Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sugarcane Harvesting
2.2. Wet Bulb Globe Temerpature
2.3. Data Sources
2.4. Variables of Interset
2.4.1. Outcome Variables
2.4.2. Primary Predictor Variable
2.4.3. Control Variables
2.5. Statistical Analyses
2.5.1. Functional form of the Relationship between WBGT and Occupational Injury
2.5.2. Regression Modelling
2.5.3. Sensitivity Analyses
3. Results
3.1. Occupational Injury Counts and Rates
3.2. Wet Bulb Globe Temperature
3.3. Association of WBGT with Occupational Injury
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G. Climate Change: Impacts, Adaptation, and Vulnerability Part B: Regional Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1499–1566. [Google Scholar]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef]
- Lancet Countdown. Lancet Countdown on Health and Climate Change Brief for the United States of America; Salas, R., Knappenberger, P., Hess, J.J., Eds.; Lancet Countdown U.S. Brief: London, UK, 2018; p. 32. [Google Scholar]
- Schulte, P.A.; Bhattacharya, A.; Butler, C.R.; Chun, H.K.; Jacklitsch, B.; Jacobs, T.; Kiefer, M.; Lincoln, J.; Pendergrass, S.; Shire, J.; et al. Advancing the framework for considering the effects of climate change on worker safety and health. J. Occup. Environ. Hyg. 2016, 13, 847–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bureau of Labor Statistics. Industry Injury and Illness Data 2017. Available online: https://www.bls.gov/iif/oshsum.htm#17Summary_Tables (accessed on 30 September 2019).
- International Labour Organization. Statistics and Databases. Available online: https://www.ilo.org/global/statistics-and-databases/lang--en/index.htm (accessed on 21 October 2019).
- Centers for Disease Control. Heat-related deaths among crop workers—United States, 1992–2006. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 649–653. [Google Scholar]
- Global Agriculture. Industrial Agriculture and Small-Scale Farming 2018. Available online: https://www.globalagriculture.org/report-topics/industrial-agriculture-and-small-scale-farming.html (accessed on 30 September 2019).
- Kjellstrom, T.; Holmer, I.; Lemke, B. Workplace heat stress, health and productivity—An increasing challenge for low and middle-income countries during climate change. Glob. Health Action 2009, 2. [Google Scholar] [CrossRef] [PubMed]
- Marx, J.; Rosen, P. Rosen’s Emergency Medicine: Concepts and Clinical Practices, 8th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2014. [Google Scholar]
- Schifano, P.; Leone, M.; De Sario, M.; de’Donato, F.; Bargagli, A.M.; D’Ippoliti, D.; Marino, C.; Michelozzi, P. Changes in the effects of heat on mortality among the elderly from 1998–2010: Results from a multicenter time series study in Italy. Environ. Health 2012, 11, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarofim, M.; Saha, S.; Hawkins, M.; Mills, D.M.; Hess, J.; Horton, R. Temperature-related death and illnes. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Global Change Research Program: Washington, DC, USA, 2016; pp. 43–68. [Google Scholar]
- Adam-Poupart, A.; Smargiassi, A.; Busque, M.A.; Duguay, P.; Fournier, M.; Zayed, J.; Labrèche, F. Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada). Occup. Environ. Med. 2015, 72, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Pilcher, J.; Nadler, E.; Busch, C. Effects of hot and cold temperature exposure on performance: A meta-analytic review. Ergonomics 2002, 45, 682–698. [Google Scholar] [CrossRef]
- Bonafede, M.; Marinaccio, A.; Asta, F.; Schifano, P.; Michelozzi, P.; Vecchi, S. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. Ann. Dell’Ist. Super. Sanita 2016, 52, 357–367. [Google Scholar]
- Chlíbková, D.; Knechtle, B.; Rosemann, T.; Tomášková, I.; Novotný, J.; Žákovská, A.; Uher, T. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners. J. Int. Soc. Sports Nutr. 2015, 12, 29. [Google Scholar]
- Bodin, T.; García-Trabanino, R.; Weiss, I.; Jarquín, E.; Glaser, J.; Jakobsson, K.; Lucas, R.A.I.; Wesseling, C.; Hogstedt, C.; Wegman, D.H. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1. Occup. Environ. Med. 2016, 73, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, J.; Lemery, J.; Rajagopalan, B.; Diaz, H.F.; García-Trabanino, R.; Taduri, G.; Madero, M.; Amarasinghe, M.; Abraham, G.; Anutrakulchai, S.; et al. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clin. J. Am. Soc. Nephrol. 2016, 11, 1472–1483. [Google Scholar] [CrossRef] [Green Version]
- Wegman, D.H.; Apelqvist, J.; Bottai, M.; Ekström, U.; García-Trabanino, R.; Glaser, J.; Hogstedt, C.; Jakobsson, K.; Jarquín, E.; Lucas, R.A.; et al. Intervention to diminish dehydration and kidney damage among sugarcane workers. Scand J. Work Environ. Health 2017, 44, 16–24. [Google Scholar] [CrossRef]
- Ordunez, P.; Nieto, F.J.; Martinez, R.; Soliz, P.; Giraldo, G.P.; Mott, S.A.; Hoy, W.E. Chronic kidney disease mortality trends in selected Central America countries, 1997–2013: Clues to an epidemic of chronic interstitial nephritis of agricultural communities. J. Epidemiol. Community Health 2018, 72, 280–286. [Google Scholar] [CrossRef]
- Varghese, B.M.; Hansen, A.L.; Williams, S.; Bi, P.; Hanson-Easey, S.; Barnett, A.G.; Heyworth, J.S.; Sim, M.R.; Rowett, S.; Nitschke, M.; et al. Determinants of heat-related injuries in Australian workplaces: Perceptions of health and safety professionals. Sci. Total Environ. 2020, 718, 137138. [Google Scholar] [CrossRef]
- Martínez-Solanas, È.; López-Ruiz, M.; Wellenius, G.A.; Gasparrini, A.; Sunyer, J.; Benavides, F.G.; Basagaña, X. Evaluation of the Impact of Ambient Temperatures on Occupational Injuries in Spain. Environ. Health Perspect. 2018, 126, 067002. [Google Scholar] [CrossRef]
- Ma, R.; Zhong, S.; Morabito, M.; Hajat, S.; Xu, Z.; He, Y.; Bao, J.; Sheng, R.; Li, C.; Fu, C.; et al. Estimation of work-related injury and economic burden attributable to heat stress in Guangzhou, China. Sci. Total Environ. 2019, 666, 147–154. [Google Scholar] [CrossRef]
- McInnes, J.A.; Akram, M.; Macfarlane, E.M.; Keegel, T.; Sim, M.R.; Smith, P. Association between high ambient temperature and acute work-related injury: A case-crossover analysis using workers’ compensation claims data. Scand. J. Work Environ. Health 2017, 43, 86–94. [Google Scholar] [CrossRef]
- Crowe, J.; Wesseling, C.; Solano, B.R.; Umaña, M.P.; Ramírez, A.R.; Kjellstrom, T.; Morales, D.; Nilsson, M. Heat exposure in sugarcane harvesters in Costa Rica. Am. J. Ind. Med. 2013, 56, 1157–1164. [Google Scholar] [CrossRef]
- Lemke, B.; Kjellstrom, T. Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Ind. Health 2012, 50, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Dally, M.; Butler-Dawson, J.; Krisher, L.; Monaghan, A.; Weitzenkamp, D.; Sorensen, C.; Johnson, R.J.; Carlton, E.J.; Asensio, C.; Tenney, L.; et al. The impact of heat and impaired kidney function on productivity of Guatemalan sugarcane workers. PLoS ONE 2018, 13, e0205181. [Google Scholar] [CrossRef] [Green Version]
- NIOSH. Working in Hot Environments; NIOSH Pub. No. 86–112; NIOSH: Cincinnati, OH, USA, 1986.
- Krisher, L.; Butler-Dawson, J.; Dally, M.; Jaramillo, D.; Newman, L.S. Enfermedad renal crónica de causa desconocida: Investigaciones en Guatemala y oportunidades para su prevención. Ciencia Tecnología y Salud. 2020, 7. [Google Scholar] [CrossRef]
- Krisher, L.; Butler-Dawson, J.; Yoder, H.; Pilloni, D.; Dally, M.; Johnson, E.C.; Jaramillo, D.; Cruz, A.; Asensio, C.; Newman, L.S. Electrolyte Beverage Intake to Promote Hydration and Maintain Kidney Function in Guatemalan Sugarcane Workers Laboring in Hot Conditions. J. Occup. Environ. Med. 2020. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Sta. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [Green Version]
- Vuong, Q.H. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 1989, 57, 307–333. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, C.; Wegman, D. Workers: The climate canaries. Am. J. Public Health 2014, 104, 1799–1801. [Google Scholar] [CrossRef]
- OSHA. OSHA Technical Manual Section III: Chapter 4 Heat Stress 2017. Available online: https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html (accessed on 15 September 2017).
- Sheng, R.; Li, C.; Wang, Q.; Yang, L.; Bao, J.; Wang, K.; Ma, R.; Gao, C.; Lin, S.; Zhang, Y.; et al. Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China. Int. J. Hyg. Environ. Health 2018, 221, 423–428. [Google Scholar] [CrossRef]
- Binazzi, A.; Levi, M.; Bonafede, M.; Bugani, M.; Messeri, A.; Morabito, M.; Marinaccio, A.; Baldasseroni, A. Evaluation of the impact of heat stress on the occurrence of occupational injuries: Meta-analysis of observational studies. Am. J. Ind. Med. 2019, 62, 233–243. [Google Scholar] [CrossRef]
- Riccò, M. Air temperature exposure and agricultural occupational injuries in the Autonomous Province of Trento (2000–2013, North-Eastern Italy). Int. J. Occup. Med. Environ. Health 2018, 31, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.J.; Bonauto, D.K. Fau—Foley MP, Foley Mp Fau—Silverstein BA, Silverstein BA. Underreporting of work-related injury or illness to workers‘ compensation: Individual and industry factors. J. Occup. Environ. Med. 2006, 48, 914–922. [Google Scholar] [CrossRef]
- Spector, J.T.; Masuda, Y.J.; Wolff, N.H.; Calkins, M.; Seixas, N. Heat Exposure and Occupational Injuries: Review of the Literature and Implications. Curr. Environ. Health Rep. 2019, 6, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K.; Kuklane, K.; Gao, C.; Holm Eacute, R.I. Effects of Heat Stress on Working Populations when Facing Climate Change. Ind. Health 2013, 51, 3–15. [Google Scholar] [CrossRef] [Green Version]
Injury Type | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | Overall |
---|---|---|---|---|---|
Total injuries | 67 | 87 | 33 | 14 | 201 |
Cuts, falls, or slips | 64 (96%) | 68 (78%) | 22 (67%) | 9 (64%) | 163 (81%) |
Cuts | 38 (58%) | 48 (55%) | 16 (49%) | 9 (64%) | 111 (55%) |
Falls | 1 (2%) | 9 (10%) | 4 (12%) | 0 (0%) | 14 (6%) |
Slips | 25 (37%) | 11 (13%) | 2 (6%) | 0 (0%) | 38 (19%) |
All other | 3 (4%) | 19 (22%) | 11 (33%) | 5 (36%) | 38 (19%) |
Dehydration 2 | – | – | 55 | 17 | 72 |
Annual Rate Per 100 Workers | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | Overall |
---|---|---|---|---|---|
Total injury rate | 2.02 | 2.94 | 1.33 | 0.68 | 1.84 |
Cuts, falls, or slips rate | 1.93 | 2.30 | 0.88 | 0.44 | 1.49 |
Dehydration rate 1 | – | – | 2.21 | 0.82 | 1.57 |
Average # of workers | 3319 | 2962 | 2491 | 2066 | 2734 |
Daily Rate Per 1000 Workers | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | Overall |
---|---|---|---|---|---|
Total injury rate | 0.11 (0.20) | 0.16 (0.23) | 0.07 (0.17) | 0.04 (0.15) | 0.10 (0.20) |
Cuts, falls, or slips rate | 0.11 (0.20) | 0.12 (0.21) | 0.05 (0.14) | 0.03 (0.12) | 0.08 (0.18) |
Dehydration rate 1 | – | – | 0.12 (0.25) 2 | 0.05 (0.17) | 0.09 (0.21) |
All Injuries 1 | Cut, Slips, or Falls | Dehydration 2 | ||||
---|---|---|---|---|---|---|
RR (95% CI) | p-value | RR (95% CI) | p-value | RR (95% CI) | p-value | |
Centered 3 WBGTmean | 1.03 (0.94, 1.14) | 0.544 | 1.07 (0.96, 1.20) | 0.224 | 1.01 (0.80, 1.39) | 0.927 |
Centered WBGTmean 2 | 1.04 (1.00, 1.08) | 0.034 | 1.03 (0.99, 1.07) | 0.151 | 1.01 (0.92, 1.08) | 0.769 |
Average daily tons cut | 1.09 (0.89, 1.32) | 0.404 | 1.17 (0.94, 1.45) | 0.160 | 1.00 (0.61, 1.62) | 0.999 |
Acclimatization period 4 | 1.17 (0.64, 1.99) | 0.584 | 1.31 (0.68, 2.29) | 0.385 | 0.85 (0.13, 3.36) | 0.835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dally, M.; Butler-Dawson, J.; Sorensen, C.J.; Van Dyke, M.; James, K.A.; Krisher, L.; Jaramillo, D.; Newman, L.S. Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala. Int. J. Environ. Res. Public Health 2020, 17, 8195. https://doi.org/10.3390/ijerph17218195
Dally M, Butler-Dawson J, Sorensen CJ, Van Dyke M, James KA, Krisher L, Jaramillo D, Newman LS. Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala. International Journal of Environmental Research and Public Health. 2020; 17(21):8195. https://doi.org/10.3390/ijerph17218195
Chicago/Turabian StyleDally, Miranda, Jaime Butler-Dawson, Cecilia J. Sorensen, Mike Van Dyke, Katherine A. James, Lyndsay Krisher, Diana Jaramillo, and Lee S. Newman. 2020. "Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala" International Journal of Environmental Research and Public Health 17, no. 21: 8195. https://doi.org/10.3390/ijerph17218195
APA StyleDally, M., Butler-Dawson, J., Sorensen, C. J., Van Dyke, M., James, K. A., Krisher, L., Jaramillo, D., & Newman, L. S. (2020). Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala. International Journal of Environmental Research and Public Health, 17(21), 8195. https://doi.org/10.3390/ijerph17218195