2240308 with Risk of Congenital Heart Defects. International Journal of Environmental Research and Public Health, 17(20), 7671. https://doi.org/10.3390/ijerph17207671