Effects of Different Undersizing Site Preparations on Implant Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Stability Measurements
2.2. Implant Site Preparation
2.3. Study Groups
- -
- P1—Recommend by the company—control group.
- -
- P2—The same as P1 excluding the cortical drill (ref nº 10 02 04).
- -
- P3—Horizontal undersized preparation technique that did not include the last full-length drill (ref nº 10 02 05 T/10 02 05 LT) but included the cortical one.
- -
- P4—Horizontal undersized preparation technique like P3 but excluding the cortical drill (ref nº 18 02 04).
- -
- Lanceolate drill for the first 6 mm of preparation or decortication (ref nº 10 02 01).
- -
- Initiation drill with 2.35 mm diameter (ref nº 10 02 02).
- -
- Initiation drill with 2.80 mm diameter (ref nº 10 02 03).
- -
- Cortical drill with 3.5 mm diameter (ref nº 18 02 04).
- -
- Pilot drill with 3.5 mm diameter (ref nº 10 02 05).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sennerby, L.; Meredith, N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 2008, 47, 51–66. [Google Scholar] [CrossRef]
- Degidi, M.; Daprile, G.; Piattelli, A. Determination of primary stability: A comparison of the surgeon’s perception and objective measurements. Int. J. Oral Maxillofac. Implant. 2010, 25, 558–561. [Google Scholar]
- Adell, R.; Lekholm, U.; Branemark, P.I.; Lindhe, J.; Rockler, B.; Eriksson, B.; Sbordone, L. Marginal tissue reactions at osseointegrated titanium fixtures. Swed. Dent. J. Suppl. 1985, 28, 175–181. [Google Scholar] [CrossRef]
- Garcia-Moreno, S.; Gonzalez-Serrano, J.; Lopez-Pintor, R.M.; Pardal-Pelaez, B.; Hernandez, G.; Martinez-Gonzalez, J.M. Implant stability using piezoelectric bone surgery compared with conventional drilling: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2018, 47, 1453–1464. [Google Scholar] [CrossRef]
- Ahn, S.J.; Leesungbok, R.; Lee, S.W.; Heo, Y.K.; Kang, K.L. Differences in implant stability associated with various methods of preparation of the implant bed: An in vitro study. J. Prosthet. Dent. 2012, 107, 366–372. [Google Scholar] [CrossRef]
- Karl, M.; Grobecker-Karl, T. Effect of bone quality, implant design, and surgical technique on primary implant stability. Quintessence Int. 2018, 189–198. [Google Scholar] [CrossRef]
- Herrero-Climent, M.; Albertini, M.; Rios-Santos, J.V.; Lazaro-Calvo, P.; Fernandez-Palacin, A.; Bullon, P. Resonance frequency analysis-reliability in third generation instruments: Osstell mentor(R). Med. Oral Patol. Oral Cir. Bucal. 2012, 17, e801–e806. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Climent, M.; Falcao, A.; Lopez-Jarana, P.; Diaz-Castro, C.M.; Rios-Carrasco, B.; Rios-Santos, J.V. In vitro comparative analysis of two resonance frequency measurement devices: Osstell implant stability coefficient and Penguin resonance frequency analysis. Clin. Implant. Dent. Relat. Res. 2019, 21, 1124–1131. [Google Scholar] [CrossRef]
- Diaz-Castro, M.C.; Falcao, A.; Lopez-Jarana, P.; Falcao, C.; Rios-Santos, J.V.; Fernandez-Palacin, A.; Herrero-Climent, M. Repeatability of the resonance frequency analysis values in implants with a new technology. Med. Oral Patol. Oral Cir. Bucal. 2019, 24, e636–e642. [Google Scholar] [CrossRef]
- Jaramillo, R.; Santos, R.; Lazaro, P.; Romero, M.; Rios-Santos, J.V.; Bullon, P.; Fernández-Palacín, A.; Herrero-Climent, M. Comparative analysis of 2 resonance frequency measurement devices: Osstell Mentor and Osstell ISQ. Implant Dent. 2014, 23, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Norton, M.R. Resonance Frequency Analysis: Agreement and Correlation of Implant Stability Quotients Between Three Commercially Available Instruments. Int. J. Oral Maxillofac. Implant. 2018. [Google Scholar] [CrossRef]
- Brizuela-Velasco, A.; Alvarez-Arenal, A.; Gil-Mur, F.J.; Herrero-Climent, M.; Chavarri-Prado, D.; Chento-Valiente, Y.; Dieguez-Pereira, M. Relationship Between Insertion Torque and Resonance Frequency Measurements, Performed by Resonance Frequency Analysis, in Micromobility of Dental Implants: An In Vitro Study. Implant Dent. 2015, 24, 607–611. [Google Scholar] [CrossRef]
- Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implant. Res. 1996, 7, 261–267. [Google Scholar] [CrossRef]
- Meredith, N.; Book, K.; Friberg, B.; Jemt, T.; Sennerby, L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin. Oral Implant. Res. 1997, 8, 226–233. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; Sennerby, L.; Yilmaz, B.; Bilecenoglu, B.; Ozbek, E.N. Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: A human cadaver study. Clin. Implant. Dent. Relat. Res. 2009, 11, 52–58. [Google Scholar] [CrossRef]
- da Cunha, H.A.; Francischone, C.E.; Filho, H.N.; de Oliveira, R.C. A comparison between cutting torque and resonance frequency in the assessment of primary stability and final torque capacity of standard and TiUnite single-tooth implants under immediate loading. Int. J. Oral Maxillofac. Implant. 2004, 19, 578–585. [Google Scholar] [PubMed]
- Davies, J.E. Understanding peri-implant endosseous healing. J Dent Educ. 2003, 67, 932–949. [Google Scholar] [CrossRef] [PubMed]
- Ostman, P.O. Immediate/early loading of dental implants. Clinical documentation and presentation of a treatment concept. Periodontology 2000 2008, 47, 90–112. [Google Scholar] [CrossRef]
- Alsaadi, G.; Quirynen, M.; Michiels, K.; Jacobs, R.; van Steenberghe, D. A biomechanical assessment of the relation between the oral implant stability at insertion and subjective bone quality assessment. J. Clin. Periodontol. 2007, 34, 359–366. [Google Scholar] [CrossRef]
- Misch, C.E.; Dietsh-Misch, F.; Hoar, J.; Beck, G.; Hazen, R.; Misch, C.M. A bone quality-based implant system: First year of prosthetic loading. J. Oral Implantol. 1999, 25, 185–197. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; McGlumphy, E.A. Influence of bone density on implant stability parameters and implant success: A retrospective clinical study. BMC Oral Health 2008, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Lughmani, W.A.; Farukh, F.; Bouazza-Marouf, K.; Ali, H. Drilling resistance: A method to investigate bone quality. Acta Bioeng. Biomech. 2017, 19, 55–62. [Google Scholar]
- Stavropoulos, A.; Cochran, D.; Obrecht, M.; Pippenger, B.E.; Dard, M. Effect of Osteotomy Preparation on Osseointegration of Immediately Loaded, Tapered Dental Implants. Adv. Dent. Res. 2016, 28, 34–41. [Google Scholar] [CrossRef]
- Degidi, M.; Daprile, G.; Piattelli, A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: An in vitro study. J. Oral. Maxillofac. Surg. 2015, 73, 1084–1088. [Google Scholar] [CrossRef]
- Nedir, R.; Nurdin, N.; Szmukler-Moncler, S.; Bischof, M. Placement of tapered implants using an osteotome sinus floor elevation technique without bone grafting: 1-year results. Int. J. Oral Maxillofac. Implant. 2009, 24, 727–733. [Google Scholar] [PubMed]
- Toia, M.; Stocchero, M.; Cecchinato, F.; Corra, E.; Jimbo, R.; Cecchinato, D. Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception. Int. J. Oral Maxillofac. Implant. 2017, 32, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, H.; Anand, P.S.; Anil, S. Undersized implant site preparation to enhance primary implant stability in poor bone density: A prospective clinical study. J. Oral Maxillofac. Surg. 2011, 69, e506–e512. [Google Scholar] [CrossRef]
- Pantani, F.; Botticelli, D.; Garcia, I.R., Jr.; Salata, L.A.; Borges, G.J.; Lang, N.P. Influence of lateral pressure to the implant bed on osseointegration: An experimental study in dogs. Clin. Oral Implant. Res. 2010, 21, 1264–1270. [Google Scholar] [CrossRef]
- Juodzbalys, G.; Kubilius, M. Clinical and radiological classification of the jawbone anatomy in endosseous dental implant treatment. J. Oral Maxillofac. Res. 2013, 4, e2. [Google Scholar] [CrossRef]
- Herrero-Climent, M.; Santos-Garcia, R.; Jaramillo-Santos, R.; Romero-Ruiz, M.M.; Fernandez-Palacin, A.; Lazaro-Calvo, P.; Bullón, P.; Ríos-Santos, J.V. Assessment of Osstell ISQ’s reliability for implant stability measurement: A cross-sectional clinical study. Med. Oral Patol. Oral. Cir. Bucal. 2013, 18, e877–e882. [Google Scholar] [CrossRef]
- Javed, F.; Ahmed, H.B.; Crespi, R.; Romanos, G.E. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013, 5, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Stocchero, M.; Toia, M.; Cecchinato, D.; Becktor, J.P.; Coelho, P.G.; Jimbo, R. Biomechanical, Biologic, and Clinical Outcomes of Undersized Implant Surgical Preparation: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2016, 31, 1247–1263. [Google Scholar] [CrossRef] [Green Version]
- Bashutski, J.D.; D’Silva, N.J.; Wang, H.L. Implant compression necrosis: Current understanding and case report. J. Periodontol. 2009, 80, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Ikar, M.; Grobecker-Karl, T.; Karl, M.; Steiner, C. Mechanical stress during implant surgery and its effects on marginal bone: A literature review. Quintessence Int. 2020, 51, 142–150. [Google Scholar] [CrossRef]
- Tabassum, A.; Meijer, G.J.; Wolke, J.G.; Jansen, J.A. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: A laboratory study. Clin. Oral Implant. Res. 2010, 21, 213–220. [Google Scholar] [CrossRef]
- Bilhan, H.; Geckili, O.; Mumcu, E.; Bozdag, E.; Sunbuloglu, E.; Kutay, O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J. Oral Rehabil. 2010, 37, 900–907. [Google Scholar] [CrossRef]
- Garcia-Vives, N.; Andres-Garcia, R.; Rios-Santos, V.; Fernandez-Palacin, A.; Bullon-Fernandez, P.; Herrero-Climent, M.; Herrero-Climent, F. In vitro evaluation of the type of implant bed preparation with osteotomes in bone type IV and its influence on the stability of two implant systems. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, e455–e460. [Google Scholar]
- Andres-Garcia, R.; Vives, N.G.; Climent, F.H.; Palacin, A.F.; Santos, V.R.; Climent, M.H.; Bullón, P. In vitro evaluation of the influence of the cortical bone on the primary stability of two implant systems. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, E93–E97. [Google Scholar]
3.5 mm Implant | P4 | P3 | P2 | P1 |
Bone surface, mm2 | 90.5 | 95.8 | 101.9 | 103.2 |
Implant surface, mm2 | 103.4 | 90.1 | 51.7 | 41.0 |
Increase in implant surface compared to P1 | 252% | 220% | 126% | 100% |
4.0 mm Implant | P4 | P3 | P2 | P1 |
Bone surface, mm2 | 101.9 | 103.2 | 111.2 | 114.6 |
Implant surface, mm2 | 119.4 | 116.9 | 91.6 | 50.6 |
Increase in implant surface compared to P1 | 252% | 236% | 181% | 100% |
Implant Prep. | IT—N/cm | RFA—ISQ A | RFA—ISQ B | RFA—ISQ X | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
VEGA 3.5 mm | ||||||||
P1 | 28.7 | 14.9 | 71.4 | 10.0 | 72.4 | 7.9 | 71.9 | 8.9 |
P2 | 27.7 | 16.7 | 77.2 | 6.1 | 77.6 | 6.7 | 77.4 | 6.3 |
P3 | 34.7 | 15.4 | 75.0 | 5.7 | 75.5 | 5.2 | 75.2 | 5.3 |
P4 | 53.8 | 25.5 | 80.8 | 3.7 | 80.8 | 3.4 | 80.8 | 3.4 |
VEGA 4.0 mm | ||||||||
P1 | 37.8 | 20.4 | 73.7 | 7.2 | 73.9 | 6.7 | 73.8 | 6.8 |
P2 | 43.7 | 16.5 | 78.3 | 3.7 | 78.7 | 4.4 | 78.5 | 3.8 |
P3 | 34.6 | 16.3 | 73.9 | 5.0 | 73.6 | 6.3 | 73.8 | 5.4 |
P4 | 51.7 | 27.3 | 75.0 | 8.1 | 74.9 | 9.6 | 75.0 | 8.7 |
3.5 mm Diameter Implant | Normal Preparation with Cortical Drill (NW) P1 | Normal Preparation without Cortical Drill (NWO) P2 | Underpreparation with Cortical Drill (UW) P3 | Underpreparation without Cortical Drill (UWO) P4 | ||||||||||||
IT | ISQ A | ISQ B | ISQX | IT | ISQ A | ISQ B | ISQX | IT | ISQ A | ISQ B | ISQX | IT | ISQ A | ISQ B | ISQX | |
Normal preparation with cortical drill (NW) P1 | NW(N) = NWO(Nn) p = 0.623 | NW(Nn) < NWO(Nn) p = 0.002 | NW(Nn) < NWO(Nn) p = 0.001 | NW < NWO | NW(N) = UW(N) p = 0.088 | NW(Nn) = UW(Nn) p = 0.159 | NW(Nn) = UW(Nn) p = 0.096 | NW = UW | NW(N) < UWO(N) p = 0.000 | NW(Nn) < UWO(Nn) p = 0.016 | NW(Nn) < UWO(Nn) p = 0.011 | NW < UWO | ||||
Normal preparation without cortical drill (NWO) P2 | NWO(Nn) < UW(N) p = 0.044 | NWO(Nn) > UW(Nn) p = 0.020 | NWO(Nn) > UW(Nn) p = 0.020 | NWO > UW | NWO(Nn) < UWO(N) p = 0.000 | NWO(Nn) = UWO(Nn) p = 0.0693 | NWO(Nn) = UWO(Nn) p = 0.396 | NWO = UWO | ||||||||
Underpreparation with cortical drill (UW) P3 | UW(N) < UWO(N) p = 0.000 | UW(Nn) = UWO(Nn) p = 0.117 | UW(Nn) = UWO(Nn) p = 0.138 | UW = UWO | ||||||||||||
Underpreparation without cortical drill (UWO) P4 | ||||||||||||||||
4.0 mm diameter implant | Normal Preparation with Cortical Drill (NW) P1 | Normal Preparation without Cortical Drill (NWO) P2 | Underpreparation with Cortical Drill (UW) P3 | Underpreparation without Cortical Drill (UWO) P4 | ||||||||||||
IT | ISQ A | ISQ B | ISQ X | IT | ISQ A | ISQ B | ISQ X | IT | ISQ A | ISQ B | ISQ X | IT | ISQ A | ISQ B | ISQ X | |
Normal preparation with cortical drill (NW) P1 | NW(Nn) < NWO(N) p = 0.020 | NW(Nn) < NWO(N) p = 0.001 | NW(Nn) < NWO(Nn) p = 0.000 | NW < NWO | NW(Nn) = UW(N) p = 0.603 | NW(Nn) = UW(N) p = 0.689 | NW(Nn) = UW(Nn) p = 0.965 | NW = UW | NW(Nn) < UWO(N) p = 0.017 | NW(Nn) = UWO(Nn) p = 0.174 | NW(Nn) = UWO(Nn) p = 0.097 | NW = UWO | ||||
Normal preparation without cortical drill (NWO) P2 | NWO(N) > UW(N) p = 0.032 | NWO(N) > UW(N) p = 0.000 | NWO(Nn) > UW(Nn) p = 0.000 | NWO > UW | NWO(N) = UW(N) p = 0.108 | NWO(N) > UWO(Nn) p = 0.000 | NWO(Nn)> UWO(Nn) p = 0.047 | NWO > UWO | ||||||||
Underpreparation with cortical drill (UW) P3 | UW(N) < UWO(N) p = 0.002 | UW(N) = UWO(Nn) p = 0.077 | UW(Nn) = UWO(Nn) p = 0.114 | UW = UWO | ||||||||||||
Underpreparation without cortical drill (UWO) P4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, B.F.; Lopez-Jarana, P.; Falcao, C.; Ríos-Carrasco, B.; Gil, J.; Ríos-Santos, J.V.; Herrero-Climent, M. Effects of Different Undersizing Site Preparations on Implant Stability. Int. J. Environ. Res. Public Health 2020, 17, 8965. https://doi.org/10.3390/ijerph17238965
Lemos BF, Lopez-Jarana P, Falcao C, Ríos-Carrasco B, Gil J, Ríos-Santos JV, Herrero-Climent M. Effects of Different Undersizing Site Preparations on Implant Stability. International Journal of Environmental Research and Public Health. 2020; 17(23):8965. https://doi.org/10.3390/ijerph17238965
Chicago/Turabian StyleLemos, Bernardo Ferreira, Paula Lopez-Jarana, Carlos Falcao, Blanca Ríos-Carrasco, Javier Gil, José Vicente Ríos-Santos, and Mariano Herrero-Climent. 2020. "Effects of Different Undersizing Site Preparations on Implant Stability" International Journal of Environmental Research and Public Health 17, no. 23: 8965. https://doi.org/10.3390/ijerph17238965
APA StyleLemos, B. F., Lopez-Jarana, P., Falcao, C., Ríos-Carrasco, B., Gil, J., Ríos-Santos, J. V., & Herrero-Climent, M. (2020). Effects of Different Undersizing Site Preparations on Implant Stability. International Journal of Environmental Research and Public Health, 17(23), 8965. https://doi.org/10.3390/ijerph17238965