Maternal Prenatal Cortisol and Breastfeeding Predict Infant Growth
Abstract
:1. Introduction
1.1. Cortisol
1.2. Maternal Cortisol and Offspring Growth
1.3. Breastfeeding
1.4. Summary
1.5. Hypotheses
2. Materials and Methods
2.1. Recruitment and Screening
2.2. Prenatal Session and Salivary Cortisol Samples
2.3. Postnatal Sessions
2.4. Statistical Analyses
3. Results
3.1. Demographic Information
3.2. Correlations
4. Discussion
4.1. Practical Implications
4.2. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozanne, S.E.; Fernandez-Twinn, D.; Hales, C.N. Fetal growth and adult diseases. Semin. Perinatol. 2004, 28, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Diego, M. Cortisol: The culprit prenatal stress variable. Int. J. Neurosci. 2008, 118, 1181–1205. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Ilias, I. Maternal hypothalamic-pituitary-adrenal axis in pregnancy and the postpartum period. Postpartum-related disorders. Ann. N. Y. Acad. Sci. 2000, 900, 95–106. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Rosal, M.C.; Ma, Y.; Reed, G.; Kelly, T.A.; Stanek, E.J., III; Ockene, I.S. Sequence and seasonal effects of salivary cortisol. Behav. Med. 2000, 26, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Diego, M.A.; Jones, N.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; Gonzalez-Garcia, A. Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom. Med. 2006, 68, 747–753. [Google Scholar] [CrossRef]
- Wadhwa, P.D.; Garite, T.J.; Porto, M.; Glynn, L.; Chicz-DeMet, A.; Dunkel-Schetter, C.; Sandman, C.A. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: A prospective investigation. Am. J. Obs. Gynecol. 2004, 191, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Bolten, M.I.; Wurmser, H.; Buske-Kirschbaum, A.; Papoušek, M.; Pirke, K.; Hellhammer, D. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch. Womens Ment. Health 2011, 14, 33–41. [Google Scholar] [CrossRef]
- Golden, S.H.; Sánchez, B.N.; Wu, M.; Champaneri, S.; Diez Roux, A.V.; Seeman, T.; Wand, G.S. Relationship between the cortisol awakening response and other features of the diurnal cortisol rhythm: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2013, 38, 2720–2728. [Google Scholar] [CrossRef] [Green Version]
- Hales, C.N.; Ozanne, S.E. The dangerous road of catch-up growth. J. Physiol. 2004, 547, 5–10. [Google Scholar] [CrossRef]
- Ong, K.L.; Ahmed, M.L.; Emmett, P.M.; Preece, M.A.; Dunger, D.B. Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ 2000, 320, 967–971. [Google Scholar] [CrossRef] [Green Version]
- León-Cava, N.; Lutter, C.; Ross, J.; Martin, L. Quantifying the Benefits of Breastfeeding: A Summary of the Evidence; Pan American Health Organization: Washington, DC, USA, 2002. [Google Scholar]
- Rebhan, B.; Kohlhuber, M.; Schwegler, U.; Fromme, H.; Abou-Dakn, M.; Koletzko, B.V. Breastfeeding duration and exclusivity associated with infants’ health and growth: Data from a prospective cohort study in Bavaria, Germany. Acta Pædiatrica 2009, 98, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G. Maternal and fetal stress are associated with impaired lactogenesis in humans. J. Nutr. 2001, 131, 3012S–3015S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruessner, J.C.; Kirshbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28. [Google Scholar] [CrossRef]
- Garza, C.; de Onis, M. A new 21st-century international growth standard for infants and young children. J. Nutr. 2007, 137, 142–143. [Google Scholar] [CrossRef] [Green Version]
- Fein, S.B.; Labiner-Wolfe, J.; Shealy, K.R.; Li, R.; Chen, J.; Grummer-Strawn, L.M. Infant feeding practices study II: Study methods. Pediatrics 2008, 122 (Suppl. 2), S28–S35. [Google Scholar] [CrossRef] [Green Version]
- Hompes, T.; Vrieze, E.; Fieuws, S.; Simons, A.; Jaspers, L.; Van Bussel, J.; Schops, G.; Gellens, E.; Van Bree, R.; Verhaeghe, J.; et al. The influence of maternal cortisol and emotional state during pregnancy on fetal intrauterine growth. Pediatr. Res. 2012, 72, 305–315. [Google Scholar] [CrossRef]
- Diego, M.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; Gonzalez-Quintero, V.H. Prenatal depression restricts fetal growth. Early Hum. Dev. 2009, 85, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Gilles, M.; Otto, H.; Wolf, I.A.; Scharnholz, B.; Peus, V.; Schredl, M.; Deuschle, M. Maternal hypothalamus-pituitary-adrenal (HPA) system activity and stress during pregnancy: Effects on gestational age and infant’s anthropometric measures at birth. Psychoneuroendocrinology 2018, 94, 152–161. [Google Scholar] [CrossRef]
- McLaughlin, E.J.; Hiscock, R.J.; Robinson, A.J.; Hui, L.; Tong, S.; Dane, K.M.; Middleton, A.L.; Walker, S.P.; MacDonald, T.M. Appropriate-for-gestational-age infants who exhibit reduced antenatal growth velocity display postnatal catch-up growth. PLoS ONE 2020, 15, e0238700. [Google Scholar] [CrossRef]
- Bublitz, M.H.; Vergara-Lopez, C.; O’Reilly Treter, M.; Stroud, L.R. Association of lower socioeconomic position in pregnancy with lower diurnal cortisol production and lower birthweight in male infants. Clin. Ther. 2016, 38, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.; Osmond, C.; Forsén, T.J.; Kajantie, E.; Eriksson, J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005, 353, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.K.; Sachdev, H.S.; Fall, C.H.; Osmond, C.; Lakshmy, R.; Barker, D.J.; Reddy, K.S. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med. 2004, 350, 865–875. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Breastfeeding Report Cards; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/breastfeeding/data/reportcard.htm (accessed on 15 October 2020).
- Hoi, A.G.; McKerracher, L. Breastfeeding and infant growth. Evol. Med. Public Health 2015, 1, 150–151. [Google Scholar] [CrossRef] [Green Version]
Anthropometric Variable | Mean/Standard Deviation |
---|---|
Age | 27/4 |
Race/Ethnicity | N/% |
White/Caucasian | 116/92.8 |
Black/African American | 2/1.6 |
Native Hawaiian or other Pacific Islander | 2/1.6 |
American Indian/Alaska Native | 3/2.4 |
Hispanic/Latino | 16/12.8 |
Asian | 1/0.8 |
Other | 8/6.4 |
Marital Status | N/% |
Single/never married | 10/8% |
Married | 99/79.2 |
Divorced | 3/2.4 |
Committed relationship | 9/7.2 |
Engaged | 4/3.2 |
Religious Affiliation | N/% |
Agnostic | 3/3.1 |
Assembly of God | 2/2.1 |
Atheist | 2/2.1 |
Baptist | 2/2.1 |
Catholic | 5/5.2 |
Lutheran | 2/2.1 |
Methodist | 1/1 |
Church of Jesus Christ of Latter-Day Saints | 60/62.5 |
Non-denominational | 10/10.4 |
Pentecostal | 1/1 |
Presbyterian | 1/1 |
Other | 12/12.5 |
Prefer not to say | 9/9.4 |
Income | N/% |
<$5000 | 2/1.6 |
$5000–9999 | 3/2.4 |
$10,000–19,999 | 19/15.2 |
$20,000–29,999 | 24/19.2 |
$30,000–39,999 | 15/12 |
$40,000–49,999 | 12/9.6 |
$50,000–74,999 | 31/24.8 |
$75,000–99,999 | 9/7.2 |
>/=$100,000 | 10/8 |
Education | N/% |
Junior high school | 1/0.8 |
Partial high school | 4/3.2 |
High school | 18/14.4 |
Partial college | 44/35.2 |
Standard college or university | 46/36.8 |
Graduate training with a degree | 12/9.6 |
Anthropometric Variable | Correlation Results | AUCg | Average CAR | Breastfeeding Duration | Breastfeeding Frequency |
---|---|---|---|---|---|
WLZ (Birth) | Pearson Correlation | 0.118 | 0.213 | 0.144 | 0.036 |
Sig. (2-tailed) | 0.383 | 0.079 | 0.176 | 0.740 | |
N | 57 | 69 | 90 | 85 | |
LAZ (Birth) | Pearson Correlation | −0.153 | * −0.247 | 0.004 | −0.038 |
Sig. (2-tailed) | 0.251 | 0.039 | 0.971 | 0.729 | |
N | 58 | 70 | 91 | 86 | |
WLZ (6 months) | Pearson Correlation | −0.087 | 0.086 | −0.053 | −0.195 |
Sig. (2-tailed) | 0.509 | 0.475 | 0.612 | 0.067 | |
N | 60 | 72 | 95 | 89 | |
LAZ (6 months) | Pearson Correlation | −0.135 | −0.123 | −0.036 | −0.126 |
Sig. (2-tailed) | 0.305 | 0.303 | 0.726 | 0.240 | |
N | 60 | 72 | 95 | 89 | |
WLZ (10 months) | Pearson Correlation | −0.207 | −0.086 | * −0.344 | −0.316 |
Sig. (2-tailed) | 0.396 | 0.695 | 0.037 | 0.064 | |
N | 19 | 23 | 37 | 35 | |
LAZ (10 months) | Pearson Correlation | 0.237 | 0.173 | −0.276 | ** −0.468 |
Sig. (2-tailed) | 0.328 | 0.431 | 0.099 | 0.005 | |
N | 19 | 23 | 37 | 35 | |
WLZ (13–14 months) | Pearson Correlation | −0.135 | −0.312 | −0.142 | −0.194 |
Sig. (2-tailed) | 0.501 | 0.083 | 0.357 | 0.219 | |
N | 27 | 32 | 44 | 42 | |
LAZ (13–14 months) | Pearson Correlation | −0.069 | * 0.378 | −0.057 | −0.224 |
Sig. (2-tailed) | 0.733 | 0.033 | 0.713 | 0.154 | |
N | 27 | 32 | 44 | 42 | |
WLZ (18 months) | Pearson Correlation | 0.049 | 0.165 | −0.200 | −0.178 |
Sig. (2-tailed) | 0.813 | 0.367 | 0.199 | 0.265 | |
N | 26 | 32 | 43 | 41 | |
LAZ (18 months) | Pearson Correlation | −0.200 | −0.077 | 0.081 | 0.062 |
Sig. (2-tailed) | 0.328 | 0.675 | 0.607 | 0.700 | |
N | 26 | 32 | 43 | 41 |
Infant Anthropometric Variable | Mean (Standard Deviation) |
---|---|
Infant Birth Weight (kg) | 3.39 (0.47) |
Infant Birth Length (cm) | 51.57 (3.02) |
Birth Weight-for-Length Z-Score | −1.02 (1.82) |
Birth Length-for-Age Z Score | 1.08 (1.58) |
Infant 6-Month Weight (kg) | 7.59 (0.83) |
Infant 6-Month Length (cm) | 65.03 (2.35) |
6-Month Weight-for-Length Z-Score | 0.61 (0.98) |
6-Month Length-for-Age Z-Score | −0.86 (1.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
L. Aubuchon-Endsley, N.; E. Swann-Thomsen, H.; Douthit, N. Maternal Prenatal Cortisol and Breastfeeding Predict Infant Growth. Int. J. Environ. Res. Public Health 2020, 17, 8233. https://doi.org/10.3390/ijerph17218233
L. Aubuchon-Endsley N, E. Swann-Thomsen H, Douthit N. Maternal Prenatal Cortisol and Breastfeeding Predict Infant Growth. International Journal of Environmental Research and Public Health. 2020; 17(21):8233. https://doi.org/10.3390/ijerph17218233
Chicago/Turabian StyleL. Aubuchon-Endsley, Nicki, Hillary E. Swann-Thomsen, and Nicole Douthit. 2020. "Maternal Prenatal Cortisol and Breastfeeding Predict Infant Growth" International Journal of Environmental Research and Public Health 17, no. 21: 8233. https://doi.org/10.3390/ijerph17218233
APA StyleL. Aubuchon-Endsley, N., E. Swann-Thomsen, H., & Douthit, N. (2020). Maternal Prenatal Cortisol and Breastfeeding Predict Infant Growth. International Journal of Environmental Research and Public Health, 17(21), 8233. https://doi.org/10.3390/ijerph17218233