Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Procedures
2.4. Data Acquisition and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osternig, L.R. Isokinetic dynamometry: Implications for muscle testing and rehabilitation. Exerc. Sport Sci. Rev. 1986, 14, 45–80. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, T.P.; Rothstein, J.M.; Finucane, S.D.G.; Lamb, R.L. Performance characteristics of the Kin-Com® dynamometer. Phys. Ther. 1994, 74, 1047–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin, J.M.; Valovich-McLeod, T.C.; Shultz, S.J.; Gansneder, B.M.; Perrin, D.H. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur. J. Appl. Physiol. 2004, 91, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Corten, K.; Wesseling, M.; Peers, K.; Simon, J.P.; Jonkers, I.; Desloovere, K. Test-retest reliability of innovated strength tests for hip muscles. PLoS ONE 2013, 8, e81149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, J.R.; Alderink, G.J. Isokinetic strength characteristics of the quadriceps femoris and hamstring muscles in high school students. Phys. Ther. 1984, 64, 914–918. [Google Scholar] [CrossRef]
- Michael, J.W.-P.; König, D.P.; Bertram, C.; Heßling, U.; Eysel, P. Isokinetic testing of the shoulder of handball players. Sportverletz. Sportschaden 2005, 19, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Land, H.; Gordon, S. What is normal isokinetic shoulder strength or strength ratios? A systematic review. Isokinet. Exerc. Sci. 2011, 19, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Whitehurst, M.; Findley, B.W.; Gilbert, R.; Buchalter, D.N. Isokinetic load range during shoulder rotation exercise in elite male jounior players. J. Strength Cond. Res. 1995, 9, 160–164. [Google Scholar]
- Lemaire, A.; Ripamonti, M.; Ritz, M.; Rahmani, A. Agreement of three vs. eight isokinetic preset velocities to determine knee extensor torque- and power-velocity relationships. Isokinet. Exerc. Sci. 2014, 22, 1–7. [Google Scholar] [CrossRef]
- Grbic, V.; Djuric, S.; Knezevic, O.; Mirkov, D.; Nedeljkovic, A.; Jaric, S. A novel two-velocity method for elaborate isokinetic testing of knee extensors. Int. J. Sports Med. 2017, 38, 741–746. [Google Scholar] [CrossRef]
- Janicijevic, D.; García-Ramos, A.; Knezevic, O.M.; Mirkov, D.M. Feasibility of the two-point method for assessing the force-velocity relationship during lower-body and upper-body isokinetic tests. J. Sports Sci. 2019, 37, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- Zapparoli, F.Y.; Riberto, M. Isokinetic evaluation of the hip flexor and extensor muscles: A systematic review. J. Sport Rehabil. 2017, 26, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Raj, I.S.; Bird, S.R.; Shield, A.J. Aging and the force–velocity relationship of muscles. Exp. Gerontol. 2010, 45, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Bober, T.; Putnam, C.A.; Woodworth, G.G. Factors influencing the angular velocity of a human limb segment. J. Biomech. 1987, 20, 511–521. [Google Scholar] [CrossRef]
- Jaric, S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef]
- Cuk, I.; Mirkov, D.; Nedeljkovic, A.; Kukolj, M.; Ugarkovic, D.; Jaric, S. Force-velocity property of leg muscles in individuals of different level of physical fitness. Sport. Biomech. 2016, 15, 207–219. [Google Scholar] [CrossRef] [Green Version]
- García-Ramos, A.; Jaric, S. Two-point method: A quick and fatigue-free procedure for assessment of muscle mechanical capacities and the one-repetition maximum. Strength Cond. J. 2018, 40, 54–66. [Google Scholar] [CrossRef]
- Petrovic, M.R.; García-Ramos, A.; Janicijevic, D.N.; Pérez-Castilla, A.; Knezevic, O.M.; Mirkov, D.M. The novel single-stroke kayak test: Can it discriminate between 200-m and longer-distance (500- and 1000-m) specialists in canoe sprint? Int. J. Sports Physiol. Perform. 2020, in press. [Google Scholar] [CrossRef]
- Alcazar, J.; Csapo, R.; Ara, I.; Alegre, L.M. On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Front. Physiol. 2019, 10, 769. [Google Scholar] [CrossRef]
- Ripamonti, M.; Colin, D.; Rahmani, A. Torque–velocity and power–velocity relationships during isokinetic trunk flexion and extension. Clin. Biomech. 2008, 23, 520–526. [Google Scholar] [CrossRef]
- Garcia-Ramos, A.; Pérez-Castilla, A.; Jaric, S. Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sport. Biomech. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sport. Med. 2016, 46, 1585–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, D.E.; Glenn, W. Rehabilitation of knee flexor and knee extensor muscle strength in patients with meniscectomies, ligamentous repairs, and chondromalacia. Phys. Ther. 1982, 62, 10–15. [Google Scholar] [CrossRef]
- Kurdak, S.S.; Ozgünen, K.; Adas, U.; Zeren, C.; Aslangiray, B.; Yazıcı, Z.; Korkmaz, S. Analysis of isokinetic knee extension/flexion in male elite adolescent wrestlers. J. Sports Sci. Med. 2005, 4, 489–498. [Google Scholar] [PubMed]
- De Castro, M.P.; Ruschel, C.; Santos, G.M.; Ferreira, T.; Pierri, C.A.A.; Roesler, H. Isokinetic hip muscle strength: A systematic review of normative data. Sport. Biomech. 2020, 19, 26–54. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.E.; Gray, V.L.; Savinar-Nogue, E.; Medeiros, J. Shoulder antagonistic strength ratios: A comparison between college-level baseball pitchers and nonpitchers. J. Orthop. Sports Phys. Ther. 1987, 8, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, J.; Lee, B.; Kim, S.; Shin, D.; Lee, Y.; Lee, J.; Han, D.; Choi, S. The effects of elbow joint angle changes on elbow flexor and extensor muscle strength and activation. J. Phys. Ther. Sci. 2014, 26, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Beck, B.R.; Weeks, B.K. Concurrent validity and reliability of a linear positional transducer and an accelerometer to measure punch characteristics. J. Strength Cond. Res. 2017, 32, 675–680. [Google Scholar] [CrossRef]
- Wagner, H.; Pfusterschmied, J.; Tilp, M.; Landlinger, J.; von Duvillard, S.P.; Müller, E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand. J. Med. Sci. Sports 2014, 24, 345–354. [Google Scholar] [CrossRef]
- Jessop, D.M.; Pain, M.T.G. Maximum velocities in flexion and extension actions for sport. J. Hum. Kinet. 2016, 50, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Jaric, S. Changes in movement symmetry associated with strengthening and fatigue of agonist and antagonist muscles. J. Mot. Behav. 2000, 32, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Mirkov, D.M.; Milanovic, S.; Ilie, D.B.; Jaric, S. Symmetry of discrete and oscillatory elbow movements: Does it depend on torque that the agonist and antagonist muscle can exert? Motor Control 2002, 6, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Cuk, I.; Prebeg, G.; Sreckovic, S.; Mirkov, D.; Jaric, S. Generalization of muscle strength capacities as assessed from different variables, tests, and muscle groups. J. Strength Cond. Res. 2017, 31, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, N.C.; Vancini, R.L.; Lira, C.A.B.; Andrade, M.S. Stretch-induced reductions in throwing performance are attenuated by warm-up before exercise. J. Strength Cond. Res. 2015, 29, 1393–1398. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, S.P.; Halkjær-Kristensen, J.; Dyhre-Poulsen, P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. J. Appl. Physiol. 2000, 89, 2249–2257. [Google Scholar] [CrossRef]
- Dvir, Z. Isokinetics: Muscle Testing, Interpretation, and Clinical Applications; Churchill Livingstone: London, UK, 2004; ISBN 9780443071997. [Google Scholar]
- Parr, J.J.; Yarrow, J.F.; Garbo, C.M.; Borsa, P.A. Symptomatic and functional responses to concentric-eccentric isokinetic versus eccentric-only isotonic exercise. J. Athl. Train. 2009, 44, 462–468. [Google Scholar] [CrossRef]
- Jaric, S. Muscle strength testing: Use of normalisation for body size. Sport. Med. 2002, 32, 615–631. [Google Scholar] [CrossRef]
- Finucane, S.D.G.; Mayhew, T.P.; Rothstein, J.M. Evaluation of the gravity-correction feature of a Kin-Com® isokinetic dynamometer. Phys. Ther. 1994, 74, 1125–1133. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kabacinski, J.; Murawa, M.; Mackala, K.; Dworak, L.B. Knee strength ratios in competitive female athletes. PLoS ONE 2018, 13, e0191077. [Google Scholar] [CrossRef] [Green Version]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes. Am. J. Sports Med. 2016, 44, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Calmels, P.M.; Nellen, M.; van der Borne, I.; Jourdin, P.; Minaire, P. Concentric and eccentric isokinetic assessment of flexor extensor torque ratios at the hip, knee, and ankle in a sample population of healthy subjects. Arch. Phys. Med. Rehabil. 1997, 78, 1224–1230. [Google Scholar] [CrossRef]
- Alexander, M.J. Peak torque values for antagonist muscle groups and concentric and eccentric contraction types for elite sprinters. Arch. Phys. Med. Rehabil. 1990, 71, 334–339. [Google Scholar] [PubMed]
- Wilk, K.E.; Macrina, L.C.; Cain, E.L.; Dugas, J.R.; Andrews, J.R. Rehabilitation of the overhead athlete’s elbow. Sports Health 2012, 4, 404–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lategan, L.; Krüger, E. Effect of two different handgrip positions on elbow peak torque values. S. Afr. J. Res. Sport. Phys. Educ. Recreat. 2007, 29, 67–74. [Google Scholar] [CrossRef]
- Sarig Bahat, H.; Blutich, O.; Kodesh, E. Isokinetic profile of elbow flexor and extensor muscles in climbers and non-climbers. J. Nov. Physiother. 2019, 9, 403. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Roetert, E.P. Isokinetic profile of elbow flexion and extension strength in elite junior tennis players. J. Orthop. Sport. Phys. Ther. 2003, 33, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, M.Z.; Djuric, S.; Cuk, I.; Suzovic, D.; Jaric, S. Muscle force-velocity relationships observed in four different functional tests. J. Hum. Kinet. 2017, 56, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Marcote-Pequeno, R.; Garcia-Ramos, A.; Cuadrado-Penafiel, V.; Gonzalez-Hernandez, J.M.; Gomez, M.A.; Jimenez-Reyes, P. Association between the force-velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 209–215. [Google Scholar] [CrossRef]
F-v Parameter | Joint | Active | Non-Active | ANOVA | ||||
---|---|---|---|---|---|---|---|---|
Flexor | Extensor | Flexor | Extensor | Muscle | PAL | Muscle × PAL | ||
F0 (N·kg−2/3) | Knee | 20.5 ± 4.0 | 29.7 ± 5.0 * | 17.6 ± 3.2 # | 26.1 ± 4.8 # | p < 0.001 | p = 0.015 | p = 0.706 |
Hip | 19.4 ± 4.2 | 37.4 ± 9.8 * | 19.8 ± 3.1 | 33.5 ± 8.0 | p < 0.001 | p = 0.403 | p = 0.093 | |
Elbow | 12.3 ± 2.0 | 12.1 ± 2.4 | 11.6 ± 2.9 | 10.7 ± 1.7 | p = 0.192 | p = 0.127 | p = 0.387 | |
Shoulder | 18.7 ± 3.5 | 14.0 ± 2.8 * | 17.6 ± 2.8 | 12.0 ± 2.1 | p < 0.001 | p = 0.093 | p = 0.372 | |
v0 (m·s−1) | Knee | 3.20 ± 0.93 | 2.50 ± 0.51 * | 3.10 ± 1.59 | 2.65 ± 1.46 | p = 0.009 | p = 0.940 | p = 0.538 |
Hip | 4.17 ± 2.40 | 3.07 ± 2.03 | 3.45 ± 2.75 | 3.93 ± 2.78 | p = 0.556 | p = 0.907 | p = 0.142 | |
Elbow | 4.39 ± 1.85 | 4.76 ± 2.36 | 4.47 ± 2.25 | 3.48 ± 1.36 | p = 0.508 | p = 0.241 | p = 0.158 | |
Shoulder | 3.72 ± 1.78 | 3.35 ± 1.49 | 3.42 ± 2.50 | 3.37 ± 2.19 | p = 0.523 | p = 0.804 | p = 0.629 | |
F-v slope(N·m·−1·kg−2/3) | Knee | 6.17 ± 2.54 | 10.64 ± 2.82 * | 5.98 ± 2.75 | 10.16 ± 4.30 | p < 0.001 | p = 0.709 | p = 0.773 |
Hip | 5.50 ± 3.40 | 11.19 ± 5.96 * | 7.01 ± 3.34 | 11.34 ± 6.52 | p < 0.001 | p = 0.543 | p = 0.487 | |
Elbow | 2.98 ± 1.11 | 2.94 ± 1.31 | 3.28 ± 2.53 | 3.22 ± 1.21 | p = 0.884 | p = 0.395 | p = 0.972 | |
Shoulder | 5.93 ± 3.07 | 4.58 ± 2.33 * | 6.88 ± 3.98 | 4.11 ± 1.67 | p < 0.001 | p = 0.770 | p = 0.168 | |
Pmax (W·kg−2/3) | Knee | 16.1 ± 4.4 | 18.4 ± 3.8 * | 12.9 ± 4.8 # | 16.2 ± 5.2 | p = 0.001 | p = 0.040 | p = 0.507 |
Hip | 19.6 ± 10.8 | 29.5 ± 19.0 * | 16.1 ± 11.1 | 29.3 ± 14.8 | p = 0.001 | p = 0.622 | p = 0.622 | |
Elbow | 13.4 ± 5.6 | 14.3 ± 7.5 | 12.2 ± 5.9 | 9.4 ± 4.3 # | p = 0.459 | p = 0.076 | p = 0.147 | |
Shoulder | 16.9 ± 7.7 | 11.3 ± 4.6 * | 14.1 ± 8.5 | 9.6 ± 4.7 # | p < 0.001 | p = 0.244 | p = 0.623 |
F0 | v0 | F-v Slope | Pmax | |
---|---|---|---|---|
Knee | 0.571 ** | 0.349 ** | 0.554 ** | 0.496 ** |
Hip | 0.640 ** | 0.132 | 0.385 * | 0.142 |
Elbow | 0.513 ** | 0.057 | −0.110 | 0.275 |
Shoulder | 0.560 ** | 0.467 ** | 0.474 ** | 0.579 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Cvetic, D.; Mirkov, D.M. Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels. Int. J. Environ. Res. Public Health 2020, 17, 8570. https://doi.org/10.3390/ijerph17228570
Janicijevic D, Knezevic OM, Garcia-Ramos A, Cvetic D, Mirkov DM. Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels. International Journal of Environmental Research and Public Health. 2020; 17(22):8570. https://doi.org/10.3390/ijerph17228570
Chicago/Turabian StyleJanicijevic, Danica, Olivera M. Knezevic, Amador Garcia-Ramos, Danilo Cvetic, and Dragan M. Mirkov. 2020. "Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels" International Journal of Environmental Research and Public Health 17, no. 22: 8570. https://doi.org/10.3390/ijerph17228570
APA StyleJanicijevic, D., Knezevic, O. M., Garcia-Ramos, A., Cvetic, D., & Mirkov, D. M. (2020). Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels. International Journal of Environmental Research and Public Health, 17(22), 8570. https://doi.org/10.3390/ijerph17228570