Effect of 4 Weeks of Anti-Gravity Treadmill Training on Isokinetic Muscle Strength and Muscle Activity in Adults Patients with a Femoral Fracture: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Procedures
2.4. Intervention
2.4.1. Anti-Gravity Treadmill Training
2.4.2. Conventional Rehabilitation (Control Group)
2.5. Outcome Measurements
2.5.1. Isokinetic Strength Measurement
2.5.2. Muscle Activities
2.6. Sample Size Estimation
2.7. Statistical Analysis
3. Results
3.1. Isokinetic Strength (Peak Torque)
3.1.1. Isokinetic Muscle Strength at 60°/s
3.1.2. Isokinetic Muscle Strength (Muscle Endurance) at 180°/s
3.2. Muscle Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Road Traffic Injuries [Internet]. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 19 November 2020).
- Eluwa, M.; Wonwu, V.; Ekong, M.; Ekanem, T.; Akpantah, A.J.I. Disposition of fractures and dislocations among road accident victims in rivers and bayelsa states of Nigeria from 1992–2005. Internet J. Epidemiol. 2010, 8, 1. [Google Scholar]
- AlTurki, A.A.; AlAqeely, K.S.; AlMugren, T.S.; AlZimami, I.S.J.S.m.j. Analysis of femoral fracture post motor vehicle accidents. Saudi Med. J. 2019, 40, 41. [Google Scholar] [CrossRef]
- Paterno, M.V.; Archdeacon, M.T.; Ford, K.R.; Galvin, D.; Hewett, T.E. Early Rehabilitation Following Surgical Fixation of a Femoral Shaft Fracture. Phys. Ther. 2006, 86, 558–572. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.R.; Oliveira, B.A.; Ocarino, J.M.; Holt, K.G.; Fonseca, S.T. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: A systematic review. Braz. J. Phys. Ther. 2015, 19, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Miao, P.; Xu, Y.; Pan, C.; Liu, H.; Wang, C.J. Vastus medialis oblique and vastus lateralis activity during a double-leg semisquat with or without hip adduction in patients with patellofemoral pain syndrome. BMC Musculoskelet. Disord. 2015, 16, 289. [Google Scholar] [CrossRef]
- Keays, S.L.; Bullock-Saxton, J.; Newcombe, P.; Bullock, M. The effectiveness of a pre-operative home-based physiotherapy programme for chronic anterior cruciate ligament deficiency. Physiother. Res. Int. 2006, 11, 204–218. [Google Scholar] [CrossRef]
- Daniel, A.; William, E.J. Principles of Athletic Training, 11th ed.; McGraw-Hill: Newyoik, NY, USA, 2003; pp. 629–633. [Google Scholar]
- Aguiar, L.T.; Camargo, L.B.A.; Estarlino, L.D.; Teixeira-Salmela, L.F.; de Morais Faria, C.D. Strength of the lower limb and trunk muscles is associated with gait speed in individuals with sub-acute stroke: A cross-sectional study. Braz. J. Phys. Ther. 2018, 22, 459–466. [Google Scholar] [CrossRef]
- Koval, K.J.; Sala, D.A.; Kummer, F.J.; Zuckerman, J.D. Postoperative weight-bearing after a fracture of the femoral neck or an intertrochanteric fracture. J. Bone Joint Surg. Am. 1998, 80, 352–356. [Google Scholar] [CrossRef]
- Rutherford, D.J.; Hubley-Kozey, C.J. Explaining the hip adduction moment variability during gait: Implications for hip abductor strengthening. Clin. Biomech. 2009, 24, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Granot, A.J. Use of an anti-gravity treadmill in the rehabilitation of the operated achilles tendon: A pilot study. J. Foot Ankle Surg. 2011, 50, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, A.M. Metabolic and biomechanical effects of velocity and weight support using a lower-body positive pressure device during walking. Arch. Phys. Med. Rehabil. 2010, 91, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Steklov, N.; Bugbee, W.D.; Goldberg, T.; Colwell, C.W., Jr.; D’Lima, D.D. Anti-gravity treadmills are effective in reducing knee forces. J. Orthop. Res. 2013, 31, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Berthelsen, M.P.; Husu, E.; Christensen, S.B.; Prahm, K.P.; Vissing, J.; Jensen, B.R. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy. Neuromuscul. Disord. 2014, 24, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Fukuhara, K.; Kawae, T.; Kimura, H.; Ochi, M.J.P. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation. Int. J. Sports Med. 2015, 39, 502–506. [Google Scholar] [CrossRef]
- Lee, R.Y.; Munn, J.J. Passive moment about the hip in straight leg raising. Clin. Biomech. 2000, 15, 330–334. [Google Scholar] [CrossRef]
- Oh, M.-K.; Yoo, J.-I.; Byun, H.; Chun, S.-W.; Lim, S.-K.; Jang, Y.J.; Lee, C.H. Efficacy of Combined Antigravity Treadmill and Conventional Rehabilitation After Hip Fracture in Patients With Sarcopenia. J. Gerontol. Ser. A 2020, 75, e173–e181. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G.J. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G. Muscles: Testing and Function with Posture and Pain, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Unver, B.; Karatosun, V.; Gunal, I.; Angin, S.J. Comparison of two different rehabilitation programmes for thrust plate prosthesis: A randomized controlled study. Clin. Rehabil. 2004, 18, 84–91. [Google Scholar] [CrossRef]
- Terblanche, E.; Page, C.; Kroff, J.; Venter, R.E.; Venter, R.J. The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. Int. J. Sports Med. 2005, 26, 214–219. [Google Scholar] [CrossRef]
- Nam, H.; Nho, H.J. The effects of 8weeks modified straight leg raise exercise program on isometric muscular strength and electromyography activation of hip joint. Korean J. Sport Sci. 2011, 22, 2296–2307. [Google Scholar]
- Burnfield, M.J.J. Medicine. Gait analysis: Normal and pathological function. J. Sports Sci. Med. 2010, 9, 353. [Google Scholar]
- Egol, K.A.; Koval, K.J.; Kummer, F.; Frankel, V.H. Stress fractures of the femoral neck. Clin. Orthop. Relat. Res. 1998, 348, 72–78. [Google Scholar] [CrossRef]
- Saltvedt, I.; Prestmo, A.; Einarsen, E.; Johnsen, L.G.; Helbostad, J.L.; Sletvold, O. Development and delivery of patient treatment in the Trondheim Hip Fracture Trial. A new geriatric in-hospital pathway for elderly patients with hip fracture. BMC Res. Notes 2012, 5, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EG (n = 17) | CG (n = 17) | p | |
---|---|---|---|
Female sex, n (%) | 4 (23.5%) | 4 (23.5%) | 1.000 |
Age (years) | 48.82 ± 5.96 | 51.82 ± 5.91 | 0.150 |
Height (cm) | 169.94 ± 8.21 | 168.88 ± 8.77 | 0.719 |
Weight (kg) | 63.12 ± 5.13 | 66.12 ± 7.70 | 0.191 |
BMI (kg/m2) | 21.89 ± 1.56 | 23.21 ± 2.57 | 0.077 |
Days after surgery | 25.06 ± 3.56 | 23.76 ± 2.84 | 0.251 |
Cause of femoral fracture | |||
Motor vehicle accidents | 14 (82.3%) | 12 (70.6%) | 0.419 |
Falls | 3 (17.7%) | 5 (29.4%) | |
Type of fracture | |||
Proximal femoral fracture | 3 (17.7%) | 4 (23.5%) | 0.523 |
Femoral shaft fracture | 14 (82.3%) | 12 (70.6%) | |
Supracondylar femoral fracture | 0 (0%) | 1 (5.9%) | |
Type of surgery | |||
Internal fixation | 17 (100.0%) | 15 (88.2%) | 0.145 |
Replacement arthroplasty | 0 (0%) | 2 (11.8%) |
Period (weeks) | Gravity (%) | Velocity (mph) | Slope (°) | Time (min) |
---|---|---|---|---|
1 | <25% | 2.0–4.0 | 0 | 20 |
2 | 25–50% | 4.0–6.0 | 0 | 20 |
3 | 50–75% | 6.0–8.0 | 0 | 20 |
4 | 75–100% | 8.0–10.0 | 0 | 20 |
Exercise | Count/Set | |
---|---|---|
1–2 weeks | Q-setting | 12/3 |
Hip adduction | ||
Hip abduction | ||
Lateral position hip hold exercise | ||
3–4 weeks | Heel slide exercise | 12/3 |
Straight leg raise | ||
Prone and knee flexion position hip extension | ||
Lateral position hip abduction |
Variables | Sources | F | p | |
---|---|---|---|---|
60°/s Hip extension | Within subjects | Time | 5171.684 | <0.001 |
Time × group | 5.243 | 0.029 | ||
Between subjects | Group | 0.533 | 0.471 | |
60°/s Hip flexion | Within subjects | Time | 702.458 | <0.001 |
Time × group | 0.599 | 0.444 | ||
Between subjects | Group | 0.424 | 0.520 | |
180°/s Hip extension | Within subjects | Time | 2528.780 | <0.001 |
Time × group | 1.410 | 0.244 | ||
Between subjects | Group | 0.925 | 0.343 | |
180°/s Hip flexion | Within subjects | Time | 5344.682 | <0.001 |
Time × group | 1.175 | 0.286 | ||
Between subjects | Group | 0.643 | 0.429 | |
Vastus lateralis | Within subjects | Time | 1238.600 | <0.001 |
Time × group | 0.214 | 0.646 | ||
Between subjects | Group | 1.001 | 0.325 | |
Vastus medialis | Within subjects | Time | 417.725 | <0.001 |
Time × group | 0.360 | 0.553 | ||
Between subjects | Group | 0.044 | 0.835 | |
Gluteus maximus | Within subjects | Time | 1275.711 | <0.001 |
Time × group | 59.074 | <0.001 | ||
Between subjects | Group | 21.169 | <0.001 | |
Gluteus medius | Within subjects | Time | 2622.864 | <0.001 |
Time × group | 58.108 | <0.001 | ||
Between subjects | Group | 9.730 | 0.004 |
EG (n = 17) | CG (n = 17) | p * | E | ||
---|---|---|---|---|---|
60°/s Hip extension | Pre | 78.41 ± 9.36 | 77.88 ± 12.69 | 0.891 | |
Post | 144.18 ± 9.88 | 139.59 ± 9.92 | 0.186 | ||
DIFF | 65.76 ± 5.29 | 61.71 ± 5.05 | 0.029 | 0.783 | |
60°/s Hip flexion | Pre | 38.41 ± 4.72 | 39.35 ± 9.66 | 0.721 | |
Post | 76.53 ± 10.44 | 79.76 ± 14.15 | 0.454 | ||
DIFF | 38.12 ± 9.17 | 40.41 ± 8.01 | 0.444 | 0.266 | |
180°/s Hip extension | Pre | 56.59 ± 9.57 | 60.88 ± 13.04 | 0.282 | |
Post | 99.94 ± 7.14 | 102.29 ± 10.55 | 0.462 | ||
DIFF | 42.35 ± 5.62 | 41.35 ± 4.08 | 0.245 | 0.204 | |
180°/s Hip flexion | Pre | 33.18 ± 8.97 | 36.65 ± 12.48 | 0.359 | |
Post | 69.41 ± 9.29 | 71.82 ± 11.98 | 0.516 | ||
DIFF | 36.24 ± 2.31 | 35.18 ± 3.30 | 0.286 | 0.372 | |
Vastus lateralis | Pre | 129.53 ± 10.51 | 125.59 ± 10.65 | 0.286 | |
Post | 202.00 ± 21.64 | 196.18 ± 16.08 | 0.380 | ||
DIFF | 72.47 ± 12.69 | 70.59 ± 10.95 | 0.647 | 0.159 | |
Vastus medialis | Pre | 121.41 ± 7.77 | 124.76 ± 11.99 | 0.341 | |
Post | 193.59 ± 25.51 | 192.82 ± 28.93 | 0.935 | ||
DIFF | 72.18 ± 19.71 | 68.06 ± 20.29 | 0.553 | 0.206 | |
Gluteus maximus | Pre | 176.82 ± 12.40 | 174.41 ± 13.31 | 0.588 | |
Post | 301.06 ± 15.47 | 254.65 ± 25.80 | <0.001 | ||
DIFF | 124.24 ± 15.42 | 80.24 ± 17.87 | <0.001 | 2.636 | |
Gluteus medius | Pre | 103.76 ± 13.23 | 101.53 ± 12.67 | 0.618 | |
Post | 211.82 ± 15.81 | 181.59 ± 21.21 | <0.001 | ||
DIFF | 108.06 ± 12.31 | 80.06 ± 9.07 | <0.001 | 2.590 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, P.; Lee, H.; Choi, W.; Jung, S. Effect of 4 Weeks of Anti-Gravity Treadmill Training on Isokinetic Muscle Strength and Muscle Activity in Adults Patients with a Femoral Fracture: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 8572. https://doi.org/10.3390/ijerph17228572
Kim P, Lee H, Choi W, Jung S. Effect of 4 Weeks of Anti-Gravity Treadmill Training on Isokinetic Muscle Strength and Muscle Activity in Adults Patients with a Femoral Fracture: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2020; 17(22):8572. https://doi.org/10.3390/ijerph17228572
Chicago/Turabian StyleKim, Pyeongon, Haneul Lee, Wonho Choi, and Sangmi Jung. 2020. "Effect of 4 Weeks of Anti-Gravity Treadmill Training on Isokinetic Muscle Strength and Muscle Activity in Adults Patients with a Femoral Fracture: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 17, no. 22: 8572. https://doi.org/10.3390/ijerph17228572
APA StyleKim, P., Lee, H., Choi, W., & Jung, S. (2020). Effect of 4 Weeks of Anti-Gravity Treadmill Training on Isokinetic Muscle Strength and Muscle Activity in Adults Patients with a Femoral Fracture: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 17(22), 8572. https://doi.org/10.3390/ijerph17228572