Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Questionnaire
2.3. Anthropometric Measurement
2.4. Exposure Measurement
2.5. Outcome Measurement
2.6. Statistical Analysis
2.7. Ethical Consideration
3. Results
3.1. Demographic Information, HOMA-IR, and Glucose Level of Pesticide Sprayers and Nonfarmworkers
3.2. Assessment of DAP Metabolite Levels
3.3. Assessment of Agricultural Product Consumption Behavior
3.4. Factors Associated with HOMA-IR, Glucose, and Lipid Levels
3.5. Factors Associated with DAP Metabolites in Pesticide Sprayers
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Top 10 Cause of Death 2018. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 20 May 2020).
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; pp. 34–35. [Google Scholar]
- Division of Non Communicable Diseases. Number and Rate of Death from Non-Communicable Diseases 2016–2018. 2019. Available online: http://www.thaincd.com/2016/mission/documents-detail.php?id=13653&tid=32&gid=1-020 (accessed on 20 May 2020).
- Guo, S. Insulin signaling, resistance, and metabolic syndrome: Insights from mouse models into disease mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef] [PubMed]
- Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2016, 92, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernánde, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 27, 122. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, J.; Li, Y. Insulin resistance and cognitive dysfunction. Clin. Chim. Acta 2015, 444, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Zhu, Y.; Wang, Y.; Zhang, H.; Xue, F. Insulin resistance: A significant risk factor of endometrial cancer. Gynecol. Oncol. 2012, 125, 751–757. [Google Scholar] [CrossRef]
- Di Sebastiano, K.M.; Pinthus, J.H.; Duivenvoorden, W.C.; Mourtzakis, M. Glucose impairments and insulin resistance in prostate cancer: The role of obesity, nutrition and exercise. Obes. Rev. 2018, 19, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Amarri, S.; Street, M.E. Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int. J. Mol. Sci. 2019, 20, 2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.E.; Walker, M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr. Cardiol. Rep. 2016, 18, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sell, H.; Habich, C.; Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 2012, 8, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Mechanisms of insulin resistance in obesity. Front. Med. 2013, 7, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Gratas-Delamarche, A.; Derbré, F.; Vincent, S.; Cillard, J. Physical inactivity, insulin resistance, and the oxidative-inflammatory loop. Free Radic Res. 2013, 48, 93–108. [Google Scholar] [CrossRef]
- Black, M.H.; Watanabe, R.M.; Trigo, E.; Takayanagi, M.; Lawrence, J.M.; Buchanan, T.A.; Xiang, A.H. High-fat diet is associated with obesity-mediated insulin resistance and beta-cell dysfunction in Mexican Americans. J. Nutr. 2013, 143, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Boden, G.; Homko, C.; Barrero, C.A.; Stein, T.P.; Chen, X.; Cheung, P.; Fecchio, C.; Merail, S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 2015, 7, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śliwińska-Mossoń, M.; Milnerowicz, H. The impact of smoking on the development of diabetes and its complications. Diab. Vasc. Dis. Res. 2017, 14, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ren, M.; Li, J.; Wei, Q.; Ren, Z.; Lv, J.; Niu, F.; Ren, S. Does omethoate have the potential to cause insulin resistance? Environ. Toxicol. Pharmacol. 2014, 37, 284–290. [Google Scholar] [CrossRef]
- Pournourmohammadi, S.; Ostad, S.N.; Azizi, E.; Ghahremani, M.H.; Farzami, B.; Minaie, B.; Larijani, B.; Abdollahi, M. Induction of insulin resistance by malathion: Evidence for disrupted islets cells metabolism and mitochondrial dysfunction. Pestic. Biochem. Physiol. 2007, 88, 346–352. [Google Scholar] [CrossRef]
- Mostafalou, S.; Eghbal, M.A.; Nili-Ahmadabadi, A.; Baeeri, M.; Abdollahi, M. Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. Toxicol. Ind. Health 2012, 28, 840–851. [Google Scholar] [CrossRef]
- Riwthong, S.; Schreinemachers, P.; Grovermann, C.; Berger, T. Agricultural commercialization: Risk perceptions, risk management and the role of pesticides in Thailand. Kasetsart. J. Soc. Sci. 2017, 38, 264–272. [Google Scholar] [CrossRef]
- Mohammad, N.; Abidin, E.Z.; How, V.; Praveena, S.M.; Hashim, Z. Pesticide management approach towards protecting the safety and health of farmers in Southeast Asia. Rev. Environ. Health 2018, 33, 123–134. [Google Scholar]
- Survey Contact of Agricultural Regulatory Office. Report of Top 10 Import Hazardous Substances 2019. 2019. Available online: http://www.doa.go.th/ard/wp-content/uploads/2020/02/HASTAT62_03.pdf (accessed on 30 May 2020).
- Environmental Research and Training Center. The Study of Method for Decreasing Chemical Use in Agriculture by Participatory Research: Case Study in Mae Tang District, Chiang Mai; Environmental Research and Training Center: Pathum Thani, Thailand, 2014; pp. 90–106.
- Bureau of Non Communicable Diseases. Number of New Hypertensive and Diabetic Patients of Fiscal Year 2017. 2017. Available online: http://www.thaincd.com/2016/mission/documents-detail.php?id=12621&.tid=32&gid=1-020 (accessed on 22 January 2020).
- Starling, A.P.; Umbach, D.M.; Kamel, F.; Long, S.; Sandler, D.P.; Hoppin, J.A. Pesticide use and incident diabetes among wives of farmers in the Agricultural Health Study. Occup. Environ. Med. 2014, 71, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Jamal, F.; Haque, Q.S.; Singh, S. Interrelation of Glycemic Status and Neuropsychiatric Disturbances in Farmers with Organophosphorus Pesticide Toxicity. Open Biochem. J. 2016, 10, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Juntarawijit, C.; Juntarawijit, Y. Association between diabetes and pesticides: A case-control study among Thai farmers. Environ. Health Prev. Med. 2018, 23, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raafat, N.; Abass, M.A.; Salem, H.M. Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin. Biochem. 2012, 45, 1591–1595. [Google Scholar] [CrossRef]
- Prapamontol, T.; Sutan, K.; Laoyang, S.; Hongsibsong, S.; Lee, G.; Yano, Y.; Hunter, R.E.; Ryan, P.B.; Barr, D.B.; Panuwet, P. Cross validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. Int. J. Hyg. Environ. Health 2014, 217, 554–566. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- van den Dries, M.A.; Pronk, A.; Guxens, M.; Spaan, S.; Voortman, T.; Jaddoe, V.W.; Jusko, T.A.; Longnecker, M.P.; Tiemeier, H. Determinants of organophosphate pesticide exposure in pregnant women: A population-based cohort study in the Netherlands. Int. J. Hyg. Environ. Health 2018, 221, 489–501. [Google Scholar] [CrossRef]
- Koureas, M.; Tsakalof, A.; Tzatzarakis, M.; Vakonaki, E.; Tsatsakis, A.; Hadjichristodoulou, C. Biomonitoring of organophosphate exposure of pesticide sprayers and comparison of exposure levels with other population groups in Thessaly (Greece). Occup. Environ. Med. 2014, 71, 126–133. [Google Scholar] [CrossRef]
- Taneepanichskul, N.; Norkaew, S.; Siriwong, W.; Siripattanakul-Ratpukdi, S.; Pérez, H.L.; Robson, M.G. Organophosphate pesticide exposure and dialkyl phosphate urinary metabolites among chili farmers in Northeastern Thailand. Rocz. Panstw. Zakł. Hig. 2014, 65, 291–299. [Google Scholar]
- Bravo, R.; Caltabiano, L.M.; Weerasekera, G.; Whitehead, R.D.; Fernandez, C.; Needham, L.L.; Bradman, A.; Barr, D.B. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, T.; Goldsmith, R.; Goen, T.; Spungen, J.; Novack, L.; Levine, H.; Amitai, Y.; Shohat, T.; Grotto, I. Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: Demographic and dietary predictors. Environ. Int. 2013, 60, 183–189. [Google Scholar] [CrossRef]
- Bradman, A.; Castorina, R.; Barr, D.B.; Chevrier, J.; Harnly, M.E.; Eisen, E.A.; McKone, T.E.; Harley, K.; Holland, N.; Eskenazi, B. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int. J. Environ. Res. Public Health 2011, 8, 1061–1083. [Google Scholar] [CrossRef] [PubMed]
- Curl, C.L.; Beresford, S.A.; Fenske, R.A.; Fitzpatrick, A.L.; Lu, C.; Nettleton, J.A.; Kaufman, J.D. Estimating pesticide exposure from dietary intake and organic food choices: The Multi-Ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect 2015, 123, 475–483. [Google Scholar] [CrossRef]
- Oates, L.; Cohen, M.; Braun, L.; Chembri, A.; Taskova, R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ. Res. 2014, 132, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silipunyo, T.; Hongsibsong, S.; Phalaraksh, C.; Laoyang, S.; Kerdnoi, T.; Patarasiriwong, V.; Prapamontol, T. Determination of organophosphate pesticides residues in fruits, vegetables and health risk assessment among consumers in Chiang Mai Province, Northern Thailand. Res. J. Environ. Toxicol. 2017, 11, 20–27. [Google Scholar]
- Ranjbar, M.; Rotondi, M.A.; Ardern, C.I.; Kuk, J.L. The Influence of Urinary Concentrations of Organophosphate Metabolites on the Relationship between BMI and Cardiometabolic Health Risk. J. Obes. 2015, 2015, 687914. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Tsao, Y.C.; Tzeng, I.S.; Chuang, H.H.; Li, W.C.; Tung, T.H.; Chen, J.Y. Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese. Medicine 2017, 96, e8126. [Google Scholar] [CrossRef]
- Chung, J.O.; Cho, D.H.; Chung, D.J.; Chung, M.Y. Associations among body mass index, insulin resistance, and pancreatic β-cell function in Korean patients with new-onset type 2 diabetes. Korean J. Intern Med. 2012, 1, 66–71. [Google Scholar] [CrossRef]
- Acker, C.I.; Nogueira, C.W. Chlorpyrifos acute exposure induces hyperglycemia and hyperlipidemia in rats. Chemosphere 2012, 89, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, R.; Joshi, A.K.; Rajini, P.S. Organophosphorus insecticide, monocrotophos, possesses the propensity to induce insulin resistance in rats on chronic exposure. J. Diabetes 2014, 7, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Dash, D.K.; Choudhury, A.K.; Singh, M.; Mangaraj, S.; Mohanty, B.K.; Baliarsinha, A.K. Effect of parental history of diabetes on markers of inflammation, insulin resistance and atherosclerosis in first degree relatives of patients with type 2 diabetes mellitus. Diabetes Met. Synd. 2018, 12, 285–289. [Google Scholar] [CrossRef]
- Aekplakorn, W.; Chariyalertsak, S.; Kessomboon, P.; Assanangkornchai, S.; Taneepanichskul, S.; Putwatana, P. Prevalence of Diabetes and Relationship with Socioeconomic Status in the Thai Population: National Health Examination Survey, 2004–2014. J. Diabetes Res. 2018, 2018, 1654530. [Google Scholar] [CrossRef]
- Apidechkul, T.; Laingoen, O.; Suwannaporn, S. Inequity in accessing health care service in Thailand in 2015: A case study of the hill tribe people in Mae Fah Luang district, Chiang Rai, Thailand. J. Health Res. 2016, 30, 67–71. [Google Scholar]
- Apidechkul, T. Prevalence and factors associated with type 2 diabetes mellitus and hypertension among the hill tribe elderly populations in northern Thailand. BMC Public Health 2018, 18, 694. [Google Scholar] [CrossRef]
- Wu, R.R.; Myers, R.A.; Hauser, E.R.; Vorderstrasse, A.; Cho, A.; Ginsburg, G.S.; Orlando, L.A. Impact of genetic testing and family health history based risk counseling on behavior change and cognitive precursors for type 2 diabetes. J. Genet Couns. 2017, 26, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Choi, J.Y.; Lee, S.A.; Lee, K.M.; Shin, A.; Oh, J.; Park, J.; Song, M.; Yang, J.J.; Lee, J.K.; et al. Association between family history of diabetes and clusters of adherence to healthy behaviors: Cross-sectional results from the Health Examinees-Gem (HEXA-G) study. BMJ Open 2019, 9, e025477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissel, J.C.; Curl, C.L.; Kedan, G.; Lu, C.; Griffith, W.; Barr, D.B.; Needham, L.L.; Fenske, R.A. Comparison of organophosphorus pesticide metabolite levels in single and multiple daily urine samples collected from preschool children in Washington State. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Bradman, A.; Kogut, K.; Eisen, E.A.; Jewell, N.P.; Quiros-Alcala, L.; Castorina, R.; Chevrier, J.; Holland, N.T.; Barr, D.B.; Kavanagh-Baird, G.; et al. Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week. Environ. Health Perspect. 2013, 121, 118–124. [Google Scholar] [CrossRef]
- Spaan, S.; Pronk, A.; Koch, H.M.; Jusko, T.A.; Jaddoe, V.W.; Shaw, P.A.; Tiemeier, H.M.; Hofman, A.; Pierik, F.H.; Longnecker, M.P. Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Wong, L.Y.; Bravo, R.; Weerasekera, G.; Odetokun, M.; Restrepo, P.; Kim, D.G.; Fernandez, C.; Perez, J.; Gallegos, M.; et al. Urinary concentrations of dialkylphosphate metabolites of organophosphorus pesticides: National Health and Nutrition Examination Survey 1999–2004. Int. J. Environ. Res. Public Health 2011, 8, 3063–3098. [Google Scholar] [CrossRef]
- Suratman, S.; Edwards, J.W.; Babina, K. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Rev. Environ. Health 2015, 30, 65–79. [Google Scholar] [PubMed]
- Karami-Mohajeri, S.; Abdollahi, M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A systematic review. Hum. Exp. Toxicol. 2011, 30, 1119–1140. [Google Scholar] [CrossRef]
- Aguilar-Garduño, C.; Blanco-Muñoz, J.; Antonio, K.R.; Escamilla-Nuñez, C.; Juárez-Pérez, C.A.; Schilmann, A.; Cebrian, M.E.; Lacasaña, M. Occupational predictors of urinary dialkyl phosphate concentrations in Mexican flower growers. Int. J. Occup. Environ. Health 2017, 23, 151–159. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Jing, R.; Wheeler, K.; Smith, G.A.; Stallones, L.; Xiang, H. Work-related pesticide poisoning among farmers in two villages of Southern China: A cross-sectional survey. BMC Public Health 2011, 11, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Pesticide Sprayers (n = 142) | Nonfarmworkers (n = 143) | p-Value |
---|---|---|---|
Age (mean ± SD) a | 50.15 ± 6.35 | 51.71 ± 5.80 | 0.03 * |
Sex, n (%) b | 0.02 * | ||
Male | 57 (40.1) | 39 (27.3) | |
Female | 85 (66.3) | 104 (72.7) | |
BMI, n (%) b | 0.32 | ||
Normal | 52 (36.6) | 44 (30.8) | |
Overweight | 33 (23.2) | 29 (20.3) | |
Obese | 57 (40.1) | 70 (49) | |
Educational level, n (%) b | <0.01 * | ||
Less than primary school | 68 (47.9) | 30 (21.0) | |
Primary school | 34 (23.9) | 49 (34.3) | |
High school | 33 (23.2) | 45 (31.5) | |
High vocational and college | 7 (4.9) | 19 (13.3) | |
Family history of diabetes, n (%) b | 107 (75.4) | 85 (59.4) | <0.01 * |
Excessive alcohol consumption, n (%) b | 32 (22.5) | 27 (18.9%) | 0.44 |
Current smoking, n (%) b | 25 (38) | 13 (9.1) | 0.03 * |
Adequate physical activity, n (%) b | 127 (89.4) | 120 (83.9%) | 0.17 |
Excessive calorie intake, n (%) b | 37 (26.1) | 19 (13.3) | <0.01 * |
Excessive carbohydrate intake, n (%) b | 79 (55.6) | 38 (26.6) | <0.01 * |
Cumulative OP exposure (hours) (mean ± SD) a | 447.06 ± 2919.69 | 0 ± 0 | <0.01 * |
HOMA-IR (mean ± SD) a | 1.48 ± 1.27 | 2.30 ± 2.88 | <0.01 * |
Abnormal HOMA-IR, n (%) b | 32 (22.5) | 54 (37.8) | <0.01 * |
Fasting blood glucose (mean ± SD) a | 86.17 ± 12.21 | 90.88 ± 11.84 | <0.01 * |
Abnormal fasting blood glucose, n (%) b | 17 (12) | 25 (17.5) | 0.18 |
Metabolites (μg/g creatinine) | Pesticide Sprayers (n = 36) | Nonfarmworkers (n = 42) | p-Value | ||
---|---|---|---|---|---|
Median (Range) | Detection Frequency, n (%) | Median (Range) | Detection Frequency, n (%) | ||
DMP | 1.59 (0.57, 17.18) | 1 (2.8) | 1.96 (0.65,15.94) | 2 (4.8) | 0.07 |
DMTP | 0.30 (0.10, 3.92) | 5 (13.9) | 0.36 (0.10, 5.72) | 7 (16.7) | 0.25 |
DMDTP | 0.13 (0.05, 0.77) | 1 (2.8) | 0.15 (0.05, 0.56) | 0 (0) | 0.20 |
DEP | 1.73 (0.06, 25.81) | 28 (77.8) | 1.68 (0.30, 11.58) | 39 (92.9) | 0.77 |
DETP | 1.29 (0.03, 32.73) | 31 (86.1) | 0.61 (0.06, 10.94) | 35 (83.3) | 0.03 * |
DEDTP | 0.14 (0.05, 18.12) | 9 (25) | 0.16 (0.05, 1.65) | 2 (4.8) | 0.99 |
∑DAP | 7.30 (1.19, 74.37) | 34 (94.4) | 6.63 (2.81, 18.02) | 40 (95.2) | 0.69 |
Behavior | Pesticide Sprayers, n (%) | Nonfarmworkers, n (%) | p-Value |
---|---|---|---|
Organic vegetable consumption | <0.01 * | ||
Always | 63 (44.4) | 35 (24.5) | |
Sometimes | 43 (30.3) | 44 (30.8) | |
Rarely | 36 (25.4) | 64 (44.8) | |
Organic fruit consumption | <0.01 * | ||
Always | 40 (28.2) | 22 (15.4) | |
Sometimes | 57 (40.1) | 42 (29.4) | |
Rarely | 45 (31.7) | 79 (55.2) | |
Organic rice consumption | <0.01 * | ||
Always | 38 (26.8) | 20 (14.0) | |
Sometimes | 34 (23.9) | 26 (18.2) | |
Rarely | 70 (49.3) | 97 (67.8) | |
Eat food cooked by themselves or their family members | <0.01 * | ||
Always | 134 (94.4) | 106 (74.1) | |
Sometimes | 6 (4.2) | 31 (21.7) | |
Rarely | 2 (1.4) | 6 (4.2) | |
Wash vegetables and fruits before eating | 0.19 | ||
Always | 136 (95.8) | 134 (93.7) | |
Sometimes | 3 (2.1) | 1 (0.7) | |
Rarely | 3 (2.1) | 8 (5.6) |
HOMA-IR | Fasting Blood Glucose | |||||
---|---|---|---|---|---|---|
Beta | SE | 95% CI | Beta | SE | 95% CI | |
Age | 0.07 | 0.02 | −0.03, 0.05 | 0.19 | 0.23 | −0.10, 0.84 |
Sex | −0.06 | 0.32 | −0.08, 0.47 | −0.22 | 3.45 | −12.52, 1.28 |
Educational level | 0.10 | 0.14 | −0.14, 0.42 | 0.15 | 1.50 | −1.14, 4.85 |
Family history of diabetes | −0.05 | 0.28 | −0.69, 0.42 | −0.31 | 2.95 | −13.67, −1.87 * |
Excessive calorie intake | 0.09 | 0.33 | −0.37, 0.98 | 0.06 | 3.58 | −5.27, 9.04 |
Physical activity | 0.06 | 0.52 | −0.75, 1.34 | −0.10 | 5.55 | −15.51, 6.68 |
Smoking status | 0.004 | 0.60 | −1.18, 1.22 | −0.09 | 6.38 | −17.21, 8.27 |
Diuretic taking duration | 0.06 | 0.44 | −0.65, 1.12 | −0.04 | 4.70 | −10.98, 7.81 |
Alcohol consumption | −0.14 | 0.00 | −0.001, 0.00 | −0.05 | 0.002 | −0.005, 0.003 |
Waist circumference | 0.46 | 0.01 | 0.03, 0.09 * | 0.11 | 0.15 | −0.16, 0.46 |
∑DAP | −0.20 | 0.01 | −0.05, 0.001 | 0.06 | 0.14 | −0.20, 0.37 |
LDL | Triglyceride | HDL | |||||||
---|---|---|---|---|---|---|---|---|---|
Beta | SE | 95% CI | Beta | SE | 95% CI | Beta | SE | 95% CI | |
Age | 0.13 | 0.73 | −0.65, 2.27 | 0.04 | 2.53 | −4.04, 6.08 | −0.06 | 0.17 | −0.44, 0.23 |
Sex | 0.22 | 9.53 | −1.38, 36.70 | −0.11 | 32.98 | −98.50, 33.15 | 0.36 | 2.23 | 2.86, 11.77 * |
Educational level | 0.23 | 4.61 | −0.58, 17.84 | −0.004 | 15.99 | −32.56, 31.28 | −0.02 | 1.08 | −2.42, 1.89 |
Excessive calorie intake | −0.01 | 11.02 | −23.13, 20.89 | 0.30 | 38.24 | 30.84, 183.53 * | −0.32 | 2.58 | −12.95, −2.62 |
Physical activity | −0.07 | 14.83 | −38.90, 20.34 | 0.19 | 51.51 | −9.52, 196.14 | 0.13 | 3.48 | −2.69, 11.22 |
Lipid-lowering medication | −0.17 | 13.54 | −46.36, 8.74 | 0.09 | 46.97 | −52.99, 134.53 | −0.12 | 3.17 | −9.83, 2.85 |
Alcohol consumption | −0.23 | 0.006 | −0.02, 0.00 | 0.37 | 0.02 | 0.03, 0.12 * | −0.21 | 0.001 | −0.006, 0.00 |
∑DAP | 0.04 | 0.40 | −0.65, 0.96 | −0.94 | 1.40 | −4.00, 1.60 | 0.12 | 0.09 | −0.08, 0.29 |
Variables | DAPs | DMAPs | DEAPs | ||||||
---|---|---|---|---|---|---|---|---|---|
Beta | SE | 95% CI | Beta | SE | 95% CI | Beta | SE | 95% CI | |
Age | −0.18 | 0.57 | −1.61, 0.96 | 0.04 | 0.18 | −0.38, 0.43 | −0.19 | 0.48 | −1.43, 0.73 |
Sex | 0.04 | 6.00 | −12.38, 14.39 | 0.57 | 1.90 | −0.26, 8.21 | −0.12 | 5.04 | −14.21, 8.26 |
Education level | −0.15 | 2.88 | −8.22, 4.61 | −0.17 | 0.91 | −2.63, 1.43 | −0.10 | 2.41 | −6.59, 4.18 |
Smoking status | 0.18 | 11.91 | −19.26, 33.81 | 0.02 | 43.77 | −8.10, 8.70 | 0.18 | 10.00 | −15.31, 29.26 |
Duration of spraying pesticides | −0.30 | 0.46 | −1.44, 0.60 | −0.41 | 0.14 | −0.49, 0.15 | −0.17 | 0.38 | −1.11, 6.12 |
Long-sleeved shirt | 0.18 | 16.91 | −25.73, 49.63 | −0.38 | 5.35 | −19.26, 4.60 | 0.30 | 14.20 | −12.36, 50.93 |
Glasses | −0.20 | 6.92 | −20.16, 10.69 | −0.11 | 2.19 | −5.65, 4.12 | −0.17 | 5.81 | −16.93, 8.99 |
Mask | −0.05 | 7.74 | −19.26, 15.24 | −0.56 | 2.45 | −11.10, −0.17 * | 0.10 | 6.50 | −10.86, 18.11 |
Hat | 0.19 | 18.41 | −28.26, 53.75 | −0.29 | 5.83 | −18.56, 7.42 | 0.28 | 15.46 | −16.12, 52.78 |
Eat during spraying | −0.03 | 12.29 | −28.73, 26.06 | −0.26 | 3.89 | −11.64, 5.71 | 0.04 | 10.33 | −21.38, 24.65 |
Wash hands before eating | 0.25 | 8.81 | −13.65, 25.63 | 0.25 | 2.79 | −4.48, 7.96 | 0.18 | 7.40 | −12.24, 20.74 |
Scratch body while spraying | 0.21 | 9.87 | −15.81, 28.19 | −0.53 | 3.12 | −11.47, 2.46 | 0.37 | 8.29 | −7.79, 29.17 |
Read pesticide labels | −0.74 | 17.75 | −88.12, 8.98 | −0.17 | 5.62 | −12.85, 12.21 | −0.75 | 14.91 | −81.47, −14.99 * |
Mix with bare hands | 0.16 | 7.80 | −12.23, 22.54 | 0.32 | 2.47 | −2.58, 8.43 | 0.07 | 6.55 | −12.37, 16.83 |
Wash hands after mixing pesticides | −0.50 | 9.78 | −38.94, 4.65 | 0.45 | 3.09 | −2.38, 11.42 | −0.64 | 8.21 | −39.97, −3.35 * |
Shower after spraying | −0.30 | 15.85 | −23.60, 47.04 | −0.004 | 5.02 | −11.23, 11.14 | 0.30 | 13.31 | −17.90, 41.43 |
Wash clothes on the same day of spraying | −0.20 | 6.92 | −20.16, 10.69 | 0.03 | 2.06 | −4.34, 4.85 | 0.03 | 5.47 | −11.45, 12.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seesen, M.; Lucchini, R.G.; Siriruttanapruk, S.; Sapbamrer, R.; Hongsibsong, S.; Woskie, S.; Kongtip, P. Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers. Int. J. Environ. Res. Public Health 2020, 17, 8140. https://doi.org/10.3390/ijerph17218140
Seesen M, Lucchini RG, Siriruttanapruk S, Sapbamrer R, Hongsibsong S, Woskie S, Kongtip P. Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers. International Journal of Environmental Research and Public Health. 2020; 17(21):8140. https://doi.org/10.3390/ijerph17218140
Chicago/Turabian StyleSeesen, Mathuramat, Roberto G. Lucchini, Somkiat Siriruttanapruk, Ratana Sapbamrer, Surat Hongsibsong, Susan Woskie, and Pornpimol Kongtip. 2020. "Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers" International Journal of Environmental Research and Public Health 17, no. 21: 8140. https://doi.org/10.3390/ijerph17218140
APA StyleSeesen, M., Lucchini, R. G., Siriruttanapruk, S., Sapbamrer, R., Hongsibsong, S., Woskie, S., & Kongtip, P. (2020). Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers. International Journal of Environmental Research and Public Health, 17(21), 8140. https://doi.org/10.3390/ijerph17218140