Predictive Performance Models in Long-Distance Runners: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search
2.2. Selection Criteria
2.3. Exclusion Criteria
3. Results
3.1. Demographic Variables
3.2. Aerobic Metabolism Assessment Variables
3.3. Training Variables
3.4. Field Test Variables
3.5. Anthropometric Variables
3.6. Other Variables
3.7. Data Management and Presentation
3.8. Variables and Models Associated with the 5000 m Event
3.9. Variables and Models Associated with the 10,000 m Event
3.10. Variables and Models Associated with the Half-Marathon Event
3.11. Variables and Models Associated with the Marathon Event
4. Discussion
4.1. Practical Applications
4.2. Future Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pate, R.R.; Macera, C.A.; Bailey, S.P.; Bartoli, W.P.; Powell, K.E. Physiological, anthropometric, and training correlates of running economy. Med. Sci. Sports Exerc. 1992, 24, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.; Keogh, A.; Davenport, J.; Lawlor, A.; Smyth, B.; Caulfield, B. An evaluation of the training determinants of marathon performance: A meta-analysis with meta-regression. J. Sci. Med. Sport 2020, 23, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kenneally, M.; Casado, A.; Santos-Concejero, J. The effect of periodization and training intensity distribution on middle-and long-distance running performance: A systematic review. Int. J. Sports Physiol. Perform. 2018, 13, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- González-Mohíno, F.; Santos-Concejero, J.; Yustres, I.; González-Ravé, J.M. The Effects of Interval and Continuous Training on the Oxygen Cost of Running in Recreational Runners: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 283–294. [Google Scholar]
- Casado, A.; Hanley, B.; Santos-Concejero, J.; Ruiz-Pérez, L.M. World-Class Long-Distance Running Performances Are Best Predicted by Volume of Easy Runs and Deliberate Practice of Short-Interval and Tempo Runs. J. Strength Cond. Res. 2019, 30. [Google Scholar] [CrossRef]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Bale, P.; Bradbury, D.; Colley, E. Anthropometric and training variables related to 10km running performance. Br. J. Sports Med. 1986, 20, 170–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Barandun, U.; Knechtle, P.; Zingg, M.A.; Rosemann, T.R.C. Prediction of half-marathon race time in recreational female and male runners. Springerplus 2014, 3, 248. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J. Modeling: Optimal marathon performance on the basis of physiological factors. J. Appl. Physiol. 1991, 70, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Midgley, A.W.; McNaughton, L.R.; Jones, A.M. Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007, 37, 857–880. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Weyand, P.G.; Cureton, K.J.; Conley, D.S.; Sloniger, M.A.; Liu, Y.L. Peak oxygen deficit predicts sprint and middle-distance track performance. Med. Sci. Sports Exerc. 1994, 26, 1174–1180. [Google Scholar] [CrossRef]
- de Souza, K.M.; de Lucas, R.D.; Grossl, T.; Costa, V.P.; Guglielmo, L.G.A.; Denadai, B.S. Performance prediction of endurancerunners through laboratory and track tests. Rev. Bras. Cineantropometria Desemp Desempeho Hum. 2014, 16, 465–474. [Google Scholar]
- Alvero-Cruz, J.R.; Carnero, E.A.; Giráldez García, M.A.; Alacid, F.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Cooper Test Provides Better Half-Marathon Performance Prediction in Recreational Runners Than Laboratory Tests. Front. Physiol. 2019, 5, 1349. [Google Scholar] [CrossRef] [Green Version]
- Alvero-Cruz, J.R.; Standley, R.A.; Giráldez-García, M.A.; Carnero, E.A. A simple equation to estimate half-marathon race time from the cooper test. Int. J. Sports Physiol. Perform. 2020, 15, 690–695. [Google Scholar] [CrossRef]
- Knechtle, B.; Knechtle, P.; Barandun, U.; Rosemann, T.L. Predictor variables for half marathon race time in recreational female runners. Clinics (Sao Paulo) 2011, 66, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Wirth, A.; Knechtle, P.; Zimmermann, K.; Kohler, G. Personal best marathon performance is associated with performance in a 24-h run and not anthropometry or training volume. Br. J. Sports Med. 2009, 43, 836–839. [Google Scholar] [CrossRef] [Green Version]
- Rüst, C.A.; Knechtle, B.; Knechtle, P.; Barandun, U.; Lepers, R.; Rosemann, T. Predictor variables for a half marathon race time in recreational male runners. Open Access J. Sports Med. 2011, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B. Relationship of anthropometric and training characteristics with race performance in endurance and ultra-endurance athletes. Asian J. Sports Med. 2014, 5, 73–90. [Google Scholar]
- Alvero-Cruz, J.R.; Giráldez García, M.A.; Carnero, E.A. Reliability and accuracy of Cooper’s test in male long distance runners. Rev. Andal. Med. Deport. 2017, 10, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Molina, J.; Ogueta-Alday, A.; Camara, J.; Stickley, C.; Rodríguez-Marroyo, J.A.; García-López, J. Predictive variables of half-marathon performance for male runners. J. Sports Sci. Med. 2017, 16, 187–194. [Google Scholar]
- Stratton, E.; O’Brien, B.J.; Harvey, J.; Blitvich, J.; McNicol, A.J.; Janissen, D.; Paton, C.; Knez, W. Treadmill velocity best predicts 5000-m run performance. Int. J. Sports Med. 2009, 30, 40–45. [Google Scholar] [CrossRef]
- Fay, L.; Londeree, B.; LaFontaine, T.; Volek, M. Physiological parameters related to distance running performance in female athletes. Med. Sci. Sports Exerc. 1989, 21, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Kenney, W.L.; Hodgson, J.L. Variables predictive of performance in elite middle-distance runners. Br. J. Sports Med. 1985, 19, 207–209. [Google Scholar] [CrossRef] [Green Version]
- Nummela, A.T.; Paavolainen, L.M.; Sharwood, K.A.; Lambert, M.I.; Noakes, T.D.; Rusko, H.K. Neuromuscular factors determining 5 km running performance and running economy in well-trained athletes. Eur. J. Appl. Physiol. 2006, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, N.; Tanaka, K. Prediction of endurance running performance for middle-aged and older runners. Br. J. Sports Med. 1995, 29, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Matsuura, Y. Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J. Appl. Physiol. 1984, 57, 640–643. [Google Scholar] [CrossRef]
- Roecker, K.; Schotte, O.; Niess, A.M.; Horstmann, T.; Dickhuth, H.H. Predicting competition performance in long-distance running by means of a treadmill test. Med. Sci. Sports Exerc. 1998, 30, 1552–1557. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Guglielmo, L.G.; Santos, B.V.; Hernandez, S.G.; da Silva, S.G.; de Campos, W. Physiological, anthropometric, strength, and muscle power characteristics correlates with running performance in young runners. J. Strength Cond. Res. 2015, 29, 1584–1591. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Nute, M.G.; Williams, C. Determinants of five kilometre running performance in active men and women. Br. J. Sports Med. 1987, 21, 9–13. [Google Scholar] [CrossRef]
- Tanaka, K.; Matsuura, Y.; Matsuzaka, A.; Hirakoba, K.; Kumagai, S.; Sun, S.O.; Asano, K. A longitudinal assessment of anaerobic threshold and distance-running performance. Med. Sci. Sports Exerc. 1984, 16, 278–282. [Google Scholar] [CrossRef]
- Foster, C. VO2max and training indices as determinants of competitive running performance. J. Sports Sci. 1983, 1, 13–22. [Google Scholar] [CrossRef]
- Morgan, D.W.; Baldini, F.D.; Martin, P.E.; Kohrt, W.M. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med. Sci. Sports Exerc. 1989, 21, 78–83. [Google Scholar] [CrossRef]
- Brandon, L.J. Physiological factors associated with middle distance running performance. Sports Med. 1995, 19, 268–277. [Google Scholar] [CrossRef]
- Berg, K.; Latin, R.W.; Coffey, C. Relationship of somatotype and physical characteristics to distance running performance in middle age runners. J. Sports Med. Phys. Fit. 1998, 38, 253–257. [Google Scholar]
- Arrese, A.L.; Ostáriz, E.S. Skinfold thicknesses associated with distance running performance in highly trained runners. J. Sports Sci. 2006, 24, 69–76. [Google Scholar] [CrossRef]
- Berg, K. Endurance training and performance in runners: Research limitations and unanswered questions. Sports Med. 2003, 33, 59–73. [Google Scholar] [CrossRef]
- Evans, S.L.; Davy, K.P.; Stevenson, E.T.; Seals, D.R. Physiological determinants of 10-km performance in highly trained female runners of different ages. J. Appl. Physiol. 1995, 78, 1931–1941. [Google Scholar] [CrossRef]
- Föhrenbach, R.; Mader, A.; Hollmann, W. Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int. J. Sports Med. 1987, 8, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.; Daines, E.; Hector, L.; Snyder, A.C.; Welsh, R. Athletic performance in relation to training load. Wis. Med. J. 1996, 95, 370–374. [Google Scholar]
- Hagan, R.D.; Smith, M.G.; Gettman, L.R. Marathon performance in relation to maximal aerobic power and training indices. Med. Sci. Sports Exerc. 1981, 13, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Legaz Arrese, A.; Munguía Izquierdo, D.; Serveto Galindo, J.R. Physiological measures associated with marathon running performance in high-level male and female homogeneous groups. Int. J. Sports Med. 2006, 27, 289–295. [Google Scholar] [CrossRef]
- Noakes, T.D.; Myburgh, K.H.; Schall, R. Peak treadmill running velocity during the VO2 max test predicts running performance. J. Sports Sci. 1990, 8, 35–45. [Google Scholar] [CrossRef]
- Petit, M.A.; Nelson, C.M.; Rhodes, E.C. Comparison of a mathematical model to predict 10-km performance from the Conconi test and ventilatory threshold measurements. Can. J. Appl. Physiol. 1997, 22, 562–572. [Google Scholar] [CrossRef]
- Tanda, G.; Knechtle, B. Marathon performance in relation to body fat percentage and training indices in recreational male runners. Open Access J. Sports Med. 2013, 4, 141–149. [Google Scholar]
- Bale, P.; Rowell, S.; Colley, E. Anthropometric and training characteristics of female marathon runners as determinants of distance running performance. J. Sports Sci. 1985, 3, 115–126. [Google Scholar] [CrossRef]
- Campbell, M.J. Predicting running speed from a simple questionnaire. Br. J. Sports Med. 1985, 19, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.; Rüst, C.A.; Rosemann, T.; Knechtle, P.; Barandun, U.; Lepers, R.; Knechtle, B. A Comparison of Anthropometric and Training Characteristics between Female and Male Half-Marathoners and the Relationship to Race Time. Asian J. Sports Med. 2014, 5, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Perez, I.M.; Perez, D.M.; Gonzalez, C.C.; Esteve-Lanao, J. Prediction of race pace in long distance running from blood lactate concentration around race pace. J. Hum. Sport Exerc. 2012, 7, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Knechtle, P.; Barandun, U.; Rosemann, T. Anthropometric and training variables related to half-marathon running performance in recreational female runners. Phys. Sportsmed. 2011, 39, 158–166. [Google Scholar] [CrossRef]
- Knechtle, B.; Wirth, A.; Knechtle, P.; Rosemann, T. Training volume and personal best time in marathon, not anthropometric parameters, are associated with performance in male 100-km ultrarunners. J. Strength Cond. Res. 2010, 24, 604–609. [Google Scholar] [CrossRef]
- Slovic, P. Empirical study of training and performance in the marathon. Res. Q. 1977, 48, 769–777. [Google Scholar] [CrossRef]
- Davies, C.T.M.; Thompson, M.W. Aerobic performance of female marathon and male ultramarathon athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 41, 233–245. [Google Scholar] [CrossRef]
- Tanda, G. Predicition of marathon performance time on the basis of training indices. J. Hum. Sport Exerc. 2011, 6, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Lanao, J.; Del Rosso, S.; Larumbe-Zabala, E.; Cardona, C.; Alcocer-Gamboa, A.; Boullosa, D.A. Predicting Recreational Runners’ Marathon Performance Time During Their Training Preparation. J. Strength Cond. Res. 2019, 1. [Google Scholar] [CrossRef]
- Lucia, A.; Esteve-lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro, C.; Foster, C. Physiological characteristics of the best Eritrean runners—Exceptional running economy. Appl. Physiol. Nutr. Metab. 2006, 31, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.C.; Howatson, G.; Hayes, P.R. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sports Med. 2018, 48, 1117–1149. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Santos, C.; Gerosa-Neto, J.; Inoue, D.S.; Rossi, F.E.; Cholewa, J.M.; Campos, E.Z.; Panissa, V.L.G.; Lira, F.S. Physiological Acute Response to High-Intensity Intermittent and Moderate-Intensity Continuous 5 km Running Performance: Implications for Training Prescription. J. Hum. Kinet. 2017, 11, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York City, NY, USA, 2013; ISBN 9781461468493. [Google Scholar]
- Billat, V.; Beillot, J.; Jan, J.; Rochcongar, P.; Carre, F. Gender effect on the relationship of time limit at 100% VO(2max) with other bioenergetic characteristics. Med. Sci. Sports Exerc. 1996, 28, 1049–1055. [Google Scholar] [CrossRef]
- Billat, V.; Demarle, A.; Paiva, M.; Koralsztein, J.P. Effect of training on the physiological factors of performance in elite marathon runners (males and females). Int. J. Sports Med. 2002, 23, 336–341. [Google Scholar] [CrossRef]
- Florence, S.; Weir, J.P. Relationship of critical velocity to marathon running performance. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 274–278. [Google Scholar] [CrossRef]
- Conley, D.L.; Krahenbuhl, G.S. Running economy and distance running performance of highly trained athletes. Med. Sci. Sports Exerc. 1980, 12, 357–360. [Google Scholar] [CrossRef]
- Moir, H.J.; Kemp, R.; Folkerts, D.; Spendiff, O.; Pavlidis, C.; Opara, E. Genes and elite marathon running performance: A systematic review. J. Sports Sci. Med. 2019, 18, 559–568. [Google Scholar]
Long-Distance Specialties | ||||||
---|---|---|---|---|---|---|
Variables | 5000 m | 10,000 m | HM | M | Total | % of Total |
Demographic | 4 | 1 | 1 | 1 | 7 | 5.1 |
Aerobic Metabolism | 26 | 14 | 3 | 16 | 59 | 43.4 |
Training | 1 | 5 | 2 | 28 | 36 | 26.5 |
Anthropometry | 2 | 5 | 16 | 5 | 28 | 20.6 |
Field test | 0 | 1 | 2 | 0 | 3 | 1.47 |
Others | 0 | 1 | 0 | 3 | 4 | 2.94 |
Subtotals/Total | 33 | 27 | 24 | 51 | 137 | 100 |
Author | Year | Sex | n | Level | Dependent Variable | Independent Variable | r | p | R2 | SEE |
---|---|---|---|---|---|---|---|---|---|---|
Foster | 1983 | 1 | 28 | Well-trained | 3 Miles | VO2max | −0.92 | |||
Training volume | ||||||||||
Intensity | ||||||||||
Tanaka | 1984 | 1 | 21 | Trained | 5000 m | vVO2max | 0.78 | <0.001 | 0.62 | nr |
Ramsbottom | 1987 | 1 | 55 | University | VO2max | 5000 m | −0.85 | <0.01 | ||
0 | 43 | 5000 m | −0.80 | <0.01 | ||||||
1987 | 1 | 55 | University | 5000 m | RE | 0.39 | <0.01 | |||
0 | 43 | RE | 0.34 | <0.05 | ||||||
Fay | 1989 | 0 | 13 | Mod-Highly | 5000 m (m/min) | Vlact 4 mMol/L (m/min) | 0.94 | 0.940–0.97 | nr | |
VO2max (ml/kg/min) | ||||||||||
Oxygen cost of running | −0.4–(−0.63) | |||||||||
Velocity (m/min) = 0.346 (vLac 4 mMol/L) + 1.899 (VO2max) | ||||||||||
Kenney | 1985 | 1 | 8 | Elite | 5000 (time in sec) | Age + VT2 (mL/kg/min) | <0.02 | 0.98 | nr | |
Time (sec) = 11555 − 5.1 (age) − 2.9 (VT2) | ||||||||||
Weyand | 1994 | 1–0 | 22–19 | Competitive | 5000 m | Peak O2 Def (POD) | −0.4 | |||
VO2max | High | |||||||||
%VO2 AT | ||||||||||
RE at 3.6 m/s | ||||||||||
Gender (1 = male; 2 = female) | ||||||||||
Specialty | ||||||||||
Time (sec) = 0.38 (POD) − 1.29 (VO2max) + 1.25 AT(%VO2) | ||||||||||
+ 4.42 (RE) + 55.9 (Gender) − 47.4 (specialty) | ||||||||||
(1 sprinter, 2 long-distance runner) + 1664.9 | nr | nr | ||||||||
Takeshima | 1995 | 1 | 51 | Popular | 5000 m (m/s) | VO2 LT (ml/kg/min) | 0.87 | |||
Age | ||||||||||
ARD | 0.89 | |||||||||
VO2 LT (ml/kg/min) | 0.79 | |||||||||
Age | ||||||||||
VO2 LT (ml/kg/min) | 0.82 | |||||||||
Age | ||||||||||
ARD | ||||||||||
Velocity (m/s) = 4.436 + 0.045 (VO2 LT) − 0.033 (Age) + 0.005 (ARD) | 0.89 | 0.27 | ||||||||
Roecker | 1998 | 1–0 | 339–88 | Competitive | 5000 m (m/s) | vPeak (km/h) | 0.91 | <0.001 | 0.940–0.97 | |
IAT (m/s) | 0.91 | |||||||||
% Fat Mass | nr | |||||||||
MHR (bpm) | ||||||||||
Max Lact (mMol/L) | ||||||||||
Velocity (m/s) = 3.404 + 0.683 (vPeak) + 0.274 (IAT) − 0.05 (%FM) | ||||||||||
(MHR) − 0.079 (Max Lact) | ||||||||||
Nummela | 2006 | 1 | 18 | Well-trained | Velocity (m/s) | VO2max | 0.55 | <0.05 | ||
MART | ||||||||||
Vel (m/s) = 0.066 (VO2max) + 0.048 (MART) − 0.549 | 0.728 | nr | ||||||||
Stratton | 2009 | 1–0 | 17–22 | Untrained | 5000 m (km/h) | VO2 max (ml/kg/min) | 0.55 | <0.01 | ||
V LT (km/h) | 0.73 | <0.01 | ||||||||
V Max (km/h) | 0.89 | <0.01 | ||||||||
Run velocity (km/h) = −1.124 + 0.514 (Vmax) + 0.267 (V LT) | 0.812 | |||||||||
2009 | 1–0 | 17–22 | Trained | 5000 m (km/h) | VO2 max (ml/kg/min) | 0.51 | <0.01 | |||
V LT (km/h) | 0.76 | <0.01 | ||||||||
V Max (km/h) | 0.83 | <0.01 | ||||||||
Run velocity (km/h) = −2.629 + 0.546 (Vmax) + 0.345 (V LT) | 0.738 | |||||||||
Mendes de Souza | 2014 | 1 | 10 | 5000 m | vVO2 max Lab | 0.05 | 0.35 | nr | ||
1 | 10 | 5000 m | vVO2 max Montreal | 0.002 | 0.66 | nr | ||||
Dellagrana | 2015 | 1 | 23 | Moderately trained | 5000 (time) | vVT (km/h) | −0.64 | 0.001 | ||
RE at 11.2 km/h (L/min) | 0.44 | 0.035 | ||||||||
Fat-free mass (kg) | 0.57 | <0.005 | ||||||||
5 km T (min) = 25.64 − 0.71 (vVT) − 3.38 (RE 11.2) + 0.21 (FFM) | 0.71 | 0.67 |
Author | Year | Sex | n | Level | Dependent Variable | Independent Variable | r | p | R2 | SEE |
---|---|---|---|---|---|---|---|---|---|---|
Foster | 1983 | 1 | 17 | Well-trained | 3 Miles | VO2 max | −0.94 | |||
Training volume | ||||||||||
Intensity | ||||||||||
Tanaka | 1984 | 1 | 21 | Trained | 10,000 m | vVO2 max | 0.96 | nr | ||
1 | 21 | Trained | 10,000 m | vAT (ml/kg/min) | 0.80 | <0.001 | ||||
Bale | 1986 | 1 | 60 | Elite & Good | Time 10,000 m | Workouts (WO)per week | −0.87 | 0.75 | 2.28 | |
Time (min) = 44.27 − 1.44 (WO) | ||||||||||
WO + Miles (MW) per week | −0.84 | |||||||||
Time (min) = 46.32 − 0.91 (WO) − 0.11 (MW) | 0.8 | 2.08 | ||||||||
WO + MW + Running years (RY) | −0.80 | |||||||||
Time (min) = 46.45 −0.68 (WO) − 0.11 (MW) − 0.38 (RY) | 0.83 | 1.92 | ||||||||
WO + MW + RY + Ectomorphy | −0.40 | |||||||||
Time (min) = 47.93 − 0.68 (WO) − 0.10 (MW) – 0.38 (RY) − 0.68 (Ectomorphy) | 0.86 | 1.78 | ||||||||
Brandon | 1987 | Middle | 10,000 (m/s) | VO2max (ml/kg/min) | ||||||
Anaerobic Capacity (AC) | ||||||||||
Height (cm) | ||||||||||
10,000 (m/s) = 127.39 + 0.64 (VO2) + 0.21 (AC) + 0.4 (Height) | ||||||||||
Fay | 1989 | 0 | 13 | Moderate | 10,000 m (m/min) | Vlact 4 mmol/L(m/min) | 0.840–0.94 | |||
High | VO2max (ml/kg/min) | |||||||||
Vlact 2 mmol/L(m/min) | ||||||||||
10,000 (m/min) = 0.437 (vLA 4 mmol/L) + 2.082 (VO2max) + 8.698 | ||||||||||
10000 (m/min) = 0.728 (vLac 4 mmol/L) + 57.926 | ||||||||||
10,000 (m/min) = 0.407 (vLac 2 mmol/L) + 2.276 (VO2max) + 12.706 | ||||||||||
Morgan | 1989 | 1 | 10 | Well-trained | Time (min) | VO2max | −0.45 | >0.05 | ||
vVO2max | −0.87 | <0.01 | ||||||||
Vel at 4 mmol/L | −0.82 | <0.01 | ||||||||
RE | 0.64 | <0.05 | ||||||||
Petit | 1997 | 1 | 15 | Trained | Vel Ventilatory threshold | 0.95 | 0.96 | |||
Vel HR def (km/h) | ||||||||||
10,000 (km/h) = 1.03 (Vel Deflection HR) | ||||||||||
Berg | 1998 | 1 | 34 | Mod trained | Time 10,000 m | BMI and Mesomorphy | 0.61 | 0.38 | 7.3 | |
10,000 (min) = 4.12 (BMI) − 4.5 (Mesomorphy) − 29.1 | ||||||||||
0 | 19 | Mod trained | Time 10,000 m | Endomorphy | 0.64 | 0.41 | 6.5 | |||
10,000 (min) = 37 + 3.3 (Endomorphy) | ||||||||||
Evans | 1995 | 0 | 31 | Highly trained | 10,000 Pace (m/min) | VO2max | 0.89 | 0.05 | 0.8 | |
Lac Threshold | 0.89 | 0.05 | 0.8 | |||||||
VO2 (ml/kg FFM/min) | 0.81 | 0.05 | 0.66 | |||||||
VO2 in LT | 0.84 | 0.05 | 0.71 | |||||||
Takeshima | 1995 | 1 | 51 | Trained | 10,000 vel (m/s) | VO2 in LT (ml/kg/min) | 0.78 | 0.62 | nr | |
Age | ||||||||||
VO2 in LT | 0.81 | 0.67 | ||||||||
Age | nr | |||||||||
Workout (min) | ||||||||||
10,000 (m/s) = 4.371 + 0.037 (VO2 in LT) − 0.031 (Age) + 0.005 (Workout) | 0.82 | 0.335 |
Author | Year | Sex | n | Level | Dependent Variable | Independent Variable | r | p | R2 | SEE | L LOA | to | U LOA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Campbell | 1985 | 1–0 | 88–10 | Finishers | Running Speed (km/h) | Age | |||||||
Height | 0.18 | ns | |||||||||||
Pulse rate 1 (PR1) | −0.53 | ||||||||||||
Pulse rate 2 (PR2) | −0.35 | ||||||||||||
km/week (K) | 0.53 | <0.01 | |||||||||||
Training weeks (NW) | 0.4 | <0.01 | |||||||||||
BMI | −0.41 | <0.01 | |||||||||||
Running Speed (km/h) = 21.3 +0.028 (K) − 0.31 (BMI) − 0.037 (PR2) + 0.012 (NW) | 0.47 | nr | |||||||||||
Roecker | 1998 | 1–0 | 339–88 | Competitive | IAT | 0.93 | <0.001 | ||||||
Running vel at 4 mmol/L | 0.91 | <0.001 | |||||||||||
vVO2max | 0.89 | <0.001 | |||||||||||
Rüst | 2011 | 1 | 84 | Recreational | Race time | BMI | 0.56 | 0.01 | |||||
Skinfolds | 0.360–0.53 | 0.005 | |||||||||||
Percent fat mass | 0.49 | 0.01 | |||||||||||
Race time = 72.91 + 3.045 (BMI) − 3.884 (SRT) | 0.44 | nr | −25.1 | to | 25.1 | ||||||||
Knechtle | 2011 | 0 | 42 | Recreational | Race time | Skinfolds | 0.490–0.61 | <0.001 | |||||
Race time = 166.7 + 1.7 (mid axilla SK) − 6.4 (SRT) | 0.71 | nr | nr | nr | |||||||||
Muñoz | 2013 | 1 | 24 | Vel (km/h) | Velocity 2 at 14.6 ± 2.6 km/h | ||||||||
Blood Lactate at velocity 2 | 0.97 | 0.414 | |||||||||||
Vel Half-marathon (km/h) = V2 * 1.085 + (BLa2 * −0.282) − 0.131 | nr | ||||||||||||
Friedrich | 2014 | 0 | 83 | Recreational | Race time | Weight | 0.63 | <0.0001 | |||||
Height | 0.27 | 0.01 | |||||||||||
BMI | 0.57 | <0.0001 | |||||||||||
Circumferences | 0.510–0.55 | <0.0001 | |||||||||||
Skinfolds | 0.390–0.59 | <0.0001 | |||||||||||
Skeletal Muscle mass | 0.24 | 0.03 | |||||||||||
Fat mass | 0.6 | <0.0001 | |||||||||||
Friedrich | 2014 | 1 | 147 | Popular | Race time | Weight | 0.27 | 0.0009 | |||||
Height | −0.17 | 0.04 | |||||||||||
BMI | 0.46 | <0.0001 | |||||||||||
Arm circumference | 0.37 | <0.0001 | |||||||||||
Skinfolds | 0.290–0.43 | <0.0001 | |||||||||||
Skeletal Muscle mass | −0.07 | >0.05 | |||||||||||
Fat mass | 0.49 | <0.0001 | |||||||||||
Knechtle | 2014 | 1 | 147 | Recreational | Race time (min) | Percent fat mass | |||||||
SRT (km/h) | |||||||||||||
Race time (min) = 142.7 + 1.158 (%FM) − 5.223 (SRT) | 0.42 | 13.3 | −26 | to | 25.8 | ||||||||
Knechtle | 2014 | 0 | 83 | Recreational | Race time (min) | Percent fat mass | |||||||
SRT (km/h) | |||||||||||||
Race time (min) = 168.7 + 1.077 (%FM) − 7.556 (SRT) | 0.68 | 9.8 | −19 | to | 19.1 | ||||||||
Gómez | 2017 | 1 | 48 | Recreational | Race time (min) | Week training (km) WT | −0.75 | < 0.05 | |||||
Running experience (years) RE | −0.80 | < 0.05 | |||||||||||
BMI | 0.64 | < 0.05 | |||||||||||
Sum 6 Skinfolds (mm) | 0.78 | < 0.05 | |||||||||||
Race time (min) = 56.83 − 0.11 WT − 0.46 RE + 1.19 BMI + 0.16 Sum6SKF | 0.82 | nr | −9.2 | to | 12.2 | ||||||||
2017 | 1 | 48 | Recreational | Race time (min) | Peak speed (km/h) | −0.92 | < 0.05 | ||||||
RCT (km/h) | −0.92 | < 0.05 | |||||||||||
Race time (min) = 180.86 − 2.81 Peak speed − 2.77 RCT | 0.90 | nr | −6.7 | to | 6.4 | ||||||||
2017 | 1 | 48 | Recreational | Race time (min) | RCT Step rate (Hz) | −0.38 | < 0.05 | ||||||
RCT Step length (m) | −0.87 | < 0.05 | |||||||||||
Maximal step length (m) | −0.73 | < 0.05 | |||||||||||
Race time (min) = 271.9 − 33.38 RCTsr − 28.38 RCTsl − 29.8 Msl | 0.88 | nr | −9.7 | to | 5.7 | ||||||||
2017 | 1 | 48 | Recreational | Race time (min) | Peak speed (km/h) | −0.92 | < 0.05 | ||||||
RCT (km/h) | −0.92 | < 0.05 | |||||||||||
Running Experience (years) | −0.75 | < 0.05 | |||||||||||
Race time (min) = 169.54 − 2.51 Peak speed − 2.25 RCT − 0.37 RE | 0.93 | nr | −6.7 | to | 6.0 | ||||||||
Alvero-Cruz | 2019 | 1 | 23 | Recreational | Race time (min) | Cooper test (m) | −0.92 | <0.0001 | |||||
Race time (min) = 201.26 − 0.03433 Cooper (m) | 0.873 | 3.78 | −7.5 | to | 7.4 | ||||||||
2019 | 1 | 23 | Recreational | Race time (min) | vVO2max (km/h) | −0.85 | < 0.0001 | ||||||
Weight (kg) | 0.4 | 0.04 | |||||||||||
Race time (min) = 156.7117 − 4.7194 vVO2max − 0.3435 Weight | 0.769 | 5.28 | 9.5 | to | 9.7 | ||||||||
Alvero-Cruz | 2020 | 1 | 177 | Recreational | Race time (min) | Cooper test (m) | −0.906 | <0.0001 | |||||
0 | 21 | Recreational | |||||||||||
Race time (min) = 205.6272 − 0.0356 Cooper (m) | 0.82 | 5.19 | −10.7 | to | 9.7 |
Author | Year | Sex (M/F) | n | Level | Dependent Variable | Independent Variable | r | p | R2 | SEE |
---|---|---|---|---|---|---|---|---|---|---|
Foster | 1975 | Race Time (min) | VO2max(ml/kg/min) | |||||||
Time (min) = 3.45 (VO2max) + 387.3 | nr | nr | ||||||||
Foster | 1975 | Race Time (min) | VO2max | |||||||
Training longer in last 8 w | ||||||||||
Pace (seconds/mile) | ||||||||||
Time (min) = 2.75 (VO2max) − 0.022 (miles 8w) − 1 (TL8w) + 0.146 (pace) + 319.4 | nr | nr | ||||||||
Slovic | 1977 | Race Time (min) | Best record in mile (min) (BR1) | |||||||
Best record in 5 miles (min) (BR5) | ||||||||||
Best record in 10 miles (min)(BR10) | ||||||||||
Miles in last 8 weeks | ||||||||||
Finisher of one marathon | ||||||||||
Training longer in last 8 w | ||||||||||
Time (min) = 0.45 (BR1min) − 7.9 (Finisher) − 0.08(Miles 8w) − 1.45 (TL8w(min) + 116.5 | nr | nr | ||||||||
Slovic | 1977 | Race Time (min) | Best record in 5 miles (min) (BR5) | |||||||
Miles in last 8 weeks | ||||||||||
Training longer in last 8 w | ||||||||||
Time (min) = 6.62 (BR 5min) − 0.05(Miles 8w) − 1.45 (TL8w(min)) + 42.8 | nr | nr | ||||||||
Slovic | 1977 | Race Time (min) | Best record in 10 miles (min)(BR10) | |||||||
Miles in last 8 weeks | ||||||||||
Training longer in last 8 w | ||||||||||
Time (min) = 2.98 (BR 10 (min) − 0.04(Miles 8w) − 1.3 (TL8w(min) + 46.6 | nr | nr | ||||||||
Davis | 1979 | Race Time (min) | VO2max(ml/kg/min) | |||||||
%VO2 in AT | ||||||||||
Time (h) = 7.445 − 0.0338 (VO2max) − 0.0303 (%VO2) | 0.99 | |||||||||
Hagan | 1981 | 1 | 50 | Trained | Race Time (min) | VO2max | −0.63 | |||
Avg km WO in last 9 weeks | −0.64 | |||||||||
total km | −0.67 | |||||||||
overall WO in last 9 weeks | −0.62 | |||||||||
Mean pace (m/min) | ||||||||||
Time (min) = 525.9 + 7.09 km (kmWO) − 0.45 (WO speed m/min) − 0.17 (km 9 weeks) | 0.71 | |||||||||
−2.01 (VO2max, ml x kg−1 x min−1) − 1.24 (age, year) | ||||||||||
Foster | 1983 | 1 | 25 | Well-trained | 26.2 miles | VO2max | −0.95 | |||
Training volume | ||||||||||
Intensity | ||||||||||
Bale | 1985 | 0 | 36 | Trained | Race Time (min) | workouts/week | ||||
Time (min) = −4.42 (WO per week) + 218.5 | nr | nr | ||||||||
1985 | 0 | 36 | Trained | Race Time (min) | workouts/week | |||||
Ectomorphy | ||||||||||
Time (min) = −3.72 (WO per week) − 7.02 (Ectomorphy) + 242.6 | nr | nr | ||||||||
1985 | 0 | 36 | Trained | Race Time (min) | workouts/week | |||||
Ectomorphy | ||||||||||
training years (TY) | ||||||||||
Time (min) = −3.32 (WO per week) − 6.05 (Ectomorphy) − 0.85 (TY) + 240.6 | nr | nr | ||||||||
Hagan | 1987 | 0 | 35 | Combined | Race Time (min) | Mean km/day | 0.77 | <0.001 | 0.59 | |
Training pace (m/min) | 0.66 | <0.001 | 0.44 | |||||||
Race Time = 449.88 − 7.61 (Mean km/day) − 0.63 (Training pace m/min) | 0.82 | nr | 0.68 | 18.4 | ||||||
0 | 16 | Experienced | Race Time (min) | BMI | 0.7 | nr | 0.49 | |||
Training pace (m/min) | 0.78 | <0.001 | 0.61 | |||||||
Race Time = 214.24 + 393.07 (BMI) − 0.68 (training pace m/min) | 0.87 | nr | 0.76 | 12.4 | ||||||
0 | 19 | Novice | Race Time (min) | BMI | 0.31 | ns | 0.1 | |||
Race Time = 369.58 − 10.1 (Mean km/day) | 0..69 | nr | 0.48 | 22.2 | ||||||
Föhrenbach | 1987 | 1–0 | 34 | Race Time (min) | Mean km last 9 weeks | |||||
vLact 2,5 (m/s) | 0.880–0.99 | <0.001 | ||||||||
vLact 3 (m/s) | ||||||||||
vLact 4 (m/s) | ||||||||||
Noakes | 1990 | 1 | 20 | Race Time (min) | Time in Half-M (THM) | |||||
Lact AT (mmol/L) | ||||||||||
% peak Vel in AT (lact) | −0.88 | |||||||||
Time (min = 1.98 (THM) + 6.23 AT (mmol/L) − 0.46 AT % vPeak mmol/L + 33.84 | ||||||||||
Time (min) = 1.94 (THM) + 5.8 AT (mmol/L) − 0.44 AT % vPeak mmol/L + 0.39 RE at 16 km/h + 16.79 | ||||||||||
Time (min) = 1.29 % vPeak mmol/L − 10.86 vLT (km/h) + 241.3 | ||||||||||
Time (min) = −4.92 vLT (km/h) − 4.46 vPeak (km/h) + 337.8 | ||||||||||
Noakes | 1990 | 1 | 20 | Race Time (min) | Time in Half-M | |||||
Lact AnT (mmol/L) | ||||||||||
% peak Vel i nAT (lact) | ||||||||||
VO2 at 16 km/h | 0.760–0.9 | |||||||||
Race Time (min) | Lact AnT (mmol/L) | |||||||||
% peak Vel in AT (lact) | ||||||||||
Race Time (min) | Vel in AnT by lact in km/h | |||||||||
vVO2max (km/h) | ||||||||||
Takeshima | 1995 | 1 | 51 | Popular | Mean Velocity (m/s) | VO2 LT (ml/kg/min) | ||||
Age | ||||||||||
Mean Duration Workouts (min) | ||||||||||
Mean Vel (m/s) = 0.038 (VO2 LT) − 0.031 (Age) + 0.005 (MDWO) + 3.707 | 0.93 | 0.199 | ||||||||
Roecker | 1998 | 1–0 | 339–88 | Competitive | Mean Velocity (m/s) | vIAT (m/s) | 0.93 | <0.001 | 0.950–0.97 | |
vVO2max (km/h) | 0.87 | <0.001 | ||||||||
MHR | ||||||||||
Weight | ||||||||||
Mean Vel (m/s) = 0.546 (vIAT) + 0.293 (vVO2max) + 0.013 (km/week) − 0.0155 (MHR) − 0.0253 (Weight) + 3.4 | ||||||||||
Arrese | 2006 | 0 | 8 | Highly trained | Race Time | Iliac crest SK | 0.76 | <0.05 | ||
Abdominal SK | 0.76 | <0.05 | ||||||||
Subscapular SK | 0.78 | <0.05 | ||||||||
Serum ferritin (µg/L) | −0.76 | <0.05 | ||||||||
Race Time = 7658.331 + 55.519 (Subscapular SK) − 4.834 (ferritin) + 34.895 (Sum 6 SK) | 0.992 | <0.001 | ||||||||
2006 | 1 | 10 | Highly trained | Race Time | Left ventricular diameter (LVD) | −0.68 | <0.05 | |||
Lactate at 10 km/h | 0.91 | <0.001 | ||||||||
Lactate at 22 km/h | ||||||||||
Race Time = 8408.623 (lact 10 km/h) − 18.255 (LVD) + 22.522 (lact 22 km/h) | 0.991 | <0.001 | ||||||||
Tanda | 2011 | 1–0 | 21–ene | Trained | Pace (sec/km) | K (km/week) | 0.94 | 0.81 | ||
Pace (P) (sec/km) | 0.85 | |||||||||
Pace (sec/km) = 17.1 + 140 exp [–0.0053 K] + 0.55 (Pace) | 0.81 | 5.77 | ||||||||
Muñoz | 2013 | 1 | 24 | Vel (km/h) | Velocity 1 at 13,5 ± 0,9 km/h (V1) | |||||
Blood Lactate at velocity 1 | 0.81 | 0.626 | ||||||||
Vel Marathon (km/h) = V1 1.085 + (BLa2 − 0.429) − 0.170 | ||||||||||
Tanda | 2013 | 1 | 126 | Recreational | Pace (sec/km) | Km week | ||||
Pace training (sec/km) | ||||||||||
Percent body fat | ||||||||||
Pace (sec/km) = 11.03 + 98.46 exp [−0.0053 Km week] + 0.387 (Pace) + 0.1 exp [0.23 %BF] | 0.81 | 0.64 | 14.3 | |||||||
Mooses | 2013 | 1 | 20 | International | IAAF scoring | Total time on treadmill (TtT)(sec) | 0.40 | 66.2 | ||
IAFF score = 162.30 + 0.41 (TtT) | ||||||||||
Till | 2016 | 1–0 | 40 | Recreational | Race Time (min) | treadmill time (min) | ||||
Time (min) = −3.85 (treadmill time) +351.57 | 0.447 | |||||||||
Salinero | 2017 | 1 | 84 | Amateur | Time (min) | % Body fat (%BF) | 0.42 | <0.001 | ||
∆ Recovery Ruffier test (RT) | 0.37 | <0.000 | ||||||||
Half-marathon performance (HMP) | 0.81 | <0.001 | ||||||||
Time (min) = 96.1 + 2.3 (%BF) + 62.9 (RT) + 0.023 (HMP) | 0.59 | nr | ||||||||
Time (min) | % Body fat (%BF) | 0.42 | <0.001 | |||||||
∆ Recovery Ruffier test (RT) | 0.37 | <0.000 | ||||||||
10 km performance (10 km P) | 0.73 | <0.001 | ||||||||
Time (min) = 104.3 + 3.1 (%BF) + 67.3 (RT) + 0.045 (10 km P) | 0.53 | nr | ||||||||
Esteve-Lanao | 2019 | 1–0 | 8–8 | Recreational | Avg speed 42k (km/h) | 116 days before = AnT | 0.810–0.94 | <0.05 | ||
Speed 42k (km/h) = SpeedAnT (km/h) 0.771 + 0.959 | 0.659 | nr | ||||||||
88 days before = AnT | ||||||||||
Speed 42k (km/h) = SpeedAnT (km/h) 0.863 − 1.463 | 0.714 | nr | ||||||||
60 days before = AnT | ||||||||||
Speed 42k (km/h) = SpeedAnT (km/h) 1.013 − 0.944 | 0.76 | nr | ||||||||
32 days before = AeT | ||||||||||
Speed 42k (km/h) = SpeedAeT (km/h) 1.012 − 1.147 | 0.804 | nr | ||||||||
11 days before = AeT | ||||||||||
Speed 42k (km/h) = SpeedAeT (km/h) 1.004 − 1.145 | 0.85 | nr | ||||||||
Keogh | 2020 | 1–0 | 157–103 | Recreational | Time (min) | Age | ||||
BMI | ||||||||||
Marathon experience (ME) | ||||||||||
Predicted finish time (PFT) | ||||||||||
Diff pred vs. finish time (DPvF) | ||||||||||
Pace St deviation | ||||||||||
Sex | ||||||||||
Time (min) = −5.252 + 0.162 Age + 0.319 BMI + 0.451 ME + 0.947 PFT − 0.636 (DPvF) + 2.925 Pace − 3.232 Sex | 0.858 | nr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvero-Cruz, J.R.; Carnero, E.A.; García, M.A.G.; Alacid, F.; Correas-Gómez, L.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Predictive Performance Models in Long-Distance Runners: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 8289. https://doi.org/10.3390/ijerph17218289
Alvero-Cruz JR, Carnero EA, García MAG, Alacid F, Correas-Gómez L, Rosemann T, Nikolaidis PT, Knechtle B. Predictive Performance Models in Long-Distance Runners: A Narrative Review. International Journal of Environmental Research and Public Health. 2020; 17(21):8289. https://doi.org/10.3390/ijerph17218289
Chicago/Turabian StyleAlvero-Cruz, José Ramón, Elvis A. Carnero, Manuel Avelino Giráldez García, Fernando Alacid, Lorena Correas-Gómez, Thomas Rosemann, Pantelis T. Nikolaidis, and Beat Knechtle. 2020. "Predictive Performance Models in Long-Distance Runners: A Narrative Review" International Journal of Environmental Research and Public Health 17, no. 21: 8289. https://doi.org/10.3390/ijerph17218289
APA StyleAlvero-Cruz, J. R., Carnero, E. A., García, M. A. G., Alacid, F., Correas-Gómez, L., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2020). Predictive Performance Models in Long-Distance Runners: A Narrative Review. International Journal of Environmental Research and Public Health, 17(21), 8289. https://doi.org/10.3390/ijerph17218289