Impact of Gene–Environment Interactions on Cancer Development
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Evaluation of Gene–Environment Interactions
3.2. Gene–Environment Interactions in the Development of Lung Cancer
3.3. Gene–-Environment Interactions in the Development of Colorectal Cancer
3.4. Gene–Environment Interactions in the Development of Bladder Cancer
3.5. Gene–Environment Interactions in the Development of Breast Cancer and Ovarian Cancer
3.6. Gene–Environment Interactions in the Development of Prostate Cancer
3.7. Challenges in Gene–Environment Interactions in the Cancer Intervention and Prevention
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Cancer Facts Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 5 February 2020).
- World Health Organization. World Cancer Report 2014; Steward, B.W., Wild, C.P., Eds.; International Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
- Siegel, R.L.; Mph, K.D.M.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Me, J.F.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.J.; Cleveland, D.W. Losing balance: The origin and impact of aneuploidy in cancer. EMBO Rep. 2012, 13, 501–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.A.; Khatami, M.; Baglole, C.J.; Sun, J.; Harris, S.A.; Moon, E.-Y.; Al-Mulla, F.; Al-Temaimi, R.; Brown, D.G.; Colacci, A.M.; et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015, 36, S232–S253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.E. Human Disease Condition and Collection: Cancer; Campbell, A.M., Ed.; Momentum Press: New York, NY, USA, 2018. [Google Scholar]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z. Genomic instability and cancer: An introduction. J. Mol. Cell Biol. 2011, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mader, S.S.; Windelspecht, M.; Cox, D. Essentials of Biology, 15th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2015. [Google Scholar]
- Massagué, J. G1 cell-cycle control and cancer. Nat. Cell Biol. 2004, 432, 298–306. [Google Scholar] [CrossRef]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essentials of Cell Biology, 4th ed.; NPG Education: Cambridge, MA, USA, 2013. [Google Scholar]
- Pitot, H.C.; Goldsworthy, T.; Moran, S. The natural history of carcinogenesis: Implications of experimental carcinogenesis in the genesis of human cancer. J. Supramol. Struct. Cell. Biochem. 1981, 7, 133–146. [Google Scholar] [CrossRef]
- Ferguson, L.R.; Chen, H.; Collins, A.R.; Connell, M.; Damia, G.; Dasgupta, S.; Malhotra, M.; Meeker, A.K.; Amedei, A.; Amin, A.; et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin. Cancer Biol. 2015, 35, S5–S24. [Google Scholar] [CrossRef]
- Langie, S.A.; Koppen, G.; Desaulniers, D.; Al-Mulla, F.; Al-Temaimi, R.; Amedei, A.; Azqueta, A.; Bisson, W.H.; Brown, D.G.; Brunborg, G.; et al. Causes of genome instability: The effect of low dose chemical exposures in modern society. Carcinogenesis 2015, 36, S61–S88. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Johansson, B.; Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 2007, 7, 233–245. [Google Scholar] [CrossRef]
- Kopp, T.I.; Vogel, U.; Andersen, V. Associations between common polymorphisms in CYP2R1 and GC, Vitamin D intake and risk of colorectal cancer in a prospective case-cohort study in Danes. PLoS ONE 2020, 15, e0228635. [Google Scholar] [CrossRef] [PubMed]
- Bagot, R.C.; Meaney, M.J. Epigenetics and the Biological Basis of Gene × Environment Interactions. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 752–771. [Google Scholar] [CrossRef]
- Filho, A.P.D.R.; Silveira, M.A.D.; Demarco, N.R.; D’Arce, L.P.G. Increased DNA Damage, Instability and Cytokinesis Defects in Occupationally Exposed Car Painters. In Vivo 2019, 33, 1807–1811. [Google Scholar] [CrossRef] [Green Version]
- Parsa, N. Environmental Factors Inducing Human Cancers. Iran. J. Public Health 2012, 41, 1–9. [Google Scholar]
- Sankpal, U.T.; Pius, H.; Khan, M.; Shukoor, M.I.; Maliakal, P.; Lee, C.M.; Abdelrahim, M.; Connelly, S.F.; Basha, R. Environmental factors in causing human cancers: Emphasis on tumorigenesis. Tumor Biol. 2012, 33, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Pathologic classification of OC. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [Green Version]
- Simonds, N.I.; Ghazarian, A.A.; Pimentel, C.B.; Schully, S.D.; Ellison, G.L.; Gillanders, E.M.; Mechanic, L.E. Review of the Gene-Environment Interaction Literature in Cancer: What do we know? Genet Epidemiol. 2017, 40, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. The Cell-Cycle Arrest and Apoptotic and Progression. Cold Spring Harb. Lab. Press 2016, 6, 1–16. [Google Scholar]
- Broustas, C.G.; Lieberman, H.B. DNA Damage Response Genes and the Development of Cancer Metastasis. Radiat. Res. 2014, 130, 111–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Hunter, D.J. Gene–Environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef]
- Ramos, R.G.; Olden, K. Gene-Environment Interactions in the Development of Complex Disease Phenotypes. Int. J. Environ. Res. Public Health 2008, 5, 4–11. [Google Scholar] [CrossRef]
- Amato, R.; Pinelli, M.; D’Andrea, D.; Miele, G.; Nicodemi, M.; Raiconi, G.; Cocozza, S. A novel approach to simulate gene-environment interactions in complex diseases. BMC Bioinform. 2010, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Jiang, Y.; Ren, J.; Cui, Y.; Ma, S. Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures. Stat. Med. 2017, 37, 437–456. [Google Scholar] [CrossRef]
- Thomas, D.C. Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies. Annu. Rev. Public Health 2010, 31, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Kantor, E.D.; Hutter, C.M.; Minnier, J.; Berndt, S.I.; Brenner, H.; Caan, B.J.; Campbell, P.T.; Carlson, C.S.; Casey, G.; Chan, A.T.; et al. Gene-Environment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Hollman, A.L.; Tchounwou, P.B.; Huang, H.-C. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants. Int. J. Environ. Res. Public Health 2016, 13, 379. [Google Scholar] [CrossRef]
- Vekasalo, P.K.; Kaprio, J.; Koskenvuo, M.; Pukkala, E. Genetic predisposition, environment and cancer incidence: A nation wide twin study in Findland, 1976–1995. Int. J. Cancer 1999, 83, 743–749. [Google Scholar] [CrossRef]
- Tanner, C.M.; Ottman, R.; Langston, J.W. Parkinson Disease in Twins. JAMA 1999, 281, 341–346. [Google Scholar] [CrossRef]
- Liu, G.; Mukherjee, B.; Lee, S.; Lee, A.; Wu, A.H.; Bandera, E.V.; Jensen, A.; Rossing, M.A.; Moysich, K.B.; Chang-Claude, J.; et al. Practice of Epidemiology Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. Hum. Mol. Genet. 2018, 187, 366–377. [Google Scholar] [CrossRef]
- Garcia-Closas, M.; Rothman, N.; Figueroa, J.D.; Prokunina-Olsson, L.; Han, S.S.; Baris, D.; Jacobs, E.J.; Malats, N.; De Vivo, I.; Albanes, D.; et al. Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res. 2013, 73, 2211–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovely, C.; Rampersad, M.; Fernandes, Y.; Eberhart, J. Gene-environment interactions in development and disease. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6, e247. [Google Scholar] [CrossRef]
- Smith, P.G.; Day, N.E. The Design of Case-Control Studies: The Influence of Confounding and Interaction Effects. Int. J. Epidemiol. 1984, 13, 356–365. [Google Scholar] [CrossRef]
- Smith, G.D.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Int. J. Epidemiol. 2014, 23, R89–R98. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lissowska, J.; Gaudet, M.M.; Brinton, L.A.; Chanock, S.J.; Peplonska, B.; Welch, R.; Zatonski, W.; Szeszenia-Dabrowska, N.; Park, S.; Sherman, M.; et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: A population-based case–Control study and meta-analyses. Int. J. Cancer 2007, 120, 2696–2703. [Google Scholar] [CrossRef]
- Gong, Z.; Yao, S.; Zirpoli, G.; Cheng, T.-Y.D.; Roberts, M.; Khoury, T.; Ciupak, G.; Davis, W.; Pawlish, K.; Jandorf, L.; et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women. Int. J. Cancer 2015, 137, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-W.; Mason, J.B. Folate Status: Effects on Pathways of Colorectal Carcinogenesis. J. Nutr. 2002, 132, 2413S–2418S. [Google Scholar] [CrossRef] [Green Version]
- Basse, C.; Arock, M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int. J. Cancer 2014, 137, 2785–2794. [Google Scholar] [CrossRef]
- Baylin, S.B.; Ohm, J.E. Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 2006, 6, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Baylin, S.B. The Epigenomics of Cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002, 21, 5400–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, B.C. Role of DNA Methylation in the Regulation of Cell Function: Autoimmunity, Aging and Cancer. J. Nutr. 2002, 132, 2401S–2405S. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, A.P.; Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 2004, 4, 143–153. [Google Scholar] [CrossRef]
- Issa, J.-P. Aging and epigenetic drift: A vicious cycle. J. Clin. Investig. 2014, 124, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA Methylation in Cancer and Aging. Cancer Res. 2016, 76, 3446–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Cui, Z.; Guan, P.; Li, X.; Wu, W.; Ren, Y.; He, Q.; Zhou, B. Interaction between Polymorphisms in Pre-MiRNA Genes and Cooking Oil Fume Exposure on the Risk of Lung Cancer in Chinese Non-Smoking Female Population. Oncotargets Ther. 2016, 9, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, H.; Li, J.; Lv, X.; Yang, Z.; Gao, M.; Bi, Y.; Wang, S.; Cui, Z.; Zhou, B.; et al. Polymorphisms in the PVT1 Gene and Susceptibility to the Lung Cancer in a Chinese Northeast Population: A Case-control Study. J. Cancer 2020, 11, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Song, N.; Lee, J.; Cho, S.; Kim, J.; Oh, J.H.; Song, N. Evaluation of gene-environment interactions for colorectal cancer susceptibility loci using case-only and case-control designs. BMC Cancer 2019, 19, 1231. [Google Scholar] [CrossRef] [Green Version]
- Neslund-Dudas, C.; Levin, A.M.; Beebe-Dimmer, J.L.; Bock, C.H.; Nock, N.L.; Rundle, A.; Jankowski, M.; Krajenta, R.; Dou, Q.P.; Mitra, B.; et al. Gene–environment interactions between JAZF1 and occupational and household lead exposure in prostate cancer among African American men. Cancer Causes Control. 2014, 25, 869–879. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Cancer Facts and Figures. J. Consum. Health Internet 2012, 16, 366–367. [Google Scholar]
- Cheng, T.-Y.D.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J. Thorac. Oncol. 2016, 11, 1653–1671. [Google Scholar] [CrossRef] [Green Version]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette Smoking and Variations in Systemic Immune and Inflammation Markers. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- U.S. Prenventive Services Task Force. Recommendations. Available online: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-and-b-recommendations (accessed on 20 June 2020).
- Carver, A.; Gallicchio, V.S. Heavy Metals and Cancer. In Cancer Causing Substances; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Smith, D.J.T.; Kibble, A.J. What is responsible for the carcinogenicity of PM2.5? Occup. Environ. Med. 2004, 61, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Environmental Health & Engineering. Emissions of Hazardous Air Pollutants from Coal-Fired Power Plants in Michigan; Report #17045 to the Michigan Environmental Council; Environmental Health & Engineering: Lansing, MI, USA, 2011. [Google Scholar]
- Hosgood, D.H.; Song, M.; Hsiung, C.A.; Yin, Z.; Shu, X.-O.; Wang, Z.; Chatterjee, N.; Zheng, W.; Caporaso, N.; Burdette, L.; et al. Interactions between household air pollution and GWAS-identified lung cancer susceptibility markers in the Female Lung Cancer Consortium in Asia (FLCCA). Hum. Genet. 2015, 134, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, A.; Hung, R.J.; Christiani, D.C.; Caporaso, N.E.; Liu, G.; Bojesen, S.E.; Le Marchand, L.; Haiman, C.A.; Albanes, D.; Aldrich, M.C.; et al. Genetic modifiers of radon-induced lung cancer risk: A genome-wide interaction study in former uranium miners. Int. Arch. Occup. Environ. Health 2018, 91, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Bardhan, K.; Liu, K. Epigenetics and Colorectal Cancer Pathogenesis. Cancers 2013, 5, 676–713. [Google Scholar] [CrossRef] [Green Version]
- Bardou, M.; Barkun, A.N.; Martel, M. Obesity and colorectal cancer. Gut 2013, 62, 933–947. [Google Scholar] [CrossRef]
- Cho, Y.A.; Lee, J.; Oh, J.H.; Shin, A.; Kim, J. Dietary Inflammatory Index and Risk of Colorectal Cancer: A Case-Control Study in Korea. Nutrients 2016, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Haggar, F.A.; Boushey, R.P. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clin. Colon Rectal Surg. 2009, 22, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Ewing, I.; Hurley, J.J.; Josephides, E.; Millar, A. The molecular genetics of colorectal cancer. Front. Gastroenterol. 2014, 5, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojadeh, J.N.; Shahin, B.S.; Sakhinia, E. Microsatellite instability in colorectal cancer. Exp. Clin. Sci. J. 2018, 17, 157. [Google Scholar]
- Hutter, C.M.; Chang-Claude, J.; Slattery, M.L.; Pflugeisen, B.M.; Lin, Y.; Duggan, D.; Nan, H.; Lemire, M.; Rangrej, J.; Figueiredo, J.C.; et al. Characterization of Gene-Environment Interactions for Colorectal Cancer Susceptibility Loci. Cancer Res. 2020, 72. [Google Scholar] [CrossRef] [Green Version]
- Atef, N.; Alieldin, N.; Sherif, G.; Loay, I.; Mahmoud, A.M.; Mohamed, G. Microsatellite Instability and Life Style Factors in Sporadic Colorectal Cancer. Asian Pac. J. Cancer Prev. 2020, 21, 1471–1480. [Google Scholar] [CrossRef]
- Jiao, S.; Peters, U.; Berndt, S.; Brenner, H.; Butterbach, K.; Caan, B.J.; Carlson, C.S.; Chan, A.T.; Chang-Claude, J.; Chanock, S.; et al. Estimating the heritability of colorectal cancer. Hum. Mol. Genet. 2014, 23, 3898–3905. [Google Scholar] [CrossRef] [PubMed]
- Andersen, V.; Vogel, U. Interactions between meat intake and genetic variation in relation to colorectal cancer. Genes Nutr. 2015, 10, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, V.; Holst, R.; Kopp, T.I.; Tjønneland, A.; Vogel, U.B. Interactions between Diet, Lifestyle and IL10, IL1B, and PTGS2/COX-2 Gene Polymorphisms in Relation to Risk of Colorectal Cancer in a Prospective Danish Case-Cohort Study. PLoS ONE 2013, 8, e78366. [Google Scholar] [CrossRef]
- Offermans, N.S.M.; Ketcham, S.M.; Brandt, P.A.V.D.; Weijenberg, M.P.; Simons, C.C.J.M. Alcohol intake, ADH1B and ADH1C genotypes, and the risk of colorectal cancer by sex and subsite in the Netherlands Cohort Study. Carcinogenesis 2018, 39, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Cumberbatch, M.G.K.; Noon, A.P. Epidemiology, aetiology and screening of bladder cancer. Transl. Androl. Urol. 2019, 8, 5–11. [Google Scholar] [CrossRef]
- Westmaas, J.L.; Alcaraz, K.I.; Berg, C.J.; Stein, K.D. Prevalence and Correlates of Smoking and Cessation-Related Behavior among Survivors of Ten Cancers: Findings from a Nationwide Survey Nine Years after Diagnosis. Cancer Epidemiol. Biomark. Prev. 2020, 23, 1783–1792. [Google Scholar] [CrossRef] [Green Version]
- Koutros, S.; Silverman, D.T.; Alavanja, M.C.; Andreotti, G.; Lerro, C.C.; Heltshe, S.; Lynch, C.F.; Sandler, D.P.; Blair, A.; Freeman, L.E.B. Occupational exposure to pesticides and bladder cancer risk. Int. J. Epidemiol. 2015, 45, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Lesseur, C.; Gilbert-Diamond, D.; Andrew, A.S.; Ekstrom, R.M.; Li, Z.; Kelsey, K.T.; Marsit, C.J.; Karagas, M.R. A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol. Lett. 2012, 210, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Hung, R.J. Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis 2004, 25, 973–978. [Google Scholar] [CrossRef]
- Tao, L.; Xiang, Y.-B.; Chan, K.K.; Wang, R.; Gao, Y.-T.; Yu, M.C.; Yuan, J.-M. Cytochrome P4501A2 phenotype and bladder cancer risk: The Shanghai bladder cancer study. Int. J. Cancer 2012, 130, 1174–1183. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Silverman, D.T.; Murta-Nascimento, C.; Malats, N.; Garcia-Closas, M.; Castro-Giner, F.; Tardón, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; et al. Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes Control. 2010, 20, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.E.; Feigelson, H.S. Hormonal carcinogenesis. Carcinogenesis 2000, 21, 427–433. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried food consumption, genetic risk, and body mass index: Gene-diet interaction analysis in three US cohort studies. BMJ 2014, 348, g1610. [Google Scholar] [CrossRef] [Green Version]
- Dite, G.S.; MacInnis, R.J.; Bickerstaffe, A.; Dowty, J.G.; Milne, R.L.; Antoniou, A.C.; Weideman, P.; Apicella, C.; Giles, G.G.; Southey, M.C.; et al. Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer. Am. J. Epidemiol. 2017, 185, 487–500. [Google Scholar] [CrossRef]
- Stevens, K.N.; Vachon, C.M.; Lee, A.M.; Slager, S.; Lesnick, T.; Olswold, C.; Fasching, P.A.; Miron, P.; Eccles, D.M.; Carpenter, J.E.; et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer J. Clin. Res. 2011, 71, 6240–6249. [Google Scholar] [CrossRef] [Green Version]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [Green Version]
- Arason, A.; Agnarsson, B.A.; Johannesdottir, G.; Johannsson, O.T. Hereditary Breast and Ovarian Cancers, But Still. Genes 2019, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Usset, J.L.; Raghavan, R.; Tyrer, J.P.; McGuire, V.; Sieh, W.; Webb, P.; Chang-Claude, J.; Rudolph, A.; Anton-Culver, H.; Berchuck, A.; et al. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors. Cancer Epidemiol. Biomark. Prev. 2016, 25, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, A.; Milne, R.L.; Truong, T.; Knight, J.A.; Seibold, P.; Flesch-Janys, D.; Behrens, S.; Eilber, U.; Bolla, M.K.; Wang, Q.; et al. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. Int. J. Cancer 2015, 136, E685–E696. [Google Scholar] [CrossRef]
- Barrdahl, M.; Rudolph, A.; Hopper, J.L.; Southey, M.C.; Broeks, A.; Fasching, P.A.; Beckmann, M.W.; Gago-Domínguez, M.; Castelao, J.E.; Guenel, P.; et al. Gene–environment interactions involving functional variants: Results from the Breast Cancer Association Consortium. Int. J. Cancer 2017, 141, 1830–1840. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Vaona, A.; Demurtas, J.; Nicetto, D.; Crepaldi, G.; Schofield, P.; Koyanagi, A.; et al. Fried potato consumption is associated with elevated mortality: An 8-y longitudinal cohort study. Am. J. Clin. Nutr. 2017, 109, 665–673. [Google Scholar] [CrossRef]
- Huang, T.; Wang, T.; Heianza, Y.; Zheng, Y.; Sun, D.; Kang, J.H.; Pasquale, L.R.; Rimm, E.B.; Manson, J.E.; Hu, F.B.; et al. Habitual consumption of long-chain n–3 PUFAs and fish attenuates genetically associated long-term weight gain. Am. J. Clin. Nutr. 2019, 109, 665–673. [Google Scholar] [CrossRef]
- Cui, X.; Yan, H.; Ou, T.-W.; Jia, C.-S.; Wang, Q.; Xu, J.-J. Genetic Variations in Inflammatory Response Genes and Their Association with the Risk of Prostate Cancer. BioMed Res. Int. 2015, 2015, 674039. [Google Scholar] [CrossRef] [Green Version]
- Zuber, V.; Bettella, F.; Witoelar, A.; the PRACTICAL Consortium; the CRUK GWAS; the BCAC Consortium; the TRICL Consortium; Andreassen, O.A.; Mills, I.G.; Urbanucci, A. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genom. 2017, 18, 270. [Google Scholar] [CrossRef]
- Rebbeck, T.R. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography. Semin. Radiat. Oncol. 2018, 27, 617–632. [Google Scholar] [CrossRef] [Green Version]
- Zlotta, A.R.; Egawa, S.; Pushkar, D.; Govorov, A.; Kimura, T.; Kido, M.; Takahashi, H.; Kuk, C.; Kovylina, M.; Aldaoud, N.; et al. Prevalence of Prostate Cancer on Autopsy: Cross-Sectional Study on Unscreened Caucasian and Asian Men. J. Clin. 2013, 105, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.E.; Martin, R.M.; Geybels, M.S.; Stanford, J.L.; Shui, I.; Eeles, R.; Easton, D.; Kote-Jarai, Z.; Al Olama, A.A.; Benlloch, S.; et al. Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. Int. J. Cancer 2017, 328, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Amin, N.; Byrne, E.M.; Johnson, J.; Chenevix-Trench, G.; Walter, S.; Nolte, I.M.; Vink, J.; Rawal, R.; Mangino, M.; Teumer, A.; et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol. Psychiatry 2012, 17, 1116–1129. [Google Scholar] [CrossRef]
- Hukkanen, J.; Iii, P.J.; Peng, M.; Dempsey, D.; Benowitz, N.L. Effect of nicotine on cytochrome P450 1A2 activity. Br. J. Clin. Pharmacol. 2011, 72, 836–838. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; Monda, K.L.; Yu, K.; Paynter, N.; Azzato, E.M.; Bennett, S.N.; Berndt, S.I.; Boerwinkle, E.; Chanock, S.; Chatterjee, N.; et al. Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption. PLoS Genet. 2011, 7, e1002033. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A.; Loy, E.Y.; Poulton, R.; Chia, K.S. Researching Genetic Versus Nongenetic Determinants of Disease: A Comparison and Proposed Unification. Sci. Transl. Med. 2009, 1. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Mukherjee, B.; Aschard, H.; Hsu, L.; Lewinger, J.P.; Patel, C.J.; Witte, J.S.; Amos, C.; Tai, C.G.; Conti, D.; et al. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. Am. J. Epidemiol. 2017, 186, 762–770. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.; Mechanic, L.E.; Amos, C.; Aschard, H.; Blair, I.A.; Chatterjee, N.; Conti, D.; Gauderman, W.J.; Hsu, L.; Hutter, C.M.; et al. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am. J. Epidemiol. 2017, 186, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, Q.; Pierce, B.L.; Huo, D.; Olopade, O.I.; Ahsan, H.; Chen, L. A meta-analysis approach with filtering for identifying gene-level gene-environment interactions. Genet. Epidemiol. 2018, 42, 434–446. [Google Scholar] [CrossRef]
- Hutter, C.M.; Mechanic, L.E.; Chatterjee, N.; Kraft, P.; Gillanders, E.M.; Tank, N.G.-E.T.; Gillander, E.M. Gene-environment interactions in cancer epidemiology: A National Cancer Institute Think Tank report. Genet. Epidemiol. 2014, 37, 643–657. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.J.; Ioannidis, J.P.A. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J. Epidemiol. Community Health 2014, 68, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, L.; Jiao, S.; Dai, J.Y.; Hutter, C.; Peters, U.; Kooperberg, C. Powerful cocktail Interaction, methods for detecting genome-wide gene-environment. Genet. Epidemiol. 2012, 36, 183–194. [Google Scholar] [CrossRef]
- Dai, J.Y.; Kooperberg, C.; Leblanc, M.; Prentice, R.L. Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika 2012, 99, 929–944. [Google Scholar] [CrossRef]
Cancers Site/Types of Study | Genes (SNPs, Genotype, RS-Number, Chromosome, Allele) of Interest | Environmental Exposures | Key Findings on Gene–Environment Interactions Based on OR, RR, and/or HR |
---|---|---|---|
Lung cancer (LC) case-control studies [53] | miR-26a-rs7372209 (TT, CT, AA) | Regular exposure to cooking oil fume | TT and CT genotype carriers of miR-26a-1 rs7372209 and miR-16-1 rs1022960 who had been exposed to cooking oil fumes had a higher risk of developing LC compared to those who were not exposed to cooking oil fumes (OR = 1.743, 95% CI = 1.038–2.753, p = 0.036) and (OR = 2.326, 95% CI = 1.409–3.843, p =0.001), respectively. |
miR-605 rs2043556 | |||
miR-16-1 rs1022960 | |||
Lung cancer (LC) hospital-based case-control studies [54] | rs2608053 (AA, GG, AA/GG) | Heavy cigarette smoking | AG or GG genotype of rs151927 smoking were 7.18 times at risk of LC compared to those with AA genotype with no smoking exposure (OR = 7.108, 95% CI = 2.36–21.37). AG/GG genotypes of rs2608053 and rs13254990 polymorphism were more likely to develop lung cancer compared to non-smokers. |
rs1561927 (AA, GG, AA/GG) | |||
rs13254990 (AA, GG, AA/GG) | |||
Colon cancer case-only and case-control studies from GWAS [55] | rs10849432 at 12p13.31 | Alcohol consumption, lack of physical activity, use of aspirin, high intake of red and processed meat | SNP rs4444235 at 14q22.2 and regular exercise and the SNP rs2423279 at 20p12.3 and regular aspirin use may increase the risk of colorectal cancer initiation. |
rs11196172 at 10q25.2 | |||
rs4444235 at 14q22.2 | |||
rs2423279 at 20p12.3 | |||
rs2241714 at 19q13.2 | |||
rs1957636 at 14q22.3 | |||
Bladder cancer case-control studies [56] | rs1695 AA; | Environmental exposure to arsenic | Genotype–arsenic interactions in the high exposure group were linked to increased risk of bladder cancer initiation. |
GSTP1 AG | |||
Ile105Va GG | |||
Breast (BC) case-control studies [57] | rs4808801 located on chromosome 19 | Age at first birth and menarche, number of pregnancies, obesity, smoking, and heavy alcohol drinking | Strong association was found between BC risk, rs4808801, and four and more full-term pregnancies (OR = 5.08, 95% CI = 0.77–0.93, p = 2.0 × 10−4). Interactions were also found between smoking, rs 11242675, and BC risk (OR = 1.13, 95% CI = 1.06–1.21, p = 3.4 × 10−4), and also between alcohol consumption, BC risk, and rs941764. |
rs11242675 located on chromosome 6 | |||
rs941764 located in chromosome 14 | |||
rs12422552 located in chromosome 12 | |||
rs16857609 located in chromosome 2 | |||
Prostate cancer case-only [58] | CC, TT, CT of JAZF1 genotype | Environmental exposure to lead and cadmium, and heavy cigarette smoking | Strong G × E interactions with carrier of CC genotype, exposure to Pb in houses built before 1960, and PC risk compared to CT or TT genotype (OR = 1.81, 95% CI = 1.04–3.16; p = 0.036). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbemi, A.; Khanna, S.; Njiki, S.; Yedjou, C.G.; Tchounwou, P.B. Impact of Gene–Environment Interactions on Cancer Development. Int. J. Environ. Res. Public Health 2020, 17, 8089. https://doi.org/10.3390/ijerph17218089
Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of Gene–Environment Interactions on Cancer Development. International Journal of Environmental Research and Public Health. 2020; 17(21):8089. https://doi.org/10.3390/ijerph17218089
Chicago/Turabian StyleMbemi, Ariane, Sunali Khanna, Sylvianne Njiki, Clement G. Yedjou, and Paul B. Tchounwou. 2020. "Impact of Gene–Environment Interactions on Cancer Development" International Journal of Environmental Research and Public Health 17, no. 21: 8089. https://doi.org/10.3390/ijerph17218089
APA StyleMbemi, A., Khanna, S., Njiki, S., Yedjou, C. G., & Tchounwou, P. B. (2020). Impact of Gene–Environment Interactions on Cancer Development. International Journal of Environmental Research and Public Health, 17(21), 8089. https://doi.org/10.3390/ijerph17218089