B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Questionnaire
2.3. Chemicals and Media
2.4. Buccal Cells Collection and BLs Isolation
2.5. Blood Collection and PBLs Isolation
2.6. Comet Assay
2.7. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Study 1: Comparison of Primary DNA Damage Detected in PBLs, BLs, WVBLs and WCBLs
3.3. Study 2: Primary DNA Damage Assessment in Isolated BLs
4. Discussion
- Operator’s training. The removal of the BLs layer after DG centrifugation is probably the most critical step of the whole procedure. Compared with the analogous step in PBLs isolation, BLs layer is relatively harder to identify and remove correctly and needs a preliminary training before performing it.
- Number of samples processed per day. If sampling procedure could be carried out in a single session, an excessive number of samples to be processed per day could introduce an aspecific and unmanageable bench-time induced variability. We suggest not to exceed 8–10 samples per day, and to process all the samples within 4 h of collection.
- Laboratory’s room temperature. In order to avoid sample degradation, affect cell viability and add aspecific damage, we suggest carrying out sampling and processing procedures when laboratory’s room temperature ranges between 18 and 25 °C.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization Regional Office for Europe. Human Biomonitoring: Facts and Figures; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- World Health Organization International Programme on Chemical Safety. Biomarkers and Risk Assessment: Concepts and Principles/Published under the Joint Sponsorship of the United Nations Environment Programme; The International Labour Organisation, and the World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Sogorb, M.A.; Estévez, J.; Vilanova, E. Chapter 57—Biomarkers in biomonitoring of xenobiotics. In Biomarkers in Toxicology; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 965–973. [Google Scholar]
- Dhawan, A.; Bajpayee, M.; Parmar, D. Comet assay: A reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 2009, 25, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Brunborg, G.; Rolstadaas, L.; Gützkow, K. Electrophoresis in the Comet Assay. In Electrophoresis—Life Sciences Practical Applications; Boldura, O.-M., Baltă, C., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Gajski, G.; Žegura, B.; Ladeira, C.; Pourrut, B.; Del Bo, C.; Novak, M.; Sramkova, M.; Milić, M.; Gützkow, K.; Costa, S.; et al. The comet assay in animal models: From bugs to whales—(Part 1 Invertebrates). Mutat. Res. Rev. Mutat. Res. 2019, 779, 82–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajski, G.; Žegura, B.; Ladeira, C.; Novak, M.; Sramkova, M.; Pourrut, B.; Del Bo’, C.; Milić, M.; Gutzkow, K.B.; Costa, S.; et al. The comet assay in animal models: From bugs to whales—(Part 2 Vertebrates). Mutat. Res. Rev. Mutat. Res. 2019, 781, 130–164. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.; Rojas, E. Chapter 11 Comet Assay in Human Biomonitoring. In The Comet Assay in Toxicology; The Royal Society of Chemistry: London, UK, 2017; pp. 264–313. [Google Scholar]
- Azqueta, A.; Collins, A.R. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Muruzabal, D.; Langie, S.A.S.; Pourrut, B.; Azqueta, A. The enzyme-modified comet assay: Enzyme incubation step in 2 vs. 12-gels/slide systems. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2019, 845, 402981. [Google Scholar] [CrossRef]
- Azqueta, A.; Langie, S.A.S.; Boutet-Robinet, E.; Duthie, S.; Ladeira, C.; Møller, P.; Collins, A.R.; Godschalk, R.W.L. DNA repair as a human biomonitoring tool: Comet assay approaches. Mutat. Res. Rev. Mutat. Res. 2019, 781, 71–87. [Google Scholar] [CrossRef]
- Horváthová, E.; Dušinská, M.; Shaposhnikov, S.; Collins, A.R. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis 2004, 19, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Shaposhnikov, S.; Thomsen, P.D.; Collins, A.R. Combining Fluorescent In Situ Hybridization with the Comet Assay for Targeted Examination of DNA Damage and Repair. In DNA Damage Detection In Situ, Ex Vivo, and In Vivo: Methods and Protocols; Didenko, V.V., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 115–132. [Google Scholar]
- Shaposhnikov, S.; Azqueta, A.; Henriksson, S.; Meier, S.; Gaivão, I.; Huskisson, N.H.; Smart, A.; Brunborg, G.; Nilsson, M.; Collins, A.R. Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 2010, 195, 31–34. [Google Scholar] [CrossRef]
- Herrera, M.; Dominguez, G.; Garcia, J.M.; Peña, C.; Jimenez, C.; Silva, J.; Garcia, V.; Gomez, I.; Diaz, R.; Martin, P.; et al. Differences in Repair of DNA Cross-links between Lymphocytes and Epithelial Tumor Cells from Colon Cancer Patients Measured in vitro with the Comet Assay. Clin. Cancer Res. 2009, 15, 5466. [Google Scholar] [CrossRef] [Green Version]
- Fikrova, P.; Stetina, R.; Hrnciarik, M.; Hrnciarikova, D.; Hronek, M.; Zadak, Z. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol. Rep. 2014, 31, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Townsend, T.A.; Parrish, M.C.; Engelward, B.P.; Manjanatha, M.G. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ. Mol. Mutagenes. 2017, 58, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.A.; Pedro, D.F.N.; Lima, C.F.; Collins, A.R.; Pereira-Wilson, C. Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth). Free Radic. Biol. Med. 2013, 60, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentzel, J.F.; Gouws, C.; Huysamen, C.; Van Dyk, E.; Koekemoer, G.; Pretorius, P.J. Assessing the DNA methylation status of single cells with the comet assay. Anal. Biochem. 2010, 400, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Gutzkow, K.B.; Langleite, T.M.; Meier, S.; Graupner, A.; Collins, A.R.; Brunborg, G. High-throughput comet assay using 96 minigels. Mutagenesis 2013, 28, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykora, P.; Witt, K.L.; Revanna, P.; Smith-Roe, S.L.; Dismukes, J.; Lloyd, D.G.; Engelward, B.P.; Sobol, R.W. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci. Rep. 2018, 8, 2771. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, S.; Sim, W.Y.; Jung, Y.M.; Han, S.; Won, J.-H.; Min, H.; Yoon, S. HiComet: A high-throughput comet analysis tool for large-scale DNA damage assessment. BMC Bioinform. 2018, 19 (Suppl. 1), 44. [Google Scholar]
- Cassano, J.C.; Roesslein, M.; Kaufmann, R.; Luethi, T.; Schicht, O.; Wick, P.; Hirsch, C. A novel approach to increase robustness, precision and high-throughput capacity of single cell gel electrophoresis. Altex 2020, 1, 95–109. [Google Scholar] [CrossRef]
- Perdry, H.; Gutzkow, K.B.; Chevalier, M.; Huc, L.; Brunborg, G.; Boutet-Robinet, E. Validation of Gelbond® high-throughput alkaline and Fpg-modified comet assay using a linear mixed model. Environ. Mol. Mutagenes. 2018, 59, 595–602. [Google Scholar] [CrossRef]
- Rojas, E.; Lorenzo, Y.; Haug, K.; Nicolaissen, B.; Valverde, M. Epithelial cells as alternative human biomatrices for comet assay. Front. Genet. 2014, 5, 386. [Google Scholar] [CrossRef]
- Szeto, Y.T.; Benzie, I.F.F.; Collins, A.R.; Choi, S.W.; Cheng, C.Y.; Yow, C.M.N.; Tse, M.M.Y. A buccal cell model comet assay: Development and evaluation for human biomonitoring and nutritional studies. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 2005, 578, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Vazquez Boucard, C.; Lee-Cruz, L.; Mercier, L.; Ramírez Orozco, M.; Serrano Pinto, V.; Anguiano, G.; Cazares, L.; Díaz, D. A study of DNA damage in buccal cells of consumers of well- and/or tap-water using the comet assay: Assessment of occupational exposure to genotoxicants. Environ. Mol. Mutagenes. 2017, 58, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Visalli, G.; Baluce, B.; La Maestra, S.; Micale, R.T.; Cingano, L.; De Flora, S.; Di Pietro, A. Genotoxic damage in the oral mucosa cells of subjects carrying restorative dental fillings. Arch. Toxicol. 2013, 87, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.; López, M.d.C.; López, I.; Sánchez, I.; Fortoul, T.I.; Ostrosky-Wegman, P.; Rojas, E. DNA damage in leukocytes and buccal and nasal epithelial cells of individuals exposed to air pollution in Mexico City. Environ. Mol. Mutagenes. 1997, 30, 147–152. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Wu, J.; Yang, L.; Zhu, R.; Yang, M.; Qin, B.; Shi, H.; Guan, H. DNA Damage in Lens Epithelial Cells and Peripheral Lymphocytes from Age-Related Cataract Patients. Ophthalmic Res. 2014, 51, 124–128. [Google Scholar] [CrossRef]
- Osnes-Ringen, Ø.; Azqueta, A.O.; Moe, M.C.; Zetterström, C.; Røger, M.; Nicolaissen, B.; Collins, A.R. DNA damage in lens epithelium of cataract patients in vivo and ex vivo. Acta Ophthalmol. 2013, 91, 652–656. [Google Scholar] [CrossRef]
- Başaran, N.; Duydu, Y.; Üstündağ, A.; Taner, G.; Aydin, S.; Anlar, H.G.; Yalçin, C.; Bacanli, M.; Aydos, K.; Atabekoğlu, C.S.; et al. Evaluation of the DNA damage in lymphocytes, sperm and buccal cells of workers under environmental and occupational boron exposure conditions. Mutat. Res. 2019, 843, 33–39. [Google Scholar] [CrossRef]
- Gajski, G.; Gerić, M.; Živković Semren, T.; Tariba Lovaković, B.; Oreščanin, V.; Pizent, A. Application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples: Implications for human biomonitoring. Toxicol. Lett. 2020, 319, 58–65. [Google Scholar] [CrossRef]
- Dutta, S.; Bahadur, M. Comet assay genotoxicity evaluation of occupationally exposed tea-garden workers in northern West Bengal, India. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2019, 844, 1–9. [Google Scholar] [CrossRef]
- Milić, M.; Ožvald, I.; Vinković Vrček, I.; Vučić Lovrenčić, M.; Oreščanin, V.; Bonassi, S.; Del Castillo, E.R. Alkaline comet assay results on fresh and one-year frozen whole blood in small volume without cryo-protection in a group of people with different health status. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2019, 843, 3–10. [Google Scholar] [CrossRef]
- Villarini, M.; Dominici, L.; Fatigoni, C.; Levorato, S.; Vannini, S.; Monarca, S.; Moretti, M. Primary DNA damage in welders occupationally exposed to extremely-low-frequency magnetic fields (ELF-MF). Ann. Ig. Med. Prev. Comunita 2015, 27, 511–519. [Google Scholar]
- Buschini, A.; Villarini, M.; Feretti, D.; Mussi, F.; Dominici, L.; Zerbini, I.; Moretti, M.; Ceretti, E.; Bonfiglioli, R.; Carrieri, M.; et al. Multicentre study for the evaluation of mutagenic/carcinogenic risk in nurses exposed to antineoplastic drugs: Assessment of DNA damage. Occup. Environ. Med. 2013, 70, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Villarini, M.; Dominici, L.; Piccinini, R.; Fatigoni, C.; Ambrogi, M.; Curti, G.; Morucci, P.; Muzi, G.; Monarca, S.; Moretti, M. Assessment of primary, oxidative and excision repaired DNA damage in hospital personnel handling antineoplastic drugs. Mutagenesis 2011, 26, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.H.G.; Saber, A.T.; Pedersen, J.E.; Pedersen, P.B.; Clausen, P.A.; Løhr, M.; Kermanizadeh, A.; Loft, S.; Ebbehøj, N.E.; Hansen, Å.M.; et al. Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. Environ. Mol. Mutagenes. 2018, 59, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Odongo, G.A.; Skatchkov, I.; Herz, C.; Lamy, E. Optimization of the alkaline comet assay for easy repair capacity quantification of oxidative DNA damage in PBMC from human volunteers using aphidicolin block. DNA Repair 2019, 77, 58–64. [Google Scholar] [CrossRef]
- Bagheri Hosseinabadi, M.; Khanjani, N.; Atashi, A.; Norouzi, P.; Mirbadie, S.R.; Mirzaii, M. The effect of vitamin E and C on comet assay indices and apoptosis in power plant workers: A double blind randomized controlled clinical trial. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2020, 850–851, 503150. [Google Scholar] [CrossRef]
- Azqueta, A.; Ladeira, C.; Giovannelli, L.; Boutet-Robinet, E.; Bonassi, S.; Neri, M.; Gajski, G.; Duthie, S.; Del Bo’, C.; Riso, P.; et al. Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutat. Res. Rev. Mutat. Res. 2020, 783, 108288. [Google Scholar] [CrossRef]
- Koppen, G.; De Prins, S.; Jacobs, A.; Nelen, V.; Schoeters, G.; Langie, S.A.S. The comet assay in human biomonitoring: Cryopreservation of whole blood and comparison with isolated mononuclear cells. Mutagenesis 2017, 33, 41–47. [Google Scholar] [CrossRef]
- Giovannelli, L.; Pitozzi, V.; Riolo, S.; Dolara, P. Measurement of DNA breaks and oxidative damage in polymorphonuclear and mononuclear white blood cells: A novel approach using the comet assay. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2003, 538, 71–80. [Google Scholar] [CrossRef]
- Salama, S.A.; Serrana, M.; Au, W.W. Biomonitoring using accessible human cells for exposure and health risk assessment. Mutat. Res. Rev. Mutat. Res. 1999, 436, 99–112. [Google Scholar] [CrossRef]
- Souza, A.C.F.; Yujra, V.Q.; Pisani, L.P.; Viana, M.D.B.; De Castro, G.M.; Ribeiro, D.A. The Use of Single-Cell Comet Assay on Oral Cells: A Critical Review. Anticancer Res. 2019, 39, 4011–4017. [Google Scholar] [CrossRef] [PubMed]
- Feretti, D.; Ceretti, E.; De Donno, A.; Moretti, M.; Carducci, A.; Bonetta, S.; Marrese, M.R.; Bonetti, A.; Covolo, L.; Bagordo, F.; et al. Monitoring air pollution effects on children for supporting public health policy: The protocol of the prospective cohort MAPEC study. BMJ Open 2014, 4, e006096. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Alarcón, J.; Milić, M.; Gómez-Arroyo, S.; Montiel-González, J.; Valencia, R. Assessment of DNA Damage by Comet Assay in Buccal Epithelial Cells: Problems, Achievement, Perspectives. In Environmental Health Risk—Hazardous Factors to Living Species; IntechOpen: London, UK, 2016. [Google Scholar]
- Pinhal, D.; Gontijo, A.M.; Reyes, V.A.V.; Salvadori, D.M.F. Viable human buccal mucosa cells do not yield typical nucleoids: Impacts on the single-cell gel electrophoresis/comet assay. Environ. Mol. Mutagenes. 2006, 47, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Oßwald, K.; Mittas, A.; Glei, M.; Pool-Zobel, B.L. New revival of an old biomarker: Characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat. Res. Rev. Mutat. Res. 2003, 544, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Szeto, Y.T.; Lee, A.K.H.; Benzie, I.F.F.; Obied, H.K. Optimized noninvasive procedures to measure DNA damage in comet assay. Hum. Exp. Toxicol. 2012, 31, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Muniz, J.F.; McCauley, L.A.; Pak, V.; Lasarev, M.R.; Kisby, G.E. Effects of sample collection and storage conditions on DNA damage in buccal cells from agricultural workers. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2011, 720, 8–13. [Google Scholar] [CrossRef]
- McCauley, L.A.; Lasarev, M.; Muniz, J.; Nazar Stewart, V.; Kisby, G. Analysis of Pesticide Exposure and DNA Damage in Immigrant Farmworkers. J. Agromed. 2008, 13, 237–246. [Google Scholar] [CrossRef]
- Glei, M.; Habermann, N.; Osswald, K.; Seidel, C.; Persin, C.; Jahreis, G.; Pool-Zobel, B.L. Assessment of DNA damage and its modulation by dietary and genetic factors in smokers using the Comet assay: A biomarker model. Biomarkers 2005, 10, 203–217. [Google Scholar] [CrossRef]
- Zani, C.; Ceretti, E.; Zerbini, I.; Viola, G.C.V.; Donato, F.; Gelatti, U.; Feretti, D. Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. Int. J. Environ. Res. Public Health 2020, 17, 3276. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Guerrera, E.; Dominici, L.; Levorato, S.; Vannini, S.; Acito, M.; Fatigoni, C.; Villarini, M.; Moretti, M. Cytotoxicity and genotoxicity of size-fractionated particulate matter collected in underground workplaces. Air Qual. Atmos. Health 2019, 12, 359–367. [Google Scholar] [CrossRef]
- Feretti, D.; Acito, M.; Dettori, M.; Ceretti, E.; Fatigoni, C.; Posadino, S.; Zerbini, I.; Villarini, M.; Moretti, M.; Castiglia, P.; et al. Genotoxicity of source, treated and distributed water from four drinking water treatment plants supplied by surface water in Sardinia, Italy. Environ. Res. 2020, 185, 109385. [Google Scholar] [CrossRef] [PubMed]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagenes. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Collins, A.; Koppen, G.; Valdiglesias, V.; Dusinska, M.; Kruszewski, M.; Møller, P.; Rojas, E.; Dhawan, A.; Benzie, I.; Coskun, E.; et al. The comet assay as a tool for human biomonitoring studies: The ComNet Project. Mutat. Res. Rev. Mutat. Res. 2014, 759, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Vannini, S.; Blasi, F.; Marcotullio, M.C.; Dominici, L.; Villarini, M.; Cossignani, L.; Moretti, M. In Vitro Safety/Protection Assessment of Resveratrol and Pterostilbene in a Human Hepatoma Cell Line (HepG2). Nat. Prod. Commun. 2015, 10, 1403–1408. [Google Scholar] [PubMed] [Green Version]
- Bonetta, S.; Gianotti, V.; Bonetta, S.; Gosetti, F.; Oddone, M.; Gennaro, M.C.; Carraro, E. DNA damage in A549 cells exposed to different extracts of PM2.5 from industrial, urban and highway sites. Chemosphere 2009, 77, 1030–1034. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- García, O.; Romero, I.; González, J.E.; Moreno, D.L.; Cuétara, E.; Rivero, Y.; Gutiérrez, A.; Pérez, C.L.; Alvarez, A.; Carnesolta, D.; et al. Visual estimation of the percentage of DNA in the tail in the comet assay: Evaluation of different approaches in an intercomparison exercise. Mutat. Res. 2011, 720, 14–21. [Google Scholar] [CrossRef]
- Bausinger, J.; Speit, G. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay. Mutagenesis 2016, 31, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Ladeira, C.; Koppen, G.; Scavone, F.; Giovannelli, L. The comet assay for human biomonitoring: Effect of cryopreservation on DNA damage in different blood cell preparations. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2019, 843, 11–17. [Google Scholar] [CrossRef]
- Al-Salmani, K.; Abbas, H.H.; Schulpen, S.; Karbaschi, M.; Abdalla, I.; Bowman, K.J.; So, K.K.; Evans, M.D.; Jones, G.D.; Godschalk, R.W.; et al. Simplified method for the collection, storage, and comet assay analysis of DNA damage in whole blood. Free Radic. Biol. Med. 2011, 51, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Sirota, N.P.; Kuznetsova, E.A. Spontaneous DNA damage in peripheral blood leukocytes from donors of different age. Bull. Exp. Biol. Med. 2008, 145, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Møller, P. Assessment of reference values for DNA damage detected by the comet assay in human blood cell DNA. Mutat. Res. 2006, 612, 84–104. [Google Scholar] [CrossRef] [PubMed]
- Faust, F.; Kassie, F.; Knasmüller, S.; Boedecker, R.H.; Mann, M.; Mersch-Sundermann, V. The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat. Res. 2004, 566, 209–229. [Google Scholar] [CrossRef] [PubMed]
- Sardas, S.; Cimen, B.; Karsli, S.; Yurdun, T.; Donbak, L. Comparison of genotoxic effect between smokeless tobacco (Maras powder) users and cigarette smokers by the alkaline comet assay. Hum. Exp. Toxicol. 2009, 28, 214–219. [Google Scholar] [CrossRef]
- Fernández-Miñano, E.; Ortiz, C.; Vicente, A.; Calvo Guirado, J.L.; Ortiz, A.J. Metallic ion content and damage to the DNA in oral mucosa cells of children with fixed orthodontic appliances. Biometals 2011, 24, 935. [Google Scholar] [CrossRef]
- Hafez, H.S.; Selim, E.M.; Kamel Eid, F.H.; Tawfik, W.A.; Al-Ashkar, E.A.; Mostafa, Y.A. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: A longitudinal in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 298–308. [Google Scholar] [CrossRef]
- De Santis, D.; Pancera, P.; Luciano, U.; Gelpi, F.; Causarano, G.; Formentini, D.; Marchiori, M.; Lanaro, L.; Sinigaglia, S.; Bertossi, D.; et al. Short-term in vivo evaluation of cellular DNA damage induced by fixed orthodontic appliances. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. 2), 75–80. [Google Scholar]
- Ortiz, A.J.; Fernández, E.; Vicente, A.; Calvo, J.L.; Ortiz, C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: Toxicity and DNA damage. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e115-22. [Google Scholar] [CrossRef]
- Faccioni, F.; Franceschetti, P.; Cerpelloni, M.; Fracasso, M.E. In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 687–693. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Luchini, C.; Manzato, E.; Sergi, G.; Favaro, A.; Santonastaso, P.; Correll, C.U. Oxidative Stress and Antioxidant Levels in Patients with Anorexia Nervosa after Oral Re-alimentation: A Systematic Review and Exploratory Meta-analysis. Eur. Eat. Disord. Rev. 2016, 24, 101–105. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Gail, M.H. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 2007, 298, 2028–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-Mass Index and Mortality among 1.46 Million White Adults. N. Engl. J. Med. 2010, 363, 2211–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, L.; Braun, J.; Chiolero, A.; Bopp, M.; Rohrmann, S.; Faeh, D. Mortality risk associated with underweight: A census-linked cohort of 31,578 individuals with up to 32 years of follow-up. BMC Public Health 2014, 14, 371. [Google Scholar] [CrossRef] [Green Version]
- Nomura, A.; Heilbrun, L.K.; Stemmermann, G.N. Body mass index as a predictor of cancer in men. J. Natl. Cancer Inst. 1985, 74, 319–323. [Google Scholar]
- Samanic, C.; Chow, W.H.; Gridley, G.; Jarvholm, B.; Fraumeni, J.F., Jr. Relation of body mass index to cancer risk in 362,552 Swedish men. Cancer Causes Control 2006, 17, 901–909. [Google Scholar] [CrossRef]
- Brown, L.M.; Hoover, R.N.; Greenberg, R.S.; Schoenberg, J.B.; Schwartz, A.G.; Swanson, G.M.; Liff, J.M.; Silverman, D.T.; Hayes, R.B.; Pottern, L.M. Are Racial Differences in Squamous Cell Esophageal Cancer Explained by Alcohol and Tobacco Use? J. Natl. Cancer Inst. 1994, 86, 1340–1345. [Google Scholar] [CrossRef]
- Suzuki, R.; Rylander-Rudqvist, T.; Ye, W.; Saji, S.; Wolk, A. Body weight and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status among Swedish women: A prospective cohort study. Int. J. Cancer 2006, 119, 1683–1689. [Google Scholar] [CrossRef]
Characteristics | Study 1 | Study 2 | ||
---|---|---|---|---|
Males | Females | Males | Females | |
n (%) 1 | 9 (60.0) | 6 (40.0) | 14 (25.9) | 40 (74.1) |
Age (years) 2 | 26.0 ± 3.0 | 22.0 ± 0.0 | 23.1 ± 2.3 | 22.2 ± 1.5 |
Smoking 1 | ||||
Non-smokers | 6 (66.7) | 6 (100.0) | 10 (71.4) | 26 (65.0) |
Smokers | 3 (33.3) | 0 (0.0) | 4 (28.6) | 14 (35.0) |
BMI 2,3 | 23.5 ± 2.6 | 23.3 ± 4.9 | 23.1 ± 2.9 | 21.9 ± 3.2 |
Underweight 1 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (5.0) |
Normal weight | 8 (88.9) | 3 (50.0) | 11 (78.6) | 34 (85.0) |
Overweight/obese | 1 (11.1) | 3 (50.0) | 3 (21.4) | 4 (10.0) |
DNA Damage Parameter 1 | PBLs | BLs | WVBLs | WCBLs |
---|---|---|---|---|
Tail length (µm) | 14.207 ± 0.094 | 20.565 ± 0.866 * | 15.529 ± 0.194 | 15.649 ± 0.464 |
Tail intensity (%) | 0.877 ± 0.086 | 3.611 ± 0.345 * | 1.247 ± 0.087 | 1.765 ± 0.163 * |
Tail moment | 0.061 ± 0.007 | 0.475 ± 0.073 * | 0.097 ± 0.009 | 0.147 ± 0.017 |
Primary DNA Damage 1 | Tail Length (µm) | Tail Intensity (%) | Tail Moment |
---|---|---|---|
Whole population (n = 54) | 25.7 ± 0.9 | 6.7 ± 0.4 | 1.0 ± 0.1 |
Sex | |||
Males (n = 14) | 24.1 ± 1.5 | 6.1 ± 0.7 | 0.9 ± 0.1 |
Females (n = 40) | 26.2 ± 1.1 | 7.0 ± 0.4 | 1.1 ± 0.1 |
Smoking | |||
Non-smokers (n = 36) | 25.2 ± 1.1 | 6.7 ± 0.5 | 1.0 ± 0.1 |
Smokers (n = 18) | 26.5 ± 1.6 | 7.0 ± 0.5 | 1.1 ± 0.1 |
BMI | |||
Underweight (n = 2) | 31.5 ± 2.2 | 11.6 ± 0.6 | 1.9 ± 0.04 |
Normal weight (n = 45) | 25.5 ± 1.0 | 6.8 ± 0.4 | 1.0 ± 0.1 |
Overweight/obese (n = 7) | 24.8 ± 2.9 | 5.4 ± 1.3 | 0.8 ± 0.3 |
Variable | B | 95% CI | β | p |
---|---|---|---|---|
Tail length (µm) | ||||
Sex | 2.09 | −2.02; 6.21 | 0.14 | 0.31 |
Smoking | 1.54 | −2.38; 5.45 | 0.11 | 0.43 |
BMI | 0.57 | −0.82; 1.96 | 0.12 | 0.42 |
Tail intensity (%) | ||||
Sex | 1.00 | −0.79; −0.79 | 0.15 | 0.27 |
Smoking | 0.42 | −1.26; −1.26 | 0.07 | 0.62 |
BMI | 0.23 | −0.36; −0.36 | 0.11 | 0.43 |
Tail moment | ||||
Sex | 0.13 | −0.28; 0.54 | 0.09 | 0.52 |
Smoking | 0.15 | −0.25; 0.56 | 0.11 | 0.46 |
BMI | 0.05 | −0.09; 0.19 | 0.11 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, C.; Acito, M.; Fatigoni, C.; Villarini, M.; Moretti, M. B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies. Int. J. Environ. Res. Public Health 2020, 17, 9234. https://doi.org/10.3390/ijerph17249234
Russo C, Acito M, Fatigoni C, Villarini M, Moretti M. B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies. International Journal of Environmental Research and Public Health. 2020; 17(24):9234. https://doi.org/10.3390/ijerph17249234
Chicago/Turabian StyleRusso, Carla, Mattia Acito, Cristina Fatigoni, Milena Villarini, and Massimo Moretti. 2020. "B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies" International Journal of Environmental Research and Public Health 17, no. 24: 9234. https://doi.org/10.3390/ijerph17249234
APA StyleRusso, C., Acito, M., Fatigoni, C., Villarini, M., & Moretti, M. (2020). B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies. International Journal of Environmental Research and Public Health, 17(24), 9234. https://doi.org/10.3390/ijerph17249234