The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality
Abstract
:1. Introduction
2. Literature Review
2.1. Unified Theory of Acceptance and Use of Technology (UTAUT)
- Performance expectancy: refers to the extent to which individuals believe that the use of IT can enhance their work performance.
- Effort expectancy: refers to the amount of effort that an individual must put into using the system. Information technologies will only be accepted and used if they have a good and user-friendly interactive interface, and an easy to operate system.
- Social influence: refers to the degree to which personal perception is important as to whether he or she should use the technology. In other words, an individual’s acceptance or use of information technology is somewhat influenced by their significant others.
- Facilitating conditions: refers to the level of support that an individual perceives from the organization and technology-related equipment, including the support of the computer hardware and software, or help in operating the technology or system.
2.2. Information System Quality
3. Research Design
3.1. Development of Hypotheses and the Research Model
3.2. Measurement Items and Subjects
4. Data Analysis
4.1. Measurement Model
4.2. Structural Model
5. Conclusions
5.1. Research Findings and Implications
5.2. Conclusions
5.3. Research Limitations and Suggestions for Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.C.; Chen, H.H.; Chen, M.F. Determinants of satisfaction and continuance intention towards self-service technologies. Ind. Manag. Data Syst. 2009, 109, 1248–1263. [Google Scholar] [CrossRef]
- Lin, J.S.C.; Hsieh, P.L. Assessing the self-service technology encounters: Development and validation of SSTQUAL scale. J. Retail. 2011, 87, 194–206. [Google Scholar] [CrossRef]
- Horvath, M.M.; Rusincovitch, S.A.; Brinson, S.; Shang, H.C.; Evans, S.; Ferranti, J.M. Modular design, application architecture, and usage of a self-service model for enterprise data delivery: The Duke Enterprise Data Unified Content Explorer (DEDUCE). J. Biomed. Inform. 2014, 52, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Jong, D.; Lai, M.T. Assessing the relationship between technology readiness and continuance intention in an E-appointment system: Relationship quality as a mediator. J. Med. Syst. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Kitsios, F.; Stefanakakis, S.; Kamariotou, M.; Dermentzoglou, L. E-service Evaluation: User satisfaction measurement and implications in health sector. Comput. Stand. Interfaces 2019, 63, 16–26. [Google Scholar] [CrossRef]
- Chen, S.C.; Liu, S.C.; Li, S.H.; Yen, D.C. Understanding the mediating effects of relationship quality on technology acceptance: An empirical study of e-appointment system. J. Med. Syst. 2013, 37, 1–13. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Sun, Q.; Cai, Q.; Yang, H.; Zhang, Y. Questionnaire survey about use of an online appointment booking system in one large tertiary public hospital outpatient service center in China. BMC Med. Inform. Decis. Mak. 2014, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.Y.; Pang, C.; Tarn, J.M.; Liu, T.S.; Yen, D.C. Exploring user acceptance of an e-hospital service: An empirical study in Taiwan. Comput. Stand. Interfaces 2015, 38, 35–43. [Google Scholar] [CrossRef]
- Vickers, K.S.; Ridgeway, J.L.; Hathaway, J.C.; Egginton, J.S.; Kaderlik, A.B.; Katzelnick, D.J. Integration of mental health resources in a primary care setting leads to increased provider satisfaction and patient access. Gen. Hosp. Psychiatry 2013, 35, 461–467. [Google Scholar] [CrossRef]
- Lee, L.A.; Burks, A.W. Food allergies: Prevalence, molecular characterization, and treatment/prevention strategies. Annu. Rev. Nutr. 2006, 26, 539–565. [Google Scholar] [CrossRef]
- Wang, J.; Diao, H.; Tou, L. Research on the influence mechanism of rational consumers’ food Safety supervision satisfaction. Int. J. Environ. Res. Public Health 2019, 16, 739. [Google Scholar] [CrossRef] [Green Version]
- Cho, T.J.; Kim, S.; Kim, H.W.; Park, S.M.; Rhee, M.S. Changes in consumers’ food purchase and transport behaviors over a decade (2010 to 2019) following health and convenience food trends. Int. J. Environ. Res. Public Health 2019, 17, 5448. [Google Scholar] [CrossRef]
- Lin, P.; Tsai, H.; Ho, T. Food Safety Gaps between Consumers’ Expectations and Perceptions: Development and Verification of a Gap-Assessment Tool. Int. J. Environ. Res. Public Health 2020, 17, 6328. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, C.; Walden, P.; Bouwman, H. Adoption of 3G+ services in Finland. Int. J. Mob. Commun. 2006, 4, 369–385. [Google Scholar] [CrossRef]
- Al-Gahtani, S.S.; Hubona, G.S.; Wang, J. Information technology (IT) in Saudi Arabia: Culture and the acceptance and use of IT. Inf. Manag. 2007, 44, 681–691. [Google Scholar] [CrossRef]
- Schaper, L.K.; Pervan, G.P. ICT and OTs: A model of information and communication technology acceptance and utilisation by occupational therapists. Int. J. Med. Inform. 2007, 76, S212–S221. [Google Scholar] [CrossRef]
- Hoque, R.; Sorwar, G. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Int. J. Med Inform. 2017, 101, 75–84. [Google Scholar] [CrossRef]
- Kalavani, A.; Kazerani, M.; Shekofteh, M. Acceptance of evidence based medicine (EBM) databases by Iranian medical residents using unified theory of acceptance and use of technology (UTAUT). Health Policy Technol. 2018, 7, 287–292. [Google Scholar] [CrossRef]
- Lin, X.; Wu, R.; Lim, Y.T.; Han, J.; Chen, S.C. Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users. Sustainability 2019, 11, 5532. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104156. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, Reading; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal computing: Toward a conceptual model of utilization. MIS Q. 1991, 15, 125–143. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 1st ed.; The Free Press: New York, NY, USA, 1962. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory, 1st, Englewood Cliffs; Prentice Hall: Upper Saddle River, NJ, USA, 1986. [Google Scholar]
- Compeau, D.R.; Higgins, C.A. Application of social cognitive theory to training for computer skills. Inf. Syst. Res. 1995, 6, 118–143. [Google Scholar] [CrossRef]
- Maillet, É.; Mathieu, L.; Sicotte, C. Modeling factors explaining the acceptance, actual use and satisfaction of nurses using an Electronic Patient Record in acute care settings: An extension of the UTAUT. Int. J. Med. Inform. 2015, 84, 36–47. [Google Scholar] [CrossRef]
- Hsieh, H.L.; Kuo, Y.M.; Wang, S.R.; Chuang, B.K.; Tsai, C.H. A study of personal health record user’s behavioral model based on the PMT and UTAUT integrative perspective. Int. J. Environ. Res. Public Health 2017, 14, 8. [Google Scholar] [CrossRef]
- Bawack, R.E.; Kamdjoug, J.R.K. Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. Int. J. Med. Inform. 2018, 109, 15–22. [Google Scholar] [CrossRef]
- Zhou, L.L.; Owusu-Marfo, J.; Antwi, H.A.; Antwi, M.O.; Kachie, A.D.T.; Ampon-Wireko, S. Assessment of the social influence and facilitating conditions that support nurses’ adoption of hospital electronic information management systems (HEIMS) in Ghana using the unified theory of acceptance and use of technology (UTAUT) model. BMC Med Inform. Decis. Mak. 2019, 19, 230. [Google Scholar] [CrossRef] [PubMed]
- Alaiad, A.; Zhou, L.; Koru, G. An exploratory study of home healthcare robots adoption applying the UTAUT model. Int. J. Healthc. Inf. Syst. Inform. 2014, 9, 44–59. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information systems success: The quest for the dependent variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef]
- Delone, W.H.; Mclean, E.R. Measuring e-commerce success: Applying the DeLone & McLean information systems success model. Int. J. Electron. Commer. 2004, 9, 31–47. [Google Scholar]
- Pitt, L.F.; Watson, R.T.; Kavan, C.B. Service quality: A measure of information systems effectiveness. MIS Q. 1995, 173–187. [Google Scholar] [CrossRef]
- King, W.R.; Epstein, B.J. Assessing information system value: An experimental study. Decis. Sci. 1983, 14, 34–45. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Miller, J.; Doyle, B.A. Measuring the effectiveness of computer-based information systems in the financial services sector. MIS Q. 1987, 11, 107–124. [Google Scholar] [CrossRef]
- Doll, W.J.; Torkzadeh, G. The measurement of end-user computing satisfaction. MIS Q. 1988, 259–274. [Google Scholar] [CrossRef]
- Delone, W.H.; McLean, E.R. The DeLone and McLean model of information systems success: A ten-year update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar]
- Chen, K.; Yen, D.C. Improving the quality of online presence through interactivity. Inf. Manag. 2004, 42, 217–226. [Google Scholar] [CrossRef]
- Chiu, C.M.; Wang, E.T. Understanding Web-based learning continuance intention: The role of subjective task value. Inf. Manag. 2008, 45, 194–201. [Google Scholar] [CrossRef]
- Chou, S.W.; Min, H.T.; Chang, Y.C.; Lin, C.T. Understanding continuance intention of knowledge creation using extended expectation–confirmation theory: An empirical study of Taiwan and China online communities. Behav. Inf. Technol. 2010, 29, 557–570. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Escobar-Rodríguez, T.; Carvajal-Trujillo, E. Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tour. Manag. 2014, 43, 70–88. [Google Scholar] [CrossRef]
- Tavares, J.; Oliveira, T. Electronic health record patient portal adoption by health care consumers: An acceptance model and survey. J. Med. Internet Res. 2016, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Baydas, O.; Goktas, Y. A model for preservice teachers’ intentions to use ICT in future lessons. Interact. Learn. Environ. 2017, 25, 930–945. [Google Scholar] [CrossRef]
- Sharifian, R.; Askarian, F.; Nematolahi, M.; Farhadi, P. Factors influencing nurses’ acceptance of hospital information systems in Iran: Application of the Unified Theory of Acceptance and Use of Technology. Health Inf. Manag. J. 2014, 43, 23–28. [Google Scholar] [CrossRef]
- Nikou, S.A.; Economides, A.A. Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Comput. Educ. 2017, 109, 56–73. [Google Scholar] [CrossRef]
- Chiu, C.K. Understanding relationship quality and online purchase intention in e-tourism: A qualitative application. Qual. Quant. 2009, 43, 669–675. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Kim, J. Determinants of success for application service provider: An empirical test in small businesses. Int. J. Hum. Comput. Stud. 2007, 65, 796–815. [Google Scholar] [CrossRef]
- Ramayah, T.; Ahmad, N.H.; Lo, M.C. The role of quality factors in intention to continue using an e-learning system in Malaysia. Procedia Soc. Behav. Sci. 2010, 2, 5422–5426. [Google Scholar] [CrossRef] [Green Version]
- Motaghian, H.; Hassanzadeh, A.; Moghadam, D.K. Factors affecting university instructors’ adoption of web-based learning systems: Case study of Iran. Comput. Educ. 2013, 61, 158–167. [Google Scholar] [CrossRef]
- Stefanovic, D.; Marjanovic, U.; Delić, M.; Culibrk, D.; Lalic, B. Assessing the success of e-government systems: An employee perspective. Inf. Manag. 2016, 53, 717–726. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Chin, W.W.; Newsted, P.R. The importance of specification in causal modeling: The case of end-user computing satisfaction. Inf. Syst. Res. 1995, 6, 73–81. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3. Boenningstedt: SmartPLS GmbH. Available online: http://www.smartpls.com (accessed on 20 August 2020).
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Education International: London, UK, 2010. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Luarn, P.; Lin, H.H. Toward an understanding of the behavioral intention to use mobile banking. Comput. Hum. Behav. 2005, 21, 873–891. [Google Scholar] [CrossRef]
Characteristics | Frequency | Percent (%) |
---|---|---|
Gender | ||
Male | 172 | 46.6% |
Female | 197 | 53.4% |
Age | ||
Under 25 | 28 | 7.6% |
26–35 | 50 | 13.6% |
36–45 | 124 | 33.5% |
46–55 | 69 | 18.7% |
Over 55 | 98 | 26.6% |
Education level | ||
High school certificate or below | 97 | 26.3% |
Technical school | 68 | 18.4% |
Undergraduate degree | 166 | 45.0% |
Master or higher degree | 38 | 10.3% |
Occupation | ||
Student | 38 | 10.3% |
Service | 173 | 46.9% |
Manufacturing | 77 | 20.8% |
Others | 81 | 22.0% |
Frequency of medical visits per year | ||
Under 1 time | 82 | 22.2% |
1–3 times | 168 | 45.5% |
Over 3 times | 119 | 32.3% |
Construct | Indicator | Mean | Std. Dev. | Factor Loading | t-Value | CR | AVE |
---|---|---|---|---|---|---|---|
PE | PE1 | 6.382 | 0.791 | 0.842 | 32.968 | 0.914 | 0.780 |
PE2 | 6.564 | 0.656 | 0.912 | 50.277 | |||
PE3 | 6.523 | 0.654 | 0.895 | 52.678 | |||
EE | EE1 | 5.957 | 0.825 | 0.850 | 31.776 | 0.908 | 0.767 |
EE2 | 5.992 | 0.921 | 0.861 | 34.141 | |||
EE3 | 5.981 | 0.866 | 0.914 | 88.699 | |||
SI | SI1 | 5.114 | 1.402 | 0.927 | 41.711 | 0.910 | 0.835 |
SI2 | 5.425 | 1.301 | 0.900 | 28.772 | |||
FC | FC1 | 6.222 | 0.789 | 0.874 | 40.193 | 0.900 | 0.751 |
FC2 | 6.247 | 0.831 | 0.902 | 62.785 | |||
FC3 | 6.146 | 1.072 | 0.822 | 21.744 | |||
SYQ | SYQ1 | 6.095 | 0.736 | 0.896 | 56.824 | 0.905 | 0.761 |
SYQ2 | 5.951 | 0.873 | 0.866 | 35.894 | |||
SYQ3 | 5.995 | 0.823 | 0.855 | 39.443 | |||
IQ | IQ1 | 6.230 | 0.683 | 0.778 | 26.785 | 0.925 | 0.712 |
IQ2 | 6.241 | 0.922 | 0.787 | 23.265 | |||
IQ3 | 6.103 | 0.859 | 0.858 | 42.817 | |||
IQ4 | 6.114 | 0.825 | 0.886 | 54.878 | |||
IQ5 | 6.130 | 0.839 | 0.903 | 72.620 | |||
SERQ | SERQ1 | 5.738 | 0.682 | 0.749 | 21.136 | 0.924 | 0.753 |
SERQ2 | 5.994 | 0.928 | 0.872 | 55.672 | |||
SERQ3 | 5.771 | 0.852 | 0.917 | 65.087 | |||
SERQ4 | 5.724 | 0.825 | 0.922 | 103.816 | |||
CI | CI1 | 0.671 | 1.573 | 0.870 | 49.618 | 0.925 | 0.805 |
CI2 | 0.735 | 4.141 | 0.912 | 54.645 | |||
CI3 | 0.827 | 2.721 | 0.908 | 82.731 |
PE | EE | SI | FC | SYQ | IQ | SERQ | CI | |
---|---|---|---|---|---|---|---|---|
PE | 0.883 | |||||||
EE | 0.427 | 0.876 | ||||||
SI | 0.204 | 0.374 | 0.914 | |||||
FC | 0.411 | 0.654 | 0.315 | 0.867 | ||||
SYQ | 0.435 | 0.537 | 0.343 | 0.413 | 0.872 | |||
IQ | 0.528 | 0.631 | 0.306 | 0.518 | 0.687 | 0.844 | ||
SERQ | 0.401 | 0.519 | 0.349 | 0.458 | 0.763 | 0.706 | 0.868 | |
CI | 0.553 | 0.531 | 0.261 | 0.538 | 0.584 | 0.642 | 0.651 | 0.897 |
PE | EE | SI | FC | SYQ | IQ | SERQ | CI | |
---|---|---|---|---|---|---|---|---|
PE1 | 0.842 | 0.388 | 0.201 | 0.357 | 0.363 | 0.433 | 0.340 | 0.474 |
PE2 | 0.912 | 0.356 | 0.141 | 0.361 | 0.376 | 0.478 | 0.336 | 0.496 |
PE3 | 0.895 | 0.388 | 0.200 | 0.37 | 0.415 | 0.487 | 0.385 | 0.494 |
EE1 | 0.363 | 0.850 | 0.309 | 0.519 | 0.428 | 0.480 | 0.426 | 0.37 |
EE2 | 0.378 | 0.861 | 0.308 | 0.514 | 0.478 | 0.559 | 0.433 | 0.449 |
EE3 | 0.382 | 0.914 | 0.359 | 0.664 | 0.497 | 0.604 | 0.497 | 0.543 |
SI1 | 0.155 | 0.328 | 0.927 | 0.302 | 0.300 | 0.272 | 0.320 | 0.255 |
SI2 | 0.222 | 0.357 | 0.900 | 0.273 | 0.330 | 0.290 | 0.318 | 0.219 |
FC1 | 0.387 | 0.586 | 0.290 | 0.874 | 0.395 | 0.444 | 0.410 | 0.465 |
FC2 | 0.404 | 0.577 | 0.293 | 0.902 | 0.351 | 0.467 | 0.400 | 0.501 |
FC3 | 0.268 | 0.536 | 0.232 | 0.822 | 0.328 | 0.435 | 0.382 | 0.428 |
SYQ1 | 0.400 | 0.523 | 0.305 | 0.396 | 0.896 | 0.655 | 0.630 | 0.508 |
SYQ2 | 0.339 | 0.421 | 0.311 | 0.368 | 0.866 | 0.549 | 0.618 | 0.473 |
SYQ3 | 0.397 | 0.458 | 0.283 | 0.321 | 0.855 | 0.591 | 0.740 | 0.541 |
IQ1 | 0.472 | 0.597 | 0.205 | 0.499 | 0.517 | 0.778 | 0.483 | 0.521 |
IQ2 | 0.409 | 0.410 | 0.265 | 0.387 | 0.495 | 0.787 | 0.540 | 0.456 |
IQ3 | 0.442 | 0.580 | 0.284 | 0.427 | 0.603 | 0.858 | 0.615 | 0.563 |
IQ4 | 0.461 | 0.505 | 0.248 | 0.431 | 0.636 | 0.886 | 0.639 | 0.575 |
IQ5 | 0.445 | 0.559 | 0.291 | 0.442 | 0.632 | 0.903 | 0.687 | 0.583 |
SERQ1 | 0.265 | 0.345 | 0.257 | 0.264 | 0.684 | 0.477 | 0.749 | 0.439 |
SERQ2 | 0.393 | 0.509 | 0.308 | 0.397 | 0.722 | 0.665 | 0.872 | 0.548 |
SERQ3 | 0.361 | 0.437 | 0.328 | 0.443 | 0.610 | 0.626 | 0.917 | 0.625 |
SERQ4 | 0.362 | 0.500 | 0.314 | 0.457 | 0.664 | 0.665 | 0.922 | 0.623 |
CI1 | 0.473 | 0.496 | 0.221 | 0.481 | 0.513 | 0.545 | 0.547 | 0.870 |
CI2 | 0.495 | 0.428 | 0.235 | 0.444 | 0.510 | 0.530 | 0.549 | 0.912 |
CI3 | 0.517 | 0.502 | 0.245 | 0.518 | 0.544 | 0.645 | 0.646 | 0.908 |
Hypothesis | Path Direction | Path Coefficient | t-value | Result |
---|---|---|---|---|
H1 | PE → CI | 0.242 *** | 4.317 | Supported |
H2 | EE → CI | 0.035 | 0.660 | Not supported |
H3 | SI → CI | −0.033 | 0.934 | Not supported |
H4 | FC → CI | 0.182 * | 2.099 | Supported |
H5 | SYQ → CI | 0.148 * | 2.341 | Not supported |
H6 | IQ → CI | 0.048 | 0.777 | Supported |
H7 | SERQ → CI | 0.323 *** | 5.131 | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-P.; Tsai, H.-Y.; Ruangkanjanases, A. The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality. Int. J. Environ. Res. Public Health 2020, 17, 8287. https://doi.org/10.3390/ijerph17218287
Lee Y-P, Tsai H-Y, Ruangkanjanases A. The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality. International Journal of Environmental Research and Public Health. 2020; 17(21):8287. https://doi.org/10.3390/ijerph17218287
Chicago/Turabian StyleLee, Yu-Ping, Hsin-Yeh Tsai, and Athapol Ruangkanjanases. 2020. "The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality" International Journal of Environmental Research and Public Health 17, no. 21: 8287. https://doi.org/10.3390/ijerph17218287
APA StyleLee, Y. -P., Tsai, H. -Y., & Ruangkanjanases, A. (2020). The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality. International Journal of Environmental Research and Public Health, 17(21), 8287. https://doi.org/10.3390/ijerph17218287