Validation of the Multidimensional Fatigue Inventory with Coronary Artery Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Procedure
2.3. Measures
2.3.1. Multidimensional Fatigue Inventory, MFI-20
2.3.2. 36-Item Short Form Medical Outcome Questionnaire, SF-36
2.3.3. Exercise Capacity Testing, EC
2.3.4. Hospital Anxiety and Depression Scale, HADS
2.3.5. Spielberger State-Trait Anxiety Inventory, STAI
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Reliability of MFI 20-Items, MFI-20
3.3. Convergent Validity: Relationships of the Subscales of the MFI-20 to Mental Distress Factors, Functional Impairment, and Exercise Capacity
3.4. Floor and Ceiling Effects
3.5. Factor Analysis of the MFI-20
3.6. Factor Analysis of the 16-Item MFI, MFI-16
3.7. Reliability of MFI-16
3.8. Convergent Validity: Relationships of the Factors of the MFI-16 to Mental Distress Factors, HRQOL, and Exercise Capacity
4. Discussion
4.1. Study Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Mallah, M.H.; Sakr, S.; Al-Qunaibet, A. Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr. Atheroscler. Rep. 2018, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Price, A.E. Heart disease and work. Heart 2004, 90, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaronson, L.S.; Teel, C.S.; Cassmeyer, V.; Neuberger, G.B.; Pallikkathayil, L.; Pierce, J.; Press, A.N.; Williams, P.D.; Wingate, A. Defining and measuring fatigue. Image J. Nurs. Scholarsh. 1999, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ream, E.; Richardson, A. Fatigue: A concept analysis. Int. J. Nurs. Stud. 1996, 33, 519–529. [Google Scholar] [CrossRef]
- Smets, E.; Garssen, B.; Bonke, B.D.; de Haes, J. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A. The clinical epidemiology of fatigue in newly diagnosed heart failure. BMC Cardiovasc. Disord. 2017, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Bunevicius, A.; Stankus, A.; Brozaitiene, J.; Girdler, S.S.; Bunevicius, R. Relationship of fatigue and exercise capacity with emotional and physical state in patients with coronary artery disease admitted for rehabilitation program. Am. Heart J. 2011, 162, 310–316. [Google Scholar] [CrossRef]
- Burkauskas, J.; Bunevicius, A.; Brozaitiene, J.; Neverauskas, J.; Fineberg, N.A.; Wellsted, D.; Bunevicius, R.; Mickuviene, N. Exploring cognitive concomitants of mental fatigue in patients with coronary artery disease. Neuropsychobiology 2017, 76, 151–160. [Google Scholar] [CrossRef]
- Staniute, M.; Bunevicius, A.; Brozaitiene, J.; Bunevicius, R. Relationship of health-related quality of life with fatigue and exercise capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Nurs. J. Work. Group Cardiovasc. Nurs. Eur. Soc. Cardiol. 2014, 13, 338–344. [Google Scholar] [CrossRef]
- Van Geffen, M.E.; Ter Hoeve, N.; Sunamura, M.; Stam, H.J.; van Domburg, R.T.; van den Berg-Emons, R.J. Fatigue during and after cardiac rehabilitation. J. Rehabil. Med. 2015, 47, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Xiaerfuding, X.; Ning, L.; Lian, Y.; Jiang, Y.; Liu, J.; Ng, T.B. Effect of job strain on job burnout, mental fatigue and chronic diseases among civil servants in the xinjiang uygur autonomous region of China. Int. J. Environ. Res. Public Health 2017, 14, 872. [Google Scholar] [CrossRef] [Green Version]
- Zègre-Hemsey, J.K.; Burke, L.A.; de Von, H.A. Patient-reported symptoms improve prediction of acute coronary syndrome in the emergency department. Res. Nurs. Health 2018, 41, 459–468. [Google Scholar] [CrossRef]
- Irvine, J.; Basinski, A.; Baker, B.; Jandciu, S.; Paquette, M.; Cairns, J.; Connolly, S.; Roberts, R.; Gent, M.; Dorian, P.; et al. Depression and risk of sudden cardiac death after acute myocardial infarction: Testing for the confounding effects of fatigue. Psychosom. Med. 1999, 61, 729–737. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, J.C.; Crane, P.B. Challenging the rules: Women’s prodromal and acute symptoms of myocardial infarction. Res. Nurs. Health 2000, 23, 135–146. [Google Scholar] [CrossRef]
- Alsén, P.; Brink, E.; Brändström, Y.; Karlson, B.W.; Persson, L.O. Fatigue after myocardial infarction: Relationships with indices of emotional distress, and sociodemographic and clinical variables. Int. J. Nurs. Pract. 2010, 16, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Cuesta, S.; Bresó, A.; Saez, C.; García-Gómez, J.M. Robustness and findings of a web-based system for depression assessment in a university work context. Int. J. Environ. Res. Public Health 2019, 16, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunevicius, A.; Brozaitiene, J.; Stankus, A.; Bunevicius, R. Specific fatigue-related items in self-rating depression scales do not bias an association between depression and fatigue in patients with coronary artery disease. Gen. Hos. Psychiatry 2011, 33, 527–529. [Google Scholar] [CrossRef]
- Falk, K.; Patel, H.; Swedberg, K.; Ekman, I. Fatigue in patients with chronic heart failure—A burden associated with emotional and symptom distress. Eur. J. Cardiovasc. Nurs. 2009, 8, 91–96. [Google Scholar] [CrossRef]
- Johansson, I.; Karlson, B.W.; Grankvist, G.; Brink, E. Disturbed sleep, fatigue, anxiety and depression in myocardial infarction patients. Eur. J. Cardiovasc. Nurs. 2010, 9, 175–180. [Google Scholar] [CrossRef]
- Kim, H.; Son, H. Fatigue-related factors for community-dwelling older adults with diabetes: A theory-guided multi-dimensional approach using the dynamic biopsychosocial model. Int. J. Environ. Res. Public Health 2019, 16, 4502. [Google Scholar] [CrossRef] [Green Version]
- Plach, S.K.; Heidrich, S.M.; Jeske, L. Fatigue representations in women with heart failure. Res. Nurs. Health 2006, 29, 452–464. [Google Scholar] [CrossRef]
- Eckhardt, A.L.; Devon, H.A.; Piano, M.R.; Ryan, C.J.; Zerwic, J.J. Fatigue in the presence of coronary heart disease. Nurs. Res. 2014, 63, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Fuller-Thomson, E.; Nimigon, J. Factors associated with depression among individuals with chronic fatigue syndrome: Findings from a nationally representative survey. Fam. Pract. 2008, 25, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nater, U.M.; Lin, J.M.; Maloney, E.M.; Jones, J.F.; Tian, H.; Boneva, R.S.; Raison, C.L.; Reeves, W.C.; Heim, C. Psychiatric comorbidity in persons with chronic fatigue syndrome identified from the Georgia population. Psychosom. Med. 2009, 71, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Mundo-López, A.; Ocón-Hernández, O.; San-Sebastián, A.P.; Galiano-Castillo, N.; Rodríguez-Pérez, O.; Arroyo-Luque, M.S.; Arroyo-Morales, M.; Cantarero-Villanueva, I.; Fernández-Lao, C.; Artacho-Cordón, F.; et al. Contribution of chronic fatigue to psychosocial status and quality of life in spanish women diagnosed with endometriosis. Int. J. Environ. Res. Public Health 2020, 17, 3831. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Salvago, F.; Lara-Ramos, A.; Cantarero-Villanueva, I. Chronic fatigue, physical impairments and quality of life in women with endometriosis: A case-control study. Int. J. Environ. Res. Public Health 2020, 17, 3610. [Google Scholar] [CrossRef] [PubMed]
- Al Maqbali, M.; Hughes, C.; Gracey, J.; Rankin, J.; Dunwoody, L.; Hacker, E. Quality assessment criteria: Psychometric properties of measurement tools for cancer related fatigue. Acta Oncol. 2019, 58, 1286–1297. [Google Scholar] [CrossRef]
- Shahid, A.; Shen, J.; Shapiro, C.M. Measurements of sleepiness and fatigue. J. Psychosom. Res. 2010, 69, 81–89. [Google Scholar] [CrossRef]
- Saffari, M.; Naderi, M.K.; Piper, C.N.; Koenig, H.G. Multidimensional fatigue inventory in people with hepatitis B infection. Gastroenterol. Nurs. 2017, 40, 380–392. [Google Scholar] [CrossRef]
- Baptista, R.L.R.; Biasoli, I.; Scheliga, A.; Soares, A.; Brabo, E.; Morais, J.C.; Werneck, G.L.; Spector, N. Psychometric properties of the multidimensional fatigue inventory in Brazilian Hodgkin’s lymphoma survivors. J. Pain Symptom Manag. 2012, 44, 908–915. [Google Scholar] [CrossRef]
- Lin, J.M.S.; Brimmer, D.J.; Maloney, E.M.; Nyarko, E.; BeLue, R.; Reeves, W.C. Further validation of the Multidimensional Fatigue Inventory in a US adult population sample. Popul. Health Metr. 2009, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbers, R.G.; van Wegen, E.E.H.; Verhoef, J.; Kwakkel, G. Reliability and structural validity of the Multidimensional Fatigue Inventory (MFI) in patients with idiopathic Parkinson’s disease. Parkinsonism Relat. Dis. 2012, 18, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munguía-Izquierdo, D.; Segura-Jiménez, V.; Camiletti-Moirón, D.; Pulido-Martos, M.; Alvarez-Gallardo, I.; Romero, A.; Aparicio, V.; Carbonell-Baeza, A.; Delgado-Fernández, M. Multidimensional Fatigue Inventory: Spanish adaptation and psychometric properties for fibromyalgia patients. The Al-Andalus study. Clin. Exp. Rheumatol. 2012, 30, 94–102. [Google Scholar] [PubMed]
- Hedlund, L.; Gyllensten, A.L.; Hansson, L. A psychometric study of the multidimensional fatigue inventory to assess fatigue in patients with schizophrenia spectrum disorders. Community Mental Health J. 2015, 51, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.F.; Yu, B.Y.M.; Yung, K.P.; Yeung, W.F.; Ng, T.H.; Ho, F.Y.Y. Assessment of fatigue using the Multidimensional Fatigue Inventory in patients with major depressive disorder. Compr. Psychiatry 2014, 55, 1671–1678. [Google Scholar] [CrossRef]
- Bol, Y.; Duits, A.A.; Vertommen-Mertens, C.E.R.; Hupperts, R.M.M.; Romberg-Camps, M.J.L.; Verhey, F.R.J.; Vlaeyen, J.W.S. The contribution of disease severity, depression and negative affectivity to fatigue in multiple sclerosis: A comparison with ulcerative colitis. J. Psychosom. Res. 2010, 69, 43–49. [Google Scholar] [CrossRef]
- Manoli, R.; Chartaux-Danjou, L.; Delecroix, H.; Daveluy, W.; Moroni, C. Is multidimensional fatigue inventory (MFI-20) adequate to measure brain injury related fatigue? Disabil. Health J. 2020, 13, 100913. [Google Scholar] [CrossRef]
- Lexell, J.; Jonasson, S.B.; Brogardh, C. Psychometric properties of three fatigue rating scales in individuals with late effects of polio. Ann. Rehabil. Med. 2018, 42, 702–712. [Google Scholar] [CrossRef]
- Wintermann, G.B.; Rosendahl, J.; Weidner, K.; Strauß, B.; Hinz, A.; Petrowski, K. Fatigue in chronically critically ill patients following intensive care-reliability and validity of the multidimensional fatigue inventory (MFI-20). Health Qual. Life Outcomes 2018, 16, 37. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson-Larsson, U.; Brink, E.; Alsén, P.; Falk, K.; Lundgren-Nilsson, Å. Psychometric analysis of the Multidimensional Fatigue Inventory in a sample of persons treated for myocardial infarction. J. Nurs. Meas. 2015, 23, 154–167. [Google Scholar] [CrossRef]
- Antonio, D.A.F.; Muller, A.G. Reliability and viability of using the Multidimensional Fatigue Inventory-20 in patients with chronic coronary artery disease. Rev. Esc. Enferm. USP 2019, 53, e03511. [Google Scholar] [CrossRef] [PubMed]
- Mazoteras Pardo, V.; Losa Iglesias, M.E.; López Chicharro, J.; Becerro de Bengoa Vallejo, R. The qardioarm app in the assessment of blood pressure and heart rate: Reliability and validity study. JMIR mHealth uHealth 2017, 5, e198. [Google Scholar] [CrossRef] [PubMed]
- Mazoteras-Pardo, V.; Becerro-De-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Palomo-López, P.; Rodríguez-Sanz, D.; Calvo-Lobo, C. The qardioarm blood pressure app for self-measurement in an obese population: Validation study using the european society of hypertension international protocol revision 2010. JMIR mHealth uHealth 2018, 6, e11632. [Google Scholar] [CrossRef] [PubMed]
- Zangaro, G.A. Importance of reporting psychometric properties of instruments used in nursing research. West. J. Nurs.Res. 2019, 41, 1548–1550. [Google Scholar] [CrossRef] [PubMed]
- Fillion, L.; Gélinas, C.; Simard, S.; Savard, J.; Gagnon, P. Validation evidence for the French Canadian adaptation of the Multidimensional Fatigue Inventory as a measure of cancer-related fatigue. Cancer Nurs. 2003, 26, 143–154. [Google Scholar] [CrossRef]
- Lundh Hagelin, C.; Wengström, Y.; Runesdotter, S.; Johan Fürst, C. The psychometric properties of the Swedish Multidimensional Fatigue Inventory MFI-20 in four different populations. Acta Oncol. 2007, 46, 97–104. [Google Scholar] [CrossRef]
- Meek, P.M.; Nail, L.M.; Barsevick, A.; Schwartz, A.L.; Stephen, S.; Whitmer, K.; Beck, S.L.; Jones, L.S.; Walker, B.L. Psychometric testing of fatigue instruments for use with cancer patients. Nurs. Res. 2000, 49, 181–190. [Google Scholar] [CrossRef]
- Schneider, R.A. Reliability and validity of the multidimensional fatigue inventory (MFI-20) and the rhoten fatigue scale among rural cancer outpatients. Cancer Nurs. 1998, 21, 370–373. [Google Scholar] [CrossRef]
- Hinz, A.; Benzing, C.; Brähler, E.; Zenger, M.; Herzberg, P.Y.; Finck, C.; Schmalbach, B.; Petrowski, K. Psychometric properties of the multidimensional fatigue inventory (MFI-20), derived from seven samples. J. Pain Symptom. Manag. 2020, 59, 717–723. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corra, U.; Benzer, W.; Bjarnason-Wehrens, B.; Dendale, P.; Gaita, D.; McGee, H.; Mendes, M.; Niebauer, J.; Zwisler, A.D.; et al. Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the cardiac rehabilitation section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabilit. Off. J. Eur. Soc. Cardiol. Work. Groups Epidemiol. Prev. Cardiac Rehabilit. Exerc. Physiol. 2010, 17, 1–17. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in collaboration with the American College of Emergency Physicians and Society for Cardiovascular Angiography and Interventions. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2013, 82, E1–E27. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’Reilly, M.G.; et al. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielberger, C.D.G.R.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Bunevicius, A.; Staniute, M.; Brozaitiene, J.; Pop, V.J.; Neverauskas, J.; Bunevicius, R. Screening for anxiety disorders in patients with coronary artery disease. Health Qual. Life Outcomes 2013, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staniute, M.; Brozaitiene, J. Changes in health-related quality of life among patients with coronary artery disease: A 2-year follow-up. Medicina 2010, 46, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunevicius, A. Reliability and validity of the SF-36 health survey questionnaire in patients with brain tumors: A cross-sectional study. Health Qual. Life Outcomes 2017, 15, 92. [Google Scholar] [CrossRef] [PubMed]
- Kazukauskiene, N.; Burkauskas, J. Mental distress factors and exercise capacity in patients with coronary artery disease attending cardiac rehabilitation program. Int. J. Behav. Med. 2018, 25, 38–48. [Google Scholar] [CrossRef]
- Denollet, J.; Pedersen, S.S.; Daemen, J.; de Jaegere, P.; Serruys, P.W.; van Domburg, R.T. Reduced positive affect (anhedonia) predicts major clinical events following implantation of coronary-artery stents. J. Intern. Med. 2008, 263, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Bunevicius, A.; Peceliuniene, J.; Mickuviene, N.; Valius, L.; Bunevicius, R. Screening for depression and anxiety disorders in primary care patients. Depress. Anxiety 2007, 24, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Burkauskas, J.; Brozaitiene, J.; Bunevicius, A.; Neverauskas, J.; Zaliunaite, V.; Bunevicius, R. Association of depression, anxiety, and type d personality with cognitive function in patients with coronary artery disease. Cognit. Behav. Neurol. Off. J. Soc. Behav. Cognit. Neurol. 2016, 29, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, R.; Matulevicius, V. Short-lasting behavioural effects of thyrotropin-releasing hormone in depressed women: Results of placebo-controlled study. Psychoneuroendocrinology 1993, 18, 445–449. [Google Scholar] [CrossRef]
- Buneviciute, J.; Staniute, M.; Brozaitiene, J.; Girdler, S.S.; Bunevicius, R. Mood symptoms and personality dimensions as determinants of health-related quality of life in patients with coronary artery disease. J. Health Psychol. 2013, 18, 1493–1504. [Google Scholar] [CrossRef]
- Comrey, A.; Lee, H. Interpretation and application of factor analytic results. Comrey AL Lee HB First Course Factor Anal. 1992, 2, 1992. [Google Scholar]
- MacCallum, R.C.; Widaman, K.F.; Zhang, S.; Hong, S. Sample size in factor analysis. Psychol. Methods 1999, 4, 84. [Google Scholar] [CrossRef]
- Terwee, C.B.; Bot, S.D.; de Boer, M.R.; van der Windt, D.A.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Briggs, S.R.; Cheek, J.M. The role of factor analysis in the development and evaluation of personality scales. J. Personal. 1986, 54, 106–148. [Google Scholar] [CrossRef]
- Gentile, S.; Delaroziere, J.; Favre, F.; Sambuc, R.; San Marco, J. Validation of the French ‘multidimensional fatigue inventory’(MFI 20). Eur. J. Cancer Care 2003, 12, 58–64. [Google Scholar] [CrossRef]
- Smets, E.; Garssen, B.; Cull, A.; de Haes, J. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy. Brit. J. Cancer 1996, 73, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedegaard, L.; Numé, A.K.; Charlot, M.; Kragholm, K.; Gislason, G.; Hansen, P.R. Return to work and risk of subsequent detachment from employment after myocardial infarction: Insights from Danish Nationwide Registries. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reibis, R.; Salzwedel, A.; Abreu, A.; Corra, U.; Davos, C.; Doehner, W.; Doherty, P.; Frederix, I.; Hansen, D.; Christine Iliou, M.; et al. The importance of return to work: How to achieve optimal reintegration in ACS patients. Eur. J. Prev. Cardiol. 2019, 26, 1358–1369. [Google Scholar] [CrossRef]
Characteristic | N = 1162 | |
---|---|---|
Mean | SD | |
Age | 57.34 | 9.09 |
N | Percent | |
Gender: | ||
Male | 886 | 76.2 |
Female | 276 | 23.8 |
Education: | ||
Up to 8 years | 86 | 7.4 |
High school graduate | 577 | 49.7 |
College/university degree | 499 | 42.9 |
Diagnosis: | ||
Unstable angina pectoris | 430 | 37.0 |
Acute myocardial infarction | 732 | 63.0 |
NYHA class: | ||
I | 86 | 7.4 |
II | 921 | 79.3 |
III | 155 | 13.3 |
HF class: | ||
A | 111 | 9.6 |
B | 817 | 70.3 |
C | 234 | 20.1 |
Arterial hypertension | 951 | 81.8 |
Left ventricular ejection fraction ≤40% | 115 | 9.9 |
Mean | SD | |
Left ventricular ejection fraction | 51.35 | 8.45 |
Exercise capacity workload (W) | 72.90 | 26.95 |
N | Percent | |
Medication Use: | ||
Nitrates | 267 | 23.0 |
Beta-blockers | 1027 | 88.4 |
ACE inhibitors | 941 | 81.0 |
Diuretics | 169 | 14.5 |
Benzodiazepines | 162 | 13.9 |
Mean | SD | |
State Trait Anxiety Inventory: | ||
State anxiety | 37.27 | 10.51 |
Trait anxiety | 42.8 | 9.52 |
N | Percent | |
Anxiety symptoms (HADS-A): | ||
Total score <8 | 140 | 70.0 |
Total score ≥8 | 60 | 30.0 |
Depressive symptoms (HADS-D): | ||
Total score <8 | 175 | 87.5 |
Total score ≥8 | 25 | 12.5 |
Mean | SD | |
MFI-20 score | ||
General fatigue | 10.76 | 3.97 |
Physical fatigue | 11.75 | 4.34 |
Reduced activity | 12.33 | 3.90 |
Reduced motivation | 9.91 | 3.43 |
Mental fatigue | 9.77 | 4.02 |
Total Fatigue Score | 54.52 | 16.18 |
SF-36 | ||
Physical functioning | 68.98 | 19.73 |
Role limitation due to physical problems | 30.16 | 37.27 |
Role limitation due to emotional problems | 52.70 | 43.72 |
Social functioning | 66.84 | 26.24 |
Mental health | 68.28 | 19.11 |
Energy/vitality | 59.09 | 20.70 |
Pain | 51.04 | 27.52 |
General health perception | 53.15 | 18.86 |
Fatigue Characteristics | Mean | SD | Inter-Item Correlation | Corrected-to-Total Correlation | Coefficient α (If Item Deleted) | Standardized Cronbach’s α | |
---|---|---|---|---|---|---|---|
Mean | Range | Range | Range | ||||
General Fatigue | 10.76 | 3.97 | 0.46 | (0.38–0.58) | 0.52–0.65 | 0.67–0.75 | 0.77 |
Physical Fatigue | 11.75 | 4.34 | 0.53 | (0.44–0.60) | 0.60–0.68 | 0.76–0.79 | 0.82 |
Reduced Activity | 12.33 | 3.90 | 0.40 | (0.30–0.47) | 0.47–0.57 | 0.63–0.69 | 0.72 |
Reduced Motivation | 9.91 | 3.43 | 0.24 | (0.15–0.35) | 0.28–0.37 | 0.45–0.52 | 0.55 |
Mental Fatigue | 9.77 | 4.02 | 0.49 | (0.35–0.68) | 0.46–0.70 | 0.69–0.73 | 0.79 |
Total Fatigue Score | 54.52 | 16.1 | 0.35 | (0.10–0.68) | 0.32–0.72 | 0.91–0.92 | 0.92 |
Clinical Characteristics | MFI-20 | Total Fatigue Score | ||||
---|---|---|---|---|---|---|
General Fatigue | Physical Fatigue | Reduced Activity | Reduced Motivation | Mental Fatigue | ||
r (p < 0.001) | ||||||
HADS | ||||||
Anxiety symptoms | 0.416 | 0.363 | 0.323 | 0.319 | 0.451 | 0.466 |
Depressive symptoms | 0.551 | 0.509 | 0.484 | 0.525 | 0.533 | 0.563 |
STAI | ||||||
State anxiety | 0.587 | 0.499 | 0.434 | 0.507 | 0.567 | 0.541 |
Trait anxiety | 0.553 | 0.446 | 0.424 | 0.496 | 0.613 | 0.582 |
SF-36 | ||||||
Physical functioning | −0.459 | −0.446 | −0.386 | −0.355 | −0.299 | −0.475 |
Role limitation due to physical problems | −0.290 | −0.304 | −0.273 | −0.229 | −0.172 | −0.310 |
Role limitation due to emotional problem | −0.278 | −0.248 | −0.243 | −0.257 | −0.269 | −0.315 |
Social functioning | −0.376 | −0.341 | −0.300 | −0.288 | −0.296 | −0.391 |
Mental health | −0.418 | −0.365 | −0.323 | −0.360 | −0.426 | −0.461 |
Energy/vitality | −0.514 | −0.494 | −0.434 | −0.405 | −0.412 | −0.551 |
Bodily pain | −0.295 | −0.294 | −0.241 | −0.207 | −0.182 | −0.298 |
General health | −0.484 | −0.486 | −0.401 | −0.410 | −0.344 | −0.518 |
Exercise capacity | −0.307 | −0.316 | −0.279 | −0.317 | −0.193 | −0.331 |
Fatigue Characteristics and Items | Factors | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
General Fatigue | ||||
I feel fit | 0.529 | |||
I feel tired | 0.726 | |||
I feel rested | 0.526 | |||
I tired easily | 0.723 | |||
Physical Fatigue | ||||
Physically I feel I am in a bad condition | 0.642 | |||
Physically I feel I am in an excellent condition | 0.619 | |||
Physically I feel I am in a bad condition | 0.737 | |||
Physically I can take on a lot | 0.658 | |||
Reduced Activity | ||||
I feel very active | 0.609 | |||
I think I do a lot in a day | 0.658 | |||
I think I do very little in a day | 0.774 | |||
I get little done | 0.607 | |||
Reduced Motivation | ||||
I feel like doing all sorts of nice things | 0.630 | |||
I dread having to do things | ||||
I have a lot of plans | 0.594 | |||
I don’t feel like doing anything | ||||
Mental Fatigue | ||||
When I am doing something, I can keep my thoughts on it | 0.706 | |||
I can concentrate well | 0.750 | |||
It takes a lot of effort to concentrate on things | 0.772 | |||
My thoughts easily wander | 0.626 | |||
Alpha | 0.90 | 0.79 | 0.66 | 0.60 |
Fatigue Characteristics and Items | Factors | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
General Fatigue | ||||
I feel fit | 0.588 | |||
I feel tired | 0.739 | |||
I feel rested | 0.579 | |||
I tired easily | 0.739 | |||
Physical Fatigue | ||||
Physically I feel I am in a bad condition | 0.660 | |||
Physically I feel I am in an excellent condition | 0.673 | |||
Physically I feel I am in a bad condition | 0.757 | |||
Physically I can take on a lot | 0.716 | |||
Reduced Activity | ||||
I think I do a lot in a day | 0.745 | |||
I think I do very little in a day | 0.796 | |||
Reduced Motivation | ||||
I feel like doing all sorts of nice things | 0.555 | |||
I have a lot of plans | 0.732 | |||
Mental Fatigue | ||||
When I am doing something, I can keep my thoughts on it | 0.736 | |||
I can concentrate well | 0.790 | |||
It takes a lot of effort to concentrate on things | 0.772 | |||
My thoughts easily wander | 0.638 | |||
Alpha | 0.89 | 0.79 | 0.60 | 0.43 |
Fatigue Characteristics | Mean | SD | Inter-Item Correlation | Corrected-to-Total Correlation | Coefficient α (If Item Deleted) | Standardized Cronbach’s α | |
---|---|---|---|---|---|---|---|
Mean | Range | Range | Range | ||||
General Fatigue | 10.76 | 3.97 | 0.46 | 0.38–0.58 | 0.52–0.65 | 0.67–0.75 | 0.77 |
Physical Fatigue | 11.75 | 4.34 | 0.53 | 0.44–0.60 | 0.60–0.68 | 0.76–0.79 | 0.82 |
Reduced Activity | 6.45 | 2.26 | 0.43 | - | 0.43 | - | 0.60 |
Reduced Motivation | 5.26 | 2.07 | 0.27 | - | 0.27 | - | 0.43 |
Mental Fatigue | 9.77 | 4.02 | 0.49 | 0.35–0.68 | 0.46–0.70 | 0.69-0.73 | 0.79 |
Total Fatigue Score | 43.99 | 13.03 | 0.35 | 0.12–0.68 | 0.14–0.58 | 0.83-0.90 | 0.89 |
Clinical Characteristics | Factors | Total Fatigue Score | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
r (p < 0.001) | |||||
HADS | |||||
Anxiety | 0.410 | 0.451 | 0.304 | 0.177 | 0.461 |
Depressive symptoms | 0.558 | 0.533 | 0.374 | 0.424 | 0.561 |
STAI | |||||
State anxiety | 0.570 | 0.567 | 0.342 | 0.381 | 0.539 |
Trait anxiety | 0.524 | 0.613 | 0.333 | 0.407 | 0.576 |
SF-36 | |||||
Physical functioning | −0.478 | −0.299 | −0.237 | −0.244 | −0.461 |
Role limitation due to physical problems | −0.315 | −0.172 | −0.180 | −0.155 | −0.299 |
Role limitation due to emotional problem | −0.277 | −0.269 | −0.161 | −0.150 | −0.302 |
Social functioning | −0.378 | −0.296 | −0.197 | −0.216 | −0.388 |
Mental health | −0.413 | −0.426 | −0.217 | −0.246 | −0.458 |
Energy/vitality | −0.532 | −0.412 | −0.282 | −0.326 | −0.549 |
Bodily pain | −0.311 | −0.182 | −0.180 | −0.121 | −0.294 |
General health | −0.512 | −0.344 | −0.264 | −0.329 | −0.514 |
Exercise capacity | −0.329 | −0.193 | −0.185 | −0.232 | −0.315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gecaite-Stonciene, J.; Bunevicius, A.; Burkauskas, J.; Brozaitiene, J.; Neverauskas, J.; Mickuviene, N.; Kazukauskiene, N. Validation of the Multidimensional Fatigue Inventory with Coronary Artery Disease Patients. Int. J. Environ. Res. Public Health 2020, 17, 8003. https://doi.org/10.3390/ijerph17218003
Gecaite-Stonciene J, Bunevicius A, Burkauskas J, Brozaitiene J, Neverauskas J, Mickuviene N, Kazukauskiene N. Validation of the Multidimensional Fatigue Inventory with Coronary Artery Disease Patients. International Journal of Environmental Research and Public Health. 2020; 17(21):8003. https://doi.org/10.3390/ijerph17218003
Chicago/Turabian StyleGecaite-Stonciene, Julija, Adomas Bunevicius, Julius Burkauskas, Julija Brozaitiene, Julius Neverauskas, Narseta Mickuviene, and Nijole Kazukauskiene. 2020. "Validation of the Multidimensional Fatigue Inventory with Coronary Artery Disease Patients" International Journal of Environmental Research and Public Health 17, no. 21: 8003. https://doi.org/10.3390/ijerph17218003
APA StyleGecaite-Stonciene, J., Bunevicius, A., Burkauskas, J., Brozaitiene, J., Neverauskas, J., Mickuviene, N., & Kazukauskiene, N. (2020). Validation of the Multidimensional Fatigue Inventory with Coronary Artery Disease Patients. International Journal of Environmental Research and Public Health, 17(21), 8003. https://doi.org/10.3390/ijerph17218003