Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Human Fibroblast Cells Culture
2.2. Cell Viability Test
2.3. Cell Treatment
2.4. Statistical Analysis
2.5. Detection of Collagen Alpha-4 Levels by Enzyme Linked Immunosorbent Assay
3. Results
4. Discussion
5. Strengths and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Kato, T.; Okahashi, N.; Kawai, S.; Kato, T.; Inaba, H.; Morisaki, I.; Amano, A. Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. J. Periodontol. 2005, 76, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Hallmon, W.W.; Rossmann, J.A. The role of drugs in the pathogenesis of gingival overgrowth. A collective review of current concepts. Periodontol. 2000 1999, 21, 176–196. [Google Scholar] [CrossRef] [PubMed]
- Brunet, L.; Miranda, J.; Roset, P.; Berini, L.; Farré, M.; Mendieta, C. Prevalence and risk of gingival enlargement in patients treated with anticonvulsant drugs. Eur. J. Clin. Investig. 2001, 31, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Ramìrez-Ràmiz, A.; Brunet-LLobet, L.; Lahor-Soler, E.; Miranda-Rius, J. On the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth. Open Dent. J. 2017, 11, 420–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatahira, H.; Abe, J.; Hane, Y.; Matsui, T.; Sasaoka, S.; Motooka, Y.; Hasegawa, S.; Fukuda, A.; Naganuma, M.; Ohmori, T.; et al. Drug-induced gingival hyperplasia: A retrospective study using spontaneous reporting system databases. J. Pharm. Health Care Sci. 2017, 3, 19. [Google Scholar] [CrossRef]
- Uzel, M.I.; Kantarci, A.; Hong, H.H.; Uygur, C.; Sheff, M.C.; Firatli, E.; Trackman, P.C. Connective tissue growth factor in phenytoin-induced gingival overgrowth. J. Periodontol. 2001, 72, 921–931. [Google Scholar] [CrossRef]
- Bharti, V.; Bansal, C. Drug-induced gingival overgrowth: The nemesis of gingival unravelled. J. Indian Soc. Periodontol. 2013, 17, 182–187. [Google Scholar] [CrossRef]
- Dongari-Baqtzoglou, A. Research, Science and therapy committee, american academy of periodontology. Drug-associated gingival enlargement. J. Periodontol. 2004, 75, 1424–1431. [Google Scholar]
- Newman, M.G.; Takei, H.; Klokkevold, P.R.; Carranza, F.A. Carranza’s Clinical Periodontology, 10th ed.; Elsevier: St Louis, MO, USA, 2006; pp. 375–376. [Google Scholar]
- Johnson, E.K.; Jones, J.E.; Seidenberg, M.; Hermann, B.P. The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy. Epilepsia 2004, 45, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Maneuf, Y.P.; Gonzalez, M.I.; Sutton, K.S.; Chung, F.Z.; Pinnock, R.D.; Lee, K. Cellular and molecular action of the putative GABA-mimetic, gabapentin. Cell Mol. Life Sci. 2003, 60, 742–750, Review. [Google Scholar]
- Candotto, V.; Scapoli, L.; Gaudio, R.M.; Gianni, A.B.; Bolzoni, A.; Racco, P.; Lauritano, D.; Cura, F. Gabapentin affects the expression of inflammatory mediators on healthy gingival cells. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-hamilly, N.S.; Radwan, L.R.S.; Abdul-rahman, M.; Mourad, M.I.; Grawish, M.E. Biological roles of KFG, CTGF and TGF-β in cyclosporine-A and phenytoin-induced gingival overgrowth: A comparative experimental animal study. Arch. Oral. Biol. 2016, 66, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Fu, E.; Chin, Y.T.; Tu, H.P.; Chiu, H.C.; Shen, E.C.; Chiang, C.Y. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J. Clin. Periodontol. 2015, 42, 29–36. [Google Scholar] [CrossRef]
- Lauritano, D.; Moreo, G.; Limongelli, L.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines 2020, 8, 221. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Anhut, H.; Ashman, P.; Feuerstein, T.J.; Sauermann, W.; Saunders, M.; Schmidt, B. Gabapentin (Neurontin) as add-on therapy in patients with partial seizueres: A double-blind, placebo-controlled study. Int. Gabapentin Study Group Epilepsia 1994, 35, 795–801. [Google Scholar]
- Inselman, A.L.; Hansen, D.K. Phenytoin. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Oxford, UK, 2014; pp. 895–897. [Google Scholar]
- Desai, P.; Silver, J.G. Drug-induced gingival enlargements. J. Can. Dent. Assoc. 1998, 64, 263–268. [Google Scholar]
- Nanda, T.; Singh, B.; Sharma, P.; Arora, K.S. Cyclosporine A and amlodipine induced gingival overgrowth in a kidney transplant recipient: Case presentation with literature review. BMJ Case Rep. 2019, 12, e229587. [Google Scholar] [CrossRef]
- Crăiţoiu, Ş.; Bobic, A.G.; Manolea, H.O.; Mehedinti, M.C.; Pascu, R.M.; Florescu, A.M.; Petcu, I.C.; Osman, A.; Fărcaş-Berechet, C.M.; Iacov-Crăiţoiu, M.M. Immunohistochemical study of experimentally drug-induced gingival overgrowth. Rom. J. Morphol. Embryol. 2019, 60, 95–102. [Google Scholar]
- Subramani, T.; Rathnavelu, V.; Alitheenn, N.B. The Possible Potential Therapeutic Targets for Drug Induced Gingival Overgrowth. Mediat. Inflamm. 2013, 2013, 639468. [Google Scholar] [CrossRef] [Green Version]
- Farronato, G.P. L’odontostomatologia per L’igienista Dentale; PICCIN: Padova, Italy, 2007. [Google Scholar]
- Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.; Loscalzo, J. Harrison’s Principles of Internal Medicine; McGrawHill: New York, NY, USA, 1991; p. 23l1-2r. [Google Scholar]
- Csiszar, A.; Wiebe, C.; Larjava, H.; Häkkinen, L. Distinctive Molecular Composition of Human Gingival Interdental Papilla. J. Periodontol. 2007, 78, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Hassell, T.M.; Page, R.C.; Narayanan, A.S.; Cooper, C.G. Diphenylhydantoin (Dilantin) gingival hyperplasia: Drug-induced abnormality of connective tissue. Proc. Natl. Acad. Sci. USA 1976, 73, 2909–2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kimball, O.P. The treatment of epilepsy with sodium diphenyl hydantoinate. J. Am. Med Assoc. 1939, 11, 1244–1245. [Google Scholar] [CrossRef]
- Strean, L.R.; Leoni, E. Dilantin gingival hyperplasia. Newer concepts related to etiology and treatment. N. Y. State Dent. J. 1959, 25, 339–347. [Google Scholar]
- Faurbye, A. Behandling af epilepsi med diphenylhydantoin. Ugeskr Laeg 1939, 101, 1350–1354. [Google Scholar]
- Candotto, V.; Pezzetti, F.; Baj, A.; Beltramini, G.; Lauritano, D.; Di Girolamo, M.; Cura, F. Phenytoin and gingival mucosa: A molecular investigation. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419828259. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Pietrzykowska, A.; Zalewska, A.; Knas, M.; Daniszewska, I. The significante of Matrix Metalloproteinases in Oral Diseases. Adv. Clin. Exp. Med. 2016, 25, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Lauritano, D.; Palmieri, A.; Lucchese, A.; Di Stasio, D.; Moreo, G.; Carinci, F. Role of Cyclospoine in Gingival Hyperplasia: An In Vitro Study on Gingival Fibroblasts. Int. J. Mol. Sci. 2020, 21, 595. [Google Scholar] [CrossRef] [Green Version]
- Trackman, P.C.; Kantarci, A. Connective tissue metabolism and gingival overgrowth. Crit. Rev. Oral. Biol. Med. 2004, 15, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, Z.; Si, S.; Liu, X.; Hana, Z.; Tao, J.; Chen, H.; Suo, C.; Wei, J.; Tan, R.; et al. Lack of Association Between TGF-β1 and MDR1 Genetic Polymorphisms and Cyclosporine-Induced Gingival Overgrowth in Kidney Transplant Recipients: A Meta-analysis. Transplant. Proc. 2017, 49, 1336–1343. [Google Scholar] [CrossRef]
- Dunning, A.M.; Ellis, P.D.; McBride, S.; Kirschenlohr, H.L.; Healey, C.S.; Kemp, P.R.; Luben, R.N.; Chang-Claude, J.; Mannermaa, A.; Kataja, V.; et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003, 63, 2610–2615. [Google Scholar] [PubMed]
- Linden, G.J.; Haworth, S.E.; Maxwell, A.P.; Poulton, K.V.; Dyer, P.A.; Middleton, D.; Irwin, C.R.; Marley, J.J.; McNamee, P.; Short, C.D.; et al. The influence of transforming growth factor-beta(1) gene polymorphisms on the severity of gingival overgrowth associated with concomitant use of cyclosporin A and a calcium channel blocker. J. Periodontol. 2001, 72, 808. [Google Scholar] [CrossRef]
- Sume, S.S.; Kantarci, A.; Lee, A. Epithelial to Mesenchymal Transition in Gingival Overgrowth. Am. J. Pathol. 2010, 177, 208–218. [Google Scholar] [CrossRef]
- Myrillas, T.T.; Linden, G.J.; Marley, J.J.; Irwin, C.R.; Cyclosporin, A. Regulates Interleukin-1ß and Interleukin-6 Expression in Gingiva: Implications for Gingival Overgrowth. J. Periodontol. 1999, 70, 294–300. [Google Scholar] [CrossRef]
- Leach, J.P. Polypharmacy with Anticonvulsants. CNS Drugs 1997, 8, 366–375. [Google Scholar] [CrossRef]
- Assaggaf, M.A.; Kantarci, A.; Sume, S.S.; Trackman, P.C. Prevention of Phenytoin-Induced Gingival Overgrowth by Lovastatin in Mice. Am. J. Pathol. 2015, 185, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
Gene | Fold Change | Gene Function |
---|---|---|
CD44 | 0.88 | Cell–Cell Adhesion |
CDH1 | 1.54 | Cell–Cell Adhesion |
COL1A2 | 1.22 | Collagens & Extracellular Matrix Structural constituent |
COL2A1 | 0.88 | Collagens & Extracellular Matrix Structural constituent |
COL3A1 | 0.67 | Collagens & Extracellular Matrix Structural constituent |
COL4A1 | 2.54 | Collagens & Extracellular Matrix Structural constituent |
COL5A1 | 1.11 | Collagens & Extracellular Matrix Structural constituent |
COL6A1 | 1.32 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.27 | Collagens & Extracellular Matrix Structural constituent |
COL8A1 | 1.35 | Collagens & Extracellular Matrix Structural constituent |
COL9A1 | 0.89 | Collagens & Extracellular Matrix Structural constituent |
COL10A1 | 1.00 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 5.17 | Collagens & Extracellular Matrix Structural constituent |
CCTNA1 | 1.84 | Cell Adhesion Molecule |
CTNB | 1.36 | Cell Adhesion Molecule |
CTNND2 | 0.77 | Cell Adhesion Molecule |
FN1 | 0.47 | Cell Adhesion Molecule |
HAS1 | 1.05 | Transmembrane Receptor |
ILF3 | 0.90 | Transmembrane Receptor |
ITGA1 | 1.58 | Transmembrane Receptor |
ITGA2 | 1.92 | Transmembrane Receptor |
ITGA3 | 1.60 | Transmembrane Receptor |
ITGA4 | 1.54 | Transmembrane Receptor |
ITGA5 | 1.79 | Transmembrane Receptor |
ITGA6 | 1.09 | Transmembrane Receptor |
ITGA7 | 6.73 | Transmembrane Receptor |
ITGA8 | 1.73 | Transmembrane Receptor |
ITGB1 | 1.59 | Transmembrane Receptor |
ITGB2 | 0.44 | Transmembrane Receptor |
ITGB4 | 0.19 | Transmembrane Receptor |
ITGB5 | 1.14 | Transmembrane Receptor |
LAMA1 | 0.77 | Basement Membrane Constituent |
LAMA2 | 0.26 | Basement Membrane Constituent |
LAMA3 | 1.05 | Basement Membrane Constituent |
LAMB1 | 0.06 | Basement Membrane Constituent |
LAMB2 | 1.50 | Basement Membrane Constituent |
LAMB3 | 3.78 | Basement Membrane Constituent |
MMP2 | 1.43 | Extracellular Matrix Protease |
MMP3 | 1.15 | Extracellular Matrix Protease |
MMP7 | 1.55 | Extracellular Matrix Protease |
MMP8 | 0.08 | Extracellular Matrix Protease |
MMP9 | 0.80 | Extracellular Matrix Protease |
MMP10 | 2.36 | Extracellular Matrix Protease |
MMP11 | 0.02 | Extracellular Matrix Protease |
MMP12 | 2.29 | Extracellular Matrix Protease |
MMP13 | 1.48 | Extracellular Matrix Protease |
MMP14 | 0.79 | Extracellular Matrix Protease |
MMP15 | 0.10 | Extracellular Matrix Protease |
MMP16 | 0.18 | Extracellular Matrix Protease |
MMP24 | 0.05 | Extracellular Matrix Protease |
MMP26 | 1.74 | Extracellular Matrix Protease |
TGFB1 | 1.12 | TGFβ Signaling |
TGFB2 | 0.94 | TGFβ Signaling |
TGFB3 | 0.73 | TGFβ Signaling |
TIMP1 | 0.88 | Extracellular Matrix Protease Inhibitor |
VCAN | 0.86 | Cell Adhesion Molecule |
RPL13 | 1.00 | Housekeeping gene |
Gene | Fold Change | Gene Function |
---|---|---|
CD44 | 0.64 | Cell–Cell Adhesion |
CDH1 | 1.71 | Cell–Cell Adhesion |
COL1A2 | 0.96 | Collagens & Extracellular Matrix Structural constituent |
COL2A1 | 0.88 | Collagens & Extracellular Matrix Structural constituent |
COL3A1 | 0.92 | Collagens & Extracellular Matrix Structural constituent |
COL4A1 | 2.64 | Collagens & Extracellular Matrix Structural constituent |
COL5A1 | 0.73 | Collagens & Extracellular Matrix Structural constituent |
COL6A1 | 0.82 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.30 | Collagens & Extracellular Matrix Structural constituent |
COL8A1 | 0.98 | Collagens & Extracellular Matrix Structural constituent |
COL9A1 | 0.78 | Collagens & Extracellular Matrix Structural constituent |
COL10A1 | 0.87 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 1.36 | Collagens & Extracellular Matrix Structural constituent |
CCTNA1 | 1.12 | Cell Adhesion Molecule |
CTNB | 0.99 | Cell Adhesion Molecule |
CTNND2 | 0.73 | Cell Adhesion Molecule |
FN1 | 0.39 | Cell Adhesion Molecule |
HAS1 | 0.79 | Transmembrane Receptor |
ILF3 | 0.78 | Transmembrane Receptor |
ITGA1 | 1.41 | Transmembrane Receptor |
ITGA2 | 1.64 | Transmembrane Receptor |
ITGA3 | 1.27 | Transmembrane Receptor |
ITGA4 | 0.89 | Transmembrane Receptor |
ITGA5 | 1.22 | Transmembrane Receptor |
ITGA6 | 0.74 | Transmembrane Receptor |
ITGA7 | 2.73 | Transmembrane Receptor |
ITGA8 | 0.62 | Transmembrane Receptor |
ITGB1 | 1.30 | Transmembrane Receptor |
ITGB2 | 0.43 | Transmembrane Receptor |
ITGB4 | 0.27 | Transmembrane Receptor |
ITGB5 | 0.76 | Transmembrane Receptor |
LAMA1 | 0.64 | Basement Membrane Constituent |
LAMA2 | 0.05 | Basement Membrane Constituent |
LAMA3 | 0.65 | Basement Membrane Constituent |
LAMB1 | 0.35 | Basement Membrane Constituent |
LAMB2 | 0.91 | Basement Membrane Constituent |
LAMB3 | 2.23 | Basement Membrane Constituent |
MMP2 | 0.97 | Extracellular Matrix Protease |
MMP3 | 1.17 | Extracellular Matrix Protease |
MMP7 | 1.41 | Extracellular Matrix Protease |
MMP8 | 0.07 | Extracellular Matrix Protease |
MMP9 | 0.80 | Extracellular Matrix Protease |
MMP10 | 1.34 | Extracellular Matrix Protease |
MMP11 | 0.004 | Extracellular Matrix Protease |
MMP12 | 1.57 | Extracellular Matrix Protease |
MMP13 | 1.36 | Extracellular Matrix Protease |
MMP14 | 1.19 | Extracellular Matrix Protease |
MMP15 | 0.05 | Extracellular Matrix Protease |
MMP16 | 0.34 | Extracellular Matrix Protease |
MMP24 | 0.05 | Extracellular Matrix Protease |
MMP26 | 1.08 | Extracellular Matrix Protease |
TGFB1 | 1.19 | TGFβ Signaling |
TGFB2 | 0.88 | TGFβ Signaling |
TGFB3 | 0.85 | TGFβ Signaling |
TIMP1 | 0.87 | Extracellular Matrix Protease Inhibitor |
VCAN | 0.82 | Cell Adhesion Molecule |
RPL13 | 1.00 | Housekeeping gene |
Gene | Fold Change | SD (+/–) | Gene Function |
---|---|---|---|
COL4A1 | 2.54 | 0.07 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.27 | 0.01 | Collagens & Extracellular Matrix Structural constituent |
COL11A1 | 5.17 | 0.15 | Collagens & Extracellular Matrix Structural constituent |
FN1 | 0.47 | 0.05 | Cell Adhesion Molecule |
ITGA7 | 6.73 | 0.08 | Transmembrane Receptor |
ITGB2 | 0.44 | 0.05 | Transmembrane Receptor |
ITGB4 | 0.19 | 0.00 | Transmembrane Receptor |
LAMA2 | 0.26 | 0.03 | Basement Membrane Constituent |
LAMB1 | 0.06 | 0.00 | Basement Membrane Constituent |
LAMB3 | 3.78 | 0.09 | Basement Membrane Constituent |
MMP8 | 0.08 | 0.00 | Extracellular Matrix Protease |
MMP10 | 2.36 | 0.05 | Extracellular Matrix Protease |
MMP11 | 0.02 | 0.00 | Extracellular Matrix Protease |
MMP12 | 2.29 | 0.13 | Extracellular Matrix Protease |
MMP15 | 0.10 | 0.00 | Extracellular Matrix Protease |
MMP16 | 0.18 | 0.02 | Extracellular Matrix Protease |
MMP24 | 0.05 | 0.00 | Extracellular Matrix Protease |
Gene | Fold Change | SD (+/–) | Gene Function |
---|---|---|---|
COL4A1 | 2.64 | 0.04 | Collagens & Extracellular Matrix Structural constituent |
COL7A1 | 0.30 | 0.04 | Collagens & Extracellular Matrix Structural constituent |
FN1 | 0.39 | 0.01 | Cell Adhesion Molecule |
ITGA7 | 2.73 | 0.06 | Transmembrane Receptor |
ITGB2 | 0.43 | 0.08 | Transmembrane Receptor |
ITGB4 | 0.27 | 0.04 | Transmembrane Receptor |
LAMA2 | 0.05 | 0.00 | Basement Membrane Constituent |
LAMB1 | 0.35 | 0.03 | Basement Membrane Constituent |
LAMB3 | 2.23 | 0.03 | Basement Membrane Constituent |
MMP8 | 0.07 | 0.00 | Extracellular Matrix Protease |
MMP11 | 0.004 | 0.00 | Extracellular Matrix Protease |
MMP15 | 0.05 | 0.00 | Extracellular Matrix Protease |
MMP16 | 0.34 | 0.04 | Extracellular Matrix Protease |
MMP24 | 0.05 | 0.00 | Extracellular Matrix Protease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauritano, D.; Moreo, G.; Limongelli, L.; Tregambi, E.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. Int. J. Environ. Res. Public Health 2020, 17, 8229. https://doi.org/10.3390/ijerph17218229
Lauritano D, Moreo G, Limongelli L, Tregambi E, Palmieri A, Carinci F. Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. International Journal of Environmental Research and Public Health. 2020; 17(21):8229. https://doi.org/10.3390/ijerph17218229
Chicago/Turabian StyleLauritano, Dorina, Giulia Moreo, Luisa Limongelli, Elena Tregambi, Annalisa Palmieri, and Francesco Carinci. 2020. "Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts" International Journal of Environmental Research and Public Health 17, no. 21: 8229. https://doi.org/10.3390/ijerph17218229
APA StyleLauritano, D., Moreo, G., Limongelli, L., Tregambi, E., Palmieri, A., & Carinci, F. (2020). Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. International Journal of Environmental Research and Public Health, 17(21), 8229. https://doi.org/10.3390/ijerph17218229