Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Estimating NPP
2.3.1. CASA Model
Calculating APAR
Assessing ε
2.3.2. Validation of NPP Estimation of the CASA Model
2.4. Scenario Design
2.5. Statistical Analysis
2.5.1. Trend Analysis
2.5.2. Correlation Analysis
2.5.3. Correspondence Analysis
3. Results
3.1. Dynamic of NPP from 2000 to 2015
3.2. Spatial Variation of Annual NPP in the TGR Area
3.3. Effects of Climate and Land Use Changes on NPP Dynamics
3.4. Spatial Variations of the Individual Effect of Land Use Change
4. Discussion
4.1. Change in NPP of the TGR Area from 2000 to 2015
4.2. Possible Effects of Climate Changes
4.3. Possible Effects of Land Use Changes
4.4. Land Use Policies and Implications
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Huang, X.; Peng, C.; Zhou, Z.; Teng, M.; Wang, P. Land use/cover change in the Three Gorges Reservoir area, China: Reconciling the land use conflicts between development and protection. Catena 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X.; Xu, X. Grassland ecosystem responses to climate change and human activities within the Three-River Headwaters region of China. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhang, C.-L.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Li, J.; Zou, C.; Li, Q.; Xu, X.; Zhao, Y.; Yang, W.; Zhang, Z.; Liu, L. Effects of urbanization on productivity of terrestrial ecological systems based on linear fitting: A case study in Jiangsu, eastern China. Sci. Rep. 2019, 9, 17140. [Google Scholar] [CrossRef]
- McDonough, L.K.; Santos, I.R.; Andersen, M.S.; O’Carroll, D.M.; Rutlidge, H.; Meredith, K.; Oudone, P.; Bridgeman, J.; Gooddy, D.C.; Sorensen, J.P.R.; et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, N.J.; Cameron, D.A.; Leblanc, J.-D.; Morrison, I.K. Carbon storage and net primary productivity in Canadian boreal mixedwood stands. J. For. Res. 2019, 30, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Deng, L.; Kim, D.; Huang, C.; Tian, K.; Dong-Gill, K. Carbon budgets of wetland ecosystems in China. Glob. Chang. Biol. 2019, 25, 2061–2076. [Google Scholar] [CrossRef]
- Xiong, Y.; Cakir, R.; Phan, S.M.; Ola, A.; Krauss, K.W.; Lovelock, C.E. Global patterns of tree stem growth and stand aboveground wood production in mangrove forests. For. Ecol. Manag. 2019, 444, 382–392. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Band, L.E.; Zhang, Q. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosciences 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- Thompson, S.D.; Nelson, T.A.; Coops, N.C.; Wulder, M.A.; Lantz, T.C. Global spatial-temporal variability in terrestrial productivity and phenology regimes between 2000 and 2012. Ann. Am. Assoc. Geogr. 2017, 107, 1519–1537. [Google Scholar] [CrossRef]
- Tang, G.; Beckage, B. Projecting the distribution of forests in New England in response to climate change. Divers. Distrib. 2010, 16, 144–158. [Google Scholar] [CrossRef]
- Harris, J.A.; Hobbs, R.J.; Higgs, E.; Aronson, J. Ecological restoration and global climate change. Restor. Ecol. 2006, 14, 170–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total. Environ. 2016, 563, 210–220. [Google Scholar] [CrossRef]
- Morel, A.C.; Adu Sasu, M.; Adu-Bredu, S.; Quaye, M.; Moore, C.; Ashley Asare, R.; Mason, J.; Hirons, M.; McDermott, C.L.; Robinson, E.J.Z.; et al. Carbon dynamics, net primary productivity (NPP) and human appropriated NPP (HANPP) across a forest-cocoa farm landscape in West Africa. Glob. Change Biol. 2019, 25, 2661–2677. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, N.; Yu, Q.; Guo, L. Ecosystem service response to human disturbance in the Yangtze River economic belt: A case of Western Hunan, China. Sustainability 2020, 12, 465. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhou, S.; Chen, D.; Wei, Z.; Dai, L.; Li, X. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Sci. Total. Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef]
- Gingrich, S.; Niedertscheider, M.; Kastner, T.; Haberl, H.; Cosor, G.; Krausmann, F.P.; Kuemmerle, T.; Müller, D.; Reith-Musel, A.; Jepsen, M.R.; et al. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 2015, 47, 426–438. [Google Scholar] [CrossRef]
- Khalifa, M.; Elagib, N.A.; Ribbe, L.; Schneider, K. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Sci. Total. Environ. 2018, 624, 790–806. [Google Scholar] [CrossRef]
- Langerwisch, F.; Václavík, T.; Von Bloh, W.; Vetter, T.; Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ. Res. Lett. 2017, 13, 015003. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liu, S.; Kim, D.G.; Peng, C.; Sweeney, S.; Shangguan, Z. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Gower, S.T.; Kucharik, C.J.; Norman, J.M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote. Sens. Environ. 1999, 70, 29–51. [Google Scholar] [CrossRef]
- Xu, B.; Pan, Y.; Plante, A.F.; McCullough, K.; Birdsey, R. Modeling forest carbon cycle using long-term carbon stock field measurement in the Delaware River Basin. Ecosphere 2017, 8, 01802. [Google Scholar] [CrossRef] [Green Version]
- Tharammal, T.; Bala, G.; Narayanappa, D.; Nemani, R. Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century. Clim. Dyn. 2018, 52, 4393–4406. [Google Scholar] [CrossRef]
- Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M.A.; Janssens, I.A. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 2016, 7, 13717. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Bond-Lamberty, B. Quantifying and reducing the differences in forest CO2 -fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agric. For. Meteorol. 2017, 247, 93–103. [Google Scholar] [CrossRef]
- Sannigrahi, S. Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models. Ecol. Model. 2017, 356, 73–90. [Google Scholar] [CrossRef]
- Nguyen, H.-P.; Liu, J.; Zio, E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft Comput. 2020, 89, 106116. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Liu, J.; Dang, Q.; Apps, M.J.; Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 2002, 153, 109–130. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Flechsig, M.; Lasch-Born, P.; Van Oijen, M. Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity. Clim. Chang. 2016, 137, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xiao, W. Estimation of forest NPP and carbon sequestration in the Three Gorges Reservoir Area, using the biome-BGC model. Forests 2019, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Long, H.; Gai, Y.; Wei, D. Monitoring the effects of land use and cover changes on net primary production: A case study in China’s Yongding River basin. For. Ecol. Manag. 2009, 258, 2654–2665. [Google Scholar] [CrossRef]
- Waring, R.H.; Landsberg, J.; Linder, S. Tamm Review: Insights gained from light use and leaf growth efficiency indices. For. Ecol. Manag. 2016, 379, 232–242. [Google Scholar] [CrossRef]
- Matsushita, B.; Xu, M.; Chen, J.; Kameyama, S.; Tamura, M. Estimation of regional net primary productivity (NPP) using a process-based ecosystem model: How important is the accuracy of climate data? Ecol. Model. 2004, 178, 371–388. [Google Scholar] [CrossRef]
- Huang, C.B.; Teng, M.J.; Zeng, L.X.; Zhou, Z.X.; Xiao, W.F.; Zhu, J.H.; Wang, P.C. Long-term changes of land use/cover in the Three Gorges Reservoir Area of the Yangtze River, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2018, 29, 1585–1596. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, Z.; Teng, M.; Wu, C.; Wang, P. Effects of climate and land use/cover changes on soil loss in the Three Gorges Reservoir area, China. Geogr. Sustain. 2020. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G.; Li, H.; Su, W. Impacts of China’s Three Gorges Dam Project on net primary productivity in the reservoir area. Sci. Total Environ. 2011, 409, 4656–4662. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Qiu, J.; Hong, Q.; Chen, L. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total. Environ. 2014, 493, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, J.; Han, X.; Xie, Z.; Gao, X. Three Gorges Dam–Experiment in habitat fragmentation? Science 2003, 300, 1239–1240. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.Z.; Tian, L.; He, W.H.; Zhang, J.C.; Liu, D.H.; Yang, F. Effects of land-use changes on vegetation net primary productivity in the Three Gorges Reservoir Area of Chongqing. Acta Ecol. Sinica 2018, 38, 7658–7668. (In Chinese) [Google Scholar]
- Xiao, Q.; Xiong, Q.; Pan, K. What is left for our next generation? Integrating ecosystem services into regional policy planning in the Three Gorges Reservoir area of China. Sustainability 2018, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Shi, P.; Shao, H.; Zhu, W.; Pan, Y. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote. Sens. 2009, 30, 4851–4866. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, P.; Xiao, W. Estimating vegetation biomass and productivity and their distribution patterns in the Three Gorges Reservoir region. Acta Ecol. Sinica 2008, 28, 3808–3816. (In Chinese) [Google Scholar]
- Greenacre, M. Correspondence Analysis in Practice, 3rd ed.; Informa UK Limited: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Wang, Y.; Wang, Y.; Wang, H.; Wang, Y.; Zhu, L.; Yang, R. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. J. Earth Syst. Sci. 2019, 129, 1–13. [Google Scholar] [CrossRef]
- Girardin, M.P.; Hogg, E.H.; Bernier, P.Y.; Kurz, W.A.; Guo, X.J.; Cyr, G. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Chang. Biol. 2015, 22, 627–643. [Google Scholar] [CrossRef] [PubMed]
- El Masri, B.; Schwalm, C.; Huntzinger, D.N.; Mao, J.; Shi, X.; Peng, C.; Fisher, J.B.; Jain, A.K.; Tian, H.; Poulter, B.; et al. Carbon and water use efficiencies: A comparative analysis of ten terrestrial ecosystem models under changing climate. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tan, X.; Wang, S.; Chen, M.; Chen, S.; Ren, T.; Xia, J.; Bai, Y.; Huang, J.; Han, X. Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi-arid steppe. Funct. Ecol. 2017, 31, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Teng, M.; Huang, C.; Wang, P.; Zeng, L.; Zhou, Z.; Xiao, W.; Huang, Z.; Liu, C. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China. Sci. Total. Environ. 2019, 697, 134164. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Heitkamp, F. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma 2017, 304, 76–82. [Google Scholar] [CrossRef]
- Deng, L.; Kim, D.-G.; Peng, C.; Shangguan, Z. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degrad. Dev. 2018, 29, 3974–3984. [Google Scholar] [CrossRef]
- Martí, P.; García-Mayor, C.; Nolasco-Cirugeda, A.; Serrano-Estrada, L. Green infrastructure planning: Unveiling meaningful spaces through Foursquare users’ preferences. Land Use Policy 2020, 97, 104641. [Google Scholar] [CrossRef]
- Liao, Q.; Chen, R.; Huang, S. Study on Landscape Evaluation of Abandoned Mining Area Based on Fuzzy Comprehensive Evaluation and GIS. Geo. Sci. Tech. Inform. 2019, 38, 241–250. [Google Scholar] [CrossRef]
- Deng, L.; Huang, C.; Kim, D.; Shangguan, Z.; Wang, K.; Song, X.; Peng, C. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Chang. Biol. 2020, 26, 2613–2629. [Google Scholar] [CrossRef] [Green Version]
Data | Data Source and Explanation |
---|---|
Land use data | 30m resolution land use maps in 2000, 2005, 2010, and 2015 [35]. |
Radiation data | Monthly total radiation data of 22 meteorological stations from 2000 to 2015 (http://data.cma.cn) |
Precipitation and temperature data | Monthly total precipitation and mean temperature data of 29 meteorological stations from 2000 to 2015 (http://data.cma.cn) |
NDVI images | 250m resolution MODIS-NDVI products (MOD13Q1) from 2000 to 2015 (http://modis.gsfc.nasa.gov/) |
DEM | 30m resolution DEM derived from ASTER Global Digital Elevation Model V002 (http://www.gscloud.cn/) |
Land Use Type | NDVImax | NDVImin | SRmax | SRmin | εmax |
---|---|---|---|---|---|
Coniferous forest | 0.8889 | 0.0765 | 17.002 | 1.166 | 0.389 |
Mixed forest | 0.8852 | 0.0765 | 16.422 | 1.166 | 0.475 |
Evergreen broad-leaved forest | 0.8979 | 0.0765 | 18.589 | 1.166 | 0.985 |
Deciduous broad-leaved forest | 0.9058 | 0.0765 | 20.231 | 1.166 | 0.692 |
Shrubby | 0.8983 | 0.0765 | 18.666 | 1.166 | 0.429 |
Grassland | 0.7994 | 0.0765 | 8.970 | 1.166 | 0.542 |
Cropland | 0.7994 | 0.0765 | 8.970 | 1.166 | 0.542 |
Water, built-up land, and bare land | 0.7994 | 0.0765 | 8.970 | 1.166 | 0.542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Wang, Z.; Huang, C. Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2020, 17, 8077. https://doi.org/10.3390/ijerph17218077
Liao Q, Wang Z, Huang C. Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China. International Journal of Environmental Research and Public Health. 2020; 17(21):8077. https://doi.org/10.3390/ijerph17218077
Chicago/Turabian StyleLiao, Qipeng, Zhe Wang, and Chunbo Huang. 2020. "Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China" International Journal of Environmental Research and Public Health 17, no. 21: 8077. https://doi.org/10.3390/ijerph17218077
APA StyleLiao, Q., Wang, Z., & Huang, C. (2020). Green Infrastructure Offset the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China. International Journal of Environmental Research and Public Health, 17(21), 8077. https://doi.org/10.3390/ijerph17218077