Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Main Test Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chamari, K.; Moussa-Chamari, I.; Boussaïdi, L.; Hachana, Y.; Kaouech, F.; Wisløff, U. Appropriate interpretation of aerobic capacity: Allometric scaling in adult and young soccer players. Br. J. Sports Med. 2005, 39, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donoghue, P.G.; Boyd, M.; Lawlor, J.; Bleakley, E.W. Time-motion analysis of elite, semi-professional and amateur soccer competition. J. Hum. Mov. Stud. 2001, 41, 1–12. [Google Scholar]
- Tønnessen, E.; Hem, E.; Leirstein, S.; Haugen, T.; Seiler, S. Maximal aerobic power characteristics of male professional soccer players, 1989–2012. Int. J. Sports Physiol. Perform. 2013, 8, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Rodas, G.; Kemi, O.J.; Hoff, J. Strength and Endurance in Elite Football Players. Int. J. Sports Med. 2011, 32, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J. Physiological Demands of Football. Sports Sci. Exch. 2014, 27, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in Acceleration and Deceleration Capacity Throughout Professional Soccer Match-Play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- Krustrup, P.; Bangsbo, J. Physiological demands of top-class soccer refereeing in relation to physical capacity: Effect of intense intermittent exercise training. J. Sports Sci. 2001, 19, 881–891. [Google Scholar] [CrossRef]
- Balsom, P.D.; Ekblom, B.; Sjödin, B. Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta Physiol. Scand. 1994, 150, 455–456. [Google Scholar] [CrossRef]
- Lattier, G.; Millet, G.Y.; Martin, A.; Martin, V. Fatigue and Recovery After High-Intensity Exercise Part II: Recovery Interventions. Int. J. Sports Med. 2004, 25, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Idrizović, K.; Raičković, N. The correlation between aerobic power, acceleration, repeated-sprint and speed endurance in elite female football. Res. Phys. Educ. Sport Health 2013, 2, 51–56. [Google Scholar]
- Nilsson, J.; Cardinale, D. Running Economy and Blood Lactate Accumulation in Elite Football Players with High and Low Maximal Aerobic Power. LASE J. Sport Sci. 2015, 6, 44–51. [Google Scholar] [CrossRef] [Green Version]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.M.; Krustrup, P.; Gunnarsson, T.P.; Kiilerich, K.; Nybo, L.; Bangsbo, J. VO2 Kinetics and Performance in Soccer Players after Intense Training and Inactivity. Med. Sci. Sport. Exerc. 2011, 43, 1716–1724. [Google Scholar] [CrossRef]
- Da Silva, J.F.; Guglielmo, L.G.A.; Bishop, D. Relationship Between Different Measures of Aerobic Fitness and Repeated-Sprint Ability in Elite Soccer Players. J. Strength Cond. Res. 2010, 24, 2115–2121. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Castagna, C.; Reilly, T.; Sassi, A.; Iaia, F.M.; Rampinini, E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int. J. Sports Med. 2006, 27, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Ziogas, G.G.; Patras, K.N.; Stergiou, N.; Georgoulis, A.D. Velocity at lactate threshold and running economy must also be considered along with maximal oxygen uptake when testing elite soccer players during preseason. J. Strength Cond. Res. 2011, 25, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Stanula, A.; Gabrys, T.; Szmatlan-Gabrys, U.; Roczniok, R.; Maszczyk, A.; Pietraszewski, P. Calculating lactate anaerobic thresholds in sports involving different endurance preparation. J. Exerc. Sci. Fit. 2013, 11, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Burgess, D.J.; Naughton, G.; Norton, K.I. Profile of movement demands of national football players in Australia. J. Sci. Med. Sport 2006, 9, 334–341. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Hisdal, J.; Seiler, S. The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 2014, 9, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the english premier league. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, M.C.; Baumgart, C.; Freiwald, J.; Hoppe, M.W. Nonlinear sprint performance differentiates professional from young soccer players. J. Sports Med. Phys. Fit. 2018, 58, 1204–1210. [Google Scholar] [CrossRef]
- Granero-Gil, P.; Bastida-Castillo, A.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; de la Sánchez, E.C.; Pino-Ortega, J. Influence of contextual variables in the changes of direction and centripetal force generated during an elite-level soccer team season. Int. J. Environ. Res. Public Health 2020, 17, 967. [Google Scholar] [CrossRef] [Green Version]
- Caldbeck, P. Contextual Sprinting in Premier League Football; John Moores University: Liverpool, UK, 2019. [Google Scholar]
- Verheijen, R. The Complete Handbook of Conditioning for Soccer; Redswain Videos and Books: Spring City, PA, USA, 1998; ISBN 1890946052. [Google Scholar]
- Turner, A.; Walker, S.; Stembridge, M.; Coneyworth, P.; Reed, G.; Birdsey, L.; Barter, P.; Moody, J. A testing battery for the assessment of fitness in soccer players. Strength Cond. J. 2011, 33, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Paradisis, G.P.; Zacharogiannis, E.; Mandila, D.; Smirtiotou, A.; Argeitaki, P.; Cooke, C.B. Multi-stage 20-m shuttle run fitness test, maximal oxygen uptake and velocity at maximal oxygen uptake. J. Hum. Kinet. 2014, 41, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Higino, W.P.; Sorroche, A.D.S.; De Mattos Falqueiro, P.G.; Suzuki Lima, Y.C.; Higa, C.L. Determination of Aerobic Performance in Youth Soccer Players: Effect of Direct and Indirect Methods. J. Hum. Kinet. 2017, 56, 109–118. [Google Scholar] [CrossRef]
- Doyon, K.H.; Perrey, S.; Abe, D.; Hughson, R.L. Field testing of VO2peak in cross-country skiers with portable breath-by-breath system. Can. J. Appl. Physiol. 2001, 26, 1–11. [Google Scholar] [CrossRef]
- Hausswirth, C.; Bigard, A.; Le Chevalier, J. The Cosmed K4 Telemetry System as an Accurate Device for Oxygen Uptake Measurements during Exercise. Int. J. Sports Med. 1997, 28, 449–453. [Google Scholar] [CrossRef]
- Oliver, J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport 2009, 12, 20–23. [Google Scholar] [CrossRef]
- Alexandre, D.; Da Silva, C.; Hill-Haas, S.; Wong, D.; Natali, A.; De Lima, J.; Filho, M.; Marins, J.; Garcia, E.; Chamari, K. Heart rate monitoring in soccer: Interest and limits during competitive match play and training, practical application. J. Strength Cond. Res. 2012, 26, 2890–2906. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, B.P.; Peters, D.M. Seasonal variation in physiological fitness of a semiprofessional soccer team. J. Strength Cond. Res. 2009, 23, 1370–1377. [Google Scholar] [CrossRef]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slettaløkken, G.; Rønnestad, B.R. High-Intensity Interval Training Every Second Week Maintains V[Combining Dot Above]O2max in Soccer Players During Off-Season. J. Strength Cond. Res. 2014, 28, 1946–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmento, H.; Marcelino, R.; Anguera, M.T.; CampaniÇo, J.; Matos, N.; LeitÃo, J.C. Match analysis in football: A systematic review. J. Sports Sci. 2014, 32, 1831–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors affecting running economy in trained distance runners. Sport. Med. 2004, 34, 465–485. [Google Scholar] [CrossRef] [PubMed]
- Burgess, T.L.; Lambert, M.I. The effects of training, muscle damage and fatigue on running economy: Review article. Int. Sport. J. 2010, 11, 363–379. [Google Scholar]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sport. Med. Open 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dolci, F.; Hart, N.H.; Kilding, A.; Chivers, P.; Piggott, B.; Spiteri, T. Movement Economy in Soccer: Current Data and Limitations. Sports 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Haydar, B.; Hader, K.; Ufland, P.; Ahmaidi, S. Assessing running economy during field running with changes of direction: Application to 20 m shuttle runs. Int. J. Sports Physiol. Perform. 2011, 6, 380–395. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Buchheit, M.; Bishop, D.; Haydar, B.; Nakamura, F.Y.; Ahmaidi, S. Physiological responses to shuttle repeated-sprint running. Int. J. Sports Med. 2010, 31, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Dellal, A.; Keller, D.; Carling, C.; Chaouachi, A.; Wong, D.P.; Chamari, K. Physiologic effects of directional changes in intermittent exercise in soccer players. J. Strength Cond. Res. 2010, 24, 3219–3226. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Di Prampero, P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Di Prampero, P.E.; Fusi, S.; Sepulcri, L.; Morin, J.B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol. 2005, 208, 2809–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sermaxhaj, S.; Telai, B. Influence of some anthropometric variables and the specific motoric on the success of the Football players of First Junior League of Kosovo. In Proceedings of the Research in Physical Education, Sport and Health, Ohrid, Macedonia, 30–31 May 2014; pp. 111–115. [Google Scholar]
- Tomlin, D.L.; Wenger, H. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fransson, D.; Nielsen, T.S.; Olsson, K.; Christensson, T.; Bradley, P.S.; Fatouros, I.G.; Krustrup, P.; Nordsborg, N.B.; Mohr, M. Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: Speed endurance runs versus small-sided game training. Eur. J. Appl. Physiol. 2018, 118, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Santos-Silva, P.R.; Pedrinelli, A.; Greve, J.M.D. Blood lactate and oxygen consumption in soccer players: Comparison between different positions on the field. Med. Express 2017, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform. 2007, 2, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef]
- Buchheit, M.; Lepretre, P.M.; Behaegel, A.L.; Millet, G.P.; Cuvelier, G.; Ahmaidi, S. Cardiorespiratory responses during running and sport-specific exercises in handball players. J. Sci. Med. Sport 2009, 12, 399–405. [Google Scholar] [CrossRef]
- Billat, L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. Sports Med. 2001, 31, 75–90. [Google Scholar] [CrossRef]
- Midgley, A.; Mc Naughton, L. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J. Sports Med. Phys. Fit. 2006, 41, 1–14. [Google Scholar]
- Midgley, A.W.; McNaughton, L.R.; Wilkinson, M. Is there an Optimal Training Intensity for Enhancing the Maximal Oxygen Uptake of Distance Runners? Sports Med. 2006, 36, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, M.; Fiorenza, M.; Lund, A.; Christensen, M.; RØmer, T.; Piil, P.; Hostrup, M.; Christensen, P.M.; Holbek, S.; Ravnholt, T.; et al. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med. Sci. Sports Exerc. 2016, 48, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability part I: Factors contributing to fatigue. Sport. Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Divert, C.; Mornieux, G.; Freychat, P.; Baly, L.; Mayer, F.; Belli, A. Barefoot-shod running differences: Shoe or mass effect? Int. J. Sports Med. 2008, 29, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Palazzi, D.; Buchheit, M. Change of direction speed in soccer: How much braking is enough? Kinesiology 2015, 47, 67–74. [Google Scholar]
- Zamparo, P.; Pavei, G.; Nardello, F.; Bartolini, D.; Monte, A.; Minetti, A.E. Mechanical work and efficiency of 5 + 5 m shuttle running. Eur. J. Appl. Physiol. 2016, 116, 1911–1919. [Google Scholar] [CrossRef]
- Shaw, A.J.; Ingham, S.A.; Folland, J.P. The valid measurement of running economy in runners. Med. Sci. Sports Exerc. 2014, 46, 1968–1973. [Google Scholar] [CrossRef]
Variable | Mean ± SD | Range |
---|---|---|
VO2max (mL/kg/min) | 53.5 ± 2.4 | 47.0–59.7 |
RF (b/min) | 59.5 ± 2.8 | 48.3–67.4 |
VE (L/min) | 128.8 ± 9.4 | 100.5–147.3 |
HR (bpm) | 189.1 ± 3.2 | 177.0–199.0 |
Oxygen pulse (mL/beat) | 21.4 ± 1.4 | 17.3–25.7 |
Repetition | Set 1 (sec) | Set 2 (sec) | Differences (%) | p-Value |
---|---|---|---|---|
1 | 14.49 ± 0.81 | 14.64 ± 1.04 | 0.16 (1.0) | 0.187 |
2 | 14.89 ± 0.83 | 15.00 ± 1.04 | 0.12 (0.7) | 0.338 |
3 | 15.14 ± 0.83 | 15.21 ± 0.94 | 0.07 (0.5) | 0.607 |
4 | 15.33 ± 0.89 | 15.42 ± 1.00 | 0.09 (0.6) | 0.540 |
5 | 15.45 ± 0.88 | 15.63 ± 1.08 | 0.18 (1.2) | 0.165 |
6 | 15.35 ± 0.91 | 15.76 ± 1.05 | 0.41 (2.6) | 0.001 |
Total time | 90.63 ± 3.71 | 91.65 ± 4.24 | 1.02 (1.1) | 0.127 |
Repetition | Set 1 (sec) | Set 2 (sec) | Differences (%) | p-Value |
---|---|---|---|---|
1 | 7.55 ± 0.09 | 7.59 ± 0.14 | 0.04 (0.5) | 0.019 |
2 | 7.74 ± 0.11 | 7.77 ± 0.12 | 0.03 (0.4) | 0.169 |
3 | 7.87 ± 0.17 | 7.88 ± 0.16 | 0.01 (0.1) | 0.494 |
4 | 7.90 ± 0.11 | 7.91 ± 0.13 | 0.01 (0.1) | 0.815 |
5 | 7.89 ± 0.13 | 7.98 ± 0.13 | 0.10 (1.1) | <0.001 |
6 | 7.86 ± 0.09 | 8.07 ± 0.17 | 0.21 (2.7) | <0.001 |
Total time | 46.8 ± 0.56 | 47.2 ± 0.66 | 0.39 (0.8) | <0.001 |
Field Tests | Blood Lactate Concentrations (mmol/L) | Differences (%) | p-Value | ||
---|---|---|---|---|---|
Rest | Set 1 | Set 2 | |||
Ajax Shuttle Test | 1.38 ± 0.46 | 14.47 ± 1.86 | 15.00 ± 1.85 | 0.52 (3.7) | 0.410 |
Curved Sprint Test | 1.43 ± 0.51 | 8.17 ± 1.32 | 9.78 ± 1.35 | 1.60 (19.7) | <0.001 |
Differences (%) | –0.05 (–3.6%) | 6.3 (43.5%) | 5.22 (34.8%) | ||
p-value | n.s. | <0.001 | <0.001 |
Test/Parameter | Set 1 | Set 2 | Differences (%) | p-Value |
---|---|---|---|---|
PDI in AST | 4.32 ± 1.43 | 7.95 ± 3.24 | –3.63 (–45.7) | <0.001 |
FI in AST | 6.25 ± 2.57 | 7.81 ± 3.37 | –1.56 (–20.0) | 0.062 |
PDI in CST | 3.31 ± 0.96 | 3.71 ± 1.02 | –0.40 (–12.1) | 0.014 |
FI in CST | 1.65 ± 0.70 | 6.46 ± 2.08 | –4.81 (–291.5) | <0.001 |
Physiological Parameters | Repetition in Series in Ajax Shuttle Test Set 1 | Repetition in Series in Ajax Shuttle Test Set 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
VE (L/min) | 0.29 | 0.12 | 0.17 | 0.10 | 0.17 | 0.10 | 0.38 * | 0.16 | 0.19 | 0.16 | 0.14 | 0.14 |
VO2 (mL/min) | 0.35 * | 0.18 | 0.17 | 0.28 | 0.25 | 0.34 | 0.44 † | 0.03 | 0.09 | 0.10 | 0.31 * | −0.01 |
RER (VCO2/VO2) | −0.03 | −0.17 | −0.35 * | −0.32 * | −0.32 * | −0.38 * | −0.16 | −0.16 | −0.05 | −0.24 | −0.21 | −0.13 |
HR (bpm) | 0.32 * | 0.30 | 0.22 | 0.29 | 0.29 | 0.17 | 0.30 | 0.14 | 0.21 | 0.25 | 0.22 | 0.11 |
VO2/HR (mL/bpm) | 0.27 | 0.10 | 0.12 | 0.20 | 0.17 | 0.32 * | 0.36 * | −0.02 | 0.02 | 0.03 | 0.27 | −0.05 |
Physiological Parameters | Repetition in Series in Curved Sprint Test 1 | Repetition in Series in Curved Sprint Test 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
VE (L/min) | 0.49 † | 0.27 | 0.33 * | 0.41 † | 0.33 * | 0.22 | 0.44 † | 0.43 † | 0.41 † | 0.44 † | 0.47 † | 0.35 * |
VO2 (mL/min) | 0.44 † | 0.03 | 0.10 | 0.11 | 0.31 * | 0.00 | 0.35 * | 0.19 | 0.18 | 0.28 | 0.25 | 0.35 * |
RER (VCO2/VO2) | −0.14 | −0.19 | −0.04 | −0.17 | −0.08 | −0.19 | 0.09 | −0.01 | −0.31 * | −0.12 | −0.18 | −0.44 † |
HR (bpm) | 0.67 ‡ | 0.44 † | 0.41 † | 0.50 † | 0.30 | 0.42 † | 0.37 * | 0.34 * | 0.59 ‡ | 0.44 † | 0.49 † | 0.65 ‡ |
VO2/HR (mL/bpm) | 0.34 * | −0.07 | 0.01 | 0.01 | 0.29 | −0.11 | 0.32 * | 0.14 | 0.07 | 0.22 | 0.18 | 0.24 |
Physiological Parameters | Ajax Shuttle Test | Curved Sprint Test | ||||||
---|---|---|---|---|---|---|---|---|
PDI1 | PDI2 | FI1 | FI2 | PDI1 | PDI2 | FI1 | FI2 | |
VE (L/min) | 0.02 | 0.04 | 0.10 | 0.08 | −0.08 | 0.12 | −0.19 | 0.13 |
VO2 (mL/min) | −0.02 | −0.10 | −0.01 | 0.08 | −0.30 | 0.12 | −0.08 | 0.30 |
RER (VCO2/VO2) | 0.23 | −0.13 | 0.11 | −0.28 | 0.00 | −0.15 | 0.07 | −0.23 |
HR (bpm) | −0.17 | 0.13 | −0.02 | 0.28 | −0.15 | 0.20 | −0.22 | 0.34 * |
VO2/HR (mL/bpm) | 0.02 | −0.14 | 0.00 | 0.02 | −0.31 * | 0.08 | −0.04 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrys, T.; Stanula, A.; Szmatlan-Gabrys, U.; Garnys, M.; Charvát, L.; Gupta, S. Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play. Int. J. Environ. Res. Public Health 2020, 17, 7745. https://doi.org/10.3390/ijerph17217745
Gabrys T, Stanula A, Szmatlan-Gabrys U, Garnys M, Charvát L, Gupta S. Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play. International Journal of Environmental Research and Public Health. 2020; 17(21):7745. https://doi.org/10.3390/ijerph17217745
Chicago/Turabian StyleGabrys, Tomasz, Arkadiusz Stanula, Urszula Szmatlan-Gabrys, Michal Garnys, Luboš Charvát, and Subir Gupta. 2020. "Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play" International Journal of Environmental Research and Public Health 17, no. 21: 7745. https://doi.org/10.3390/ijerph17217745
APA StyleGabrys, T., Stanula, A., Szmatlan-Gabrys, U., Garnys, M., Charvát, L., & Gupta, S. (2020). Metabolic and Cardiorespiratory Responses of Semiprofessional Football Players in Repeated Ajax Shuttle Tests and Curved Sprint Tests, and Their Relationship with Football Match Play. International Journal of Environmental Research and Public Health, 17(21), 7745. https://doi.org/10.3390/ijerph17217745