Prediction of Somatotype from Bioimpedance Analysis in Elite Youth Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
3.1. Models Developments
3.2. Cross Validation of Derived Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sports Med. Phys. Fitness 2019, 59, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The role of somatic maturation on bioimpedance patterns and body composition in male elite youth soccer players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Front. Physiol. 2020, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, C.N.; Santos, D.A.; Júdice, P.B.; Magalhães, J.P.; Minderico, C.S.; Fields, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clin. Nutr. 2016, 35, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Campa, F.; Santos, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Fat-free Mass BIA Predictive Equation for Athletes Using a 4-Compartment Model. Int. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Correia, I.R.; Magalhães, J.P.; Júdice, P.B.; Silva, A.M.; Hetherington-Rauth, M. Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes. Eur J. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Wang, Z.M.; Pierson, R.N., Jr.; Heymsfield, S.B. The five-level model: A new approach to organizing body-composition research. Am. J. Clin. Nutr. 1992, 56, 19–28. [Google Scholar] [CrossRef]
- Campa, F.; Semprini, G.; Júdice, P.B.; Messina, G.; Toselli, S. Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef]
- Cárdenas-Fernández, V.; Chinchilla-Minguet, J.L.; Castillo-Rodríguez, A. Somatotype and Body Composition in Young Soccer Players According to the Playing Position and Sport Success. J. Strength Cond. Res. 2019, 33, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Katch, F.I.; Katch, V.L. Measurement and prediction errors in body composition assessment and the search for the perfect prediction equation. Res. Q Exerc Sport. 1980, 51, 249–260. [Google Scholar] [CrossRef]
- Carter, J.E.L. The Heath-Carter Somatotype Method, 3rd ed.; San Diego State University Syllabus Service: San Diego, CA, USA, 1980. [Google Scholar]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic bioelectrical impedance vector reference values for assessing body composition in male and female athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaski, H.C.; Piccoli, A. Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In Handbook of Anthropometry; Preedy, V., Ed.; Springer: Berlin, Germany, 2012; pp. 287–305. [Google Scholar]
- Guo, S.S.; Chumlea, W.C.; Cockram, D.B. Use of statistical methods to estimate body composition. Am. J. Clin. Nutr. 1996, 64, 428S–435S. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.S.; Chumlea, W.C. Statistical methods for the development and testing of predictive equations. In Human Body Composition; Roche, A.F., Heymsfield, S.B., Lohman, T.G., Eds.; Human Kinetics: Champaign, IL, USA, 1996; pp. 191–202. [Google Scholar]
- Lin, L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Rudnev, S.G.; Negasheva, M.A.; Godina, E.Z. Assessment of the Heath-Carter somatotype in adults using bioelectrical impedance analysis. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1272, 012001. [Google Scholar] [CrossRef]
- Anisimova, A.V.; Godina, E.Z.; Nikolaev, D.V.; Rudnev, S.G. Evaluation of the Heath-Carter somatotype revisited: New bioimpedance equations for children and adolescents. IFMBE Proc. 2016, 54, 80–83. [Google Scholar] [CrossRef]
- McBride, G.B. A Proposal fo Strength-of-Agreement Criteria for Lin’s Concordance Correlation Coefficient; National Institute of Water & Atmospheric Research Ltd.: Auckland, New Zealand, 2005. [Google Scholar]
- Campa, F.; Silva, A.M.; Matias, C.N.; Monteiro, C.P.; Paoli, A.; Nunes, J.P.; Talluri, J.; Lukaski, H.C.; Toselli, S. Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players. Int J. Environ. Res. Public Health 2020, 17, 6604. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, J.H.; Kim, H.; Chung, S.; Park, S.H. Modeling the human body shape in bioimpedance vector measurements. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3872–3874. [Google Scholar]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying athlete body-fluid changes during a competitive season with bioelectrical impedance vector analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Pastori, G.; Codognotto, M.; Paoli, A. Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. Br. J. Nutr. 2007, 97, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Rakovi’c, A.; Savanovi´c, V.; Stankovi´c, D.; Pavlovi´c, R.; Simeonov, A.; Petkovi´c, E. Analysis of the elite athletes’ somatotypes. Acta Kinesiol. 2015, 9, 47–53. [Google Scholar]
- Sánchez Muñoz, C.; Muros, J.J.; López Belmonte, Ó.; Zabala, M. Anthropometric characteristics, body composition and somatotype of elite male young runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, S.; Singh, S.; Singh, I.; Varte, L.R.; Sahani, R.; Rawat, S. Somatotypes of Indian Athletes of Different Sports. Online J. Health Allied Sci. 2019, 18, 6. [Google Scholar]
- Silva, A.M.; Matias, C.N.; Nunes, C.L.; Santos, D.A.; Marini, E.; Lukaski, H.C.; Sardinha, L.B. Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur. J. Clin. Nutr. 2019, 73, 1077–1083. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Vassilios Karydis, N. Physique and body composition in soccer players across adolescence. Asian J. Sports Med. 2011, 2, 75–82. [Google Scholar] [CrossRef] [Green Version]
Development Group (n = 117) | Cross Validation Group (n = 56) | |
---|---|---|
Mean ± standard deviation | Mean ± standard deviation | |
Age (years) | 13.5 ± 2.1 | 13.5 ± 2.3 |
Weight (kg) | 53.5 ± 14.9 | 54.0 ± 14.9 |
Stature (cm) | 162.3 ± 15.2 | 162.2 ± 16.7 |
Body mass index (kg/m2) | 20.0 ± 2.5 | 19.9 ± 2.5 |
Resistance (ohm) | 555.4 ± 89.7 | 537.9 ± 73.3 |
Reactance (ohm) | 64.4 ± 6.9 | 62.1 ± 9.9 |
Phase angle (degree) | 6.7 ± 0.9 | 6.7 ± 1.1 |
Fat free mass (kg) | 47.6 ± 12.6 | 48.3 ± 12.5 |
Triceps skinfold (mm) | 8.1 ± 2.6 | 7.6 ± 2.3 |
Subscapular skinfold (mm) | 6.6 ± 2.1 | 6.3 ± 1.7 |
Supraspinal skinfold (mm) | 5.8 ± 2.6 | 5.4 ± 1.9 |
Medial calf skinfold (mm) | 6.9 ± 2.5 | 6.6 ± 2.4 |
Contracted arm circumference (cm) | 25.5 ± 4.1 | 25.9 ± 3.6 |
Calf circumference (cm) | 33.3 ± 4.8 | 33.8 ± 3.5 |
Humerus width (cm) | 6.3 ± 0.6 | 6.3 ± 0.7 |
Femur width (cm) | 9.1 ± 0.7 | 9.2 ± 0.7 |
Endomorphy | 2.1 ± 0.7 | 1.9 ± 0.5 |
Mesomorphy | 4.1 ± 1.1 | 4.3 ± 0.9 |
Ectomorphy | 3.3 ± 1.0 | 3.1 ± 1.1 |
Predictors | R | R2 | SEE | VIF | Prediction Equation | |
---|---|---|---|---|---|---|
Endomorphy | S2/R BMI Triceps skinfold | 0.92 | 0.86 | 0.28 | 4.22 3.61 1.55 | y = −1.953 − 0.011 × S2/R + 0.135 × BMI + 0.232 × triceps skinfold |
Mesomorphy | PhA CAC CC Stature | 0.93 | 0.87 | 0.40 | 1.49 2.34 1.84 2.68 | y = 6.848 + 0.138 × PhA + 0.232 × CAC + 0.166 × CC − 0.093 × stature |
Ectomorphy | FFM/S Stature | 0.93 | 0.86 | 0.37 | 4.75 4.75 | y = −5.592 − 38.237 × FFM/S + 0.123 × Stature |
Regression Analysis | CCC Analysis | Agreement Analysis | ||||||
---|---|---|---|---|---|---|---|---|
R2 | PE | CCC | ρ | Cb | Bias | 95% LoA | Trend | |
Cross Validation | ||||||||
Endomorphy | 0.84 | 0.222 | 0.92 | 0.9158 | 0.9954 | −0.004 | −0.246; 0.239 | r = 0.232 (p = 0.086) |
Mesomorphy | 0.80 | 0.422 | 0.89 | 0.8920 | 0.9932 | 0.034 | −0.034; 0.452 | r = −0.238 (p = 0.077) |
Ectomorphy | 0.87 | 0.389 | 0.93 | 0.9335 | 0.9987 | −0.029 | −0.415; 0.357 | r = −0.117 (p = 0.390) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campa, F.; Matias, C.N.; Nikolaidis, P.T.; Lukaski, H.; Talluri, J.; Toselli, S. Prediction of Somatotype from Bioimpedance Analysis in Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 8176. https://doi.org/10.3390/ijerph17218176
Campa F, Matias CN, Nikolaidis PT, Lukaski H, Talluri J, Toselli S. Prediction of Somatotype from Bioimpedance Analysis in Elite Youth Soccer Players. International Journal of Environmental Research and Public Health. 2020; 17(21):8176. https://doi.org/10.3390/ijerph17218176
Chicago/Turabian StyleCampa, Francesco, Catarina N. Matias, Pantelis T. Nikolaidis, Henry Lukaski, Jacopo Talluri, and Stefania Toselli. 2020. "Prediction of Somatotype from Bioimpedance Analysis in Elite Youth Soccer Players" International Journal of Environmental Research and Public Health 17, no. 21: 8176. https://doi.org/10.3390/ijerph17218176
APA StyleCampa, F., Matias, C. N., Nikolaidis, P. T., Lukaski, H., Talluri, J., & Toselli, S. (2020). Prediction of Somatotype from Bioimpedance Analysis in Elite Youth Soccer Players. International Journal of Environmental Research and Public Health, 17(21), 8176. https://doi.org/10.3390/ijerph17218176