Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Count of the Enterococci and Their Identification
2.2. Enzyme Production and Hemolysis
2.3. Biofilm Formation Testing
2.4. Antibiotic Profile
2.5. Susceptibility to Enterocins and Lantibiotic Bacteriocins
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Semedo-Lemsaddek, T.; Carvalho, L.; Tempera, C.; Fernandes, M.H.; Fernandes, M.J.; Elias, M.; Barreto, A.S.; Fraqueza, M.J. Characterization oand technological features of uthochtonnous coagulase-negative staphylococci as potential starters for Portuguese dry fermented sausages. J. Food Sci. 2016, 5, M1197–M1202. [Google Scholar] [CrossRef] [PubMed]
- Talon, R.; Lebert, I.; Lebert, A.; Leroy, S.; Garriga, M.; Aymerich, T.; Drosinos, E.H.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; et al. Traditional dry fermented sausages produced in small-manufacturers in mediterranean countries and Slovakia. 1. microbial ecosystems of processing environments. Meat Sci. 2007, 77, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Hugas, M.; Garriga, M.; Aymerich, M.T. Functionality of enterococci in meat products. Int. J. Food Microbiol. 2003, 88, 223–233. [Google Scholar] [CrossRef]
- Santos, C.S.; Fraqueza, M.J.; Elias, M.; Barreto, A.S.; Semedo-Lemsaddek, T. Traditional dry smoked fermented meat sausages:Characterization of autochthonous enterococci. LWT Food Sci.Technol. 2017, 79, 410–415. [Google Scholar] [CrossRef]
- Franz, C.H.M.A.P.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nes, I.F.; Diep, D.B.; Moss, M.O. Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In Enterococci from Commensals to Leading of Drug Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 1–34. [Google Scholar]
- Lauková, A.; Pogány Simonová, M.; Kubašová, I.; Gancarčíková, S.; Plachá, I.; Ščerbová, J.; Revajová, V.; Herich, R.; Levkut, M.; Strompfová, V. Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered Enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech. J. Anim. Sci. 2017, 62, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Styková, E.; Kubašová, I.; Strompfová, V.; Gancarčíková, S.; Plachá, I.; Miltko, R.; Belzecki, G.; Valocký, I.; Pogány Simonová, M. Enterocin M-producing Enterococcus faecium CCM8558 demonstrating probiotic properties in horses. Prob. Antimcrob. Prot. 2020, 12, 1555–1561. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Bino, E.; Tomáška, M.; Kološta, M.; Kmeť, V.; Strompfová, V. Some safety aspects of enterococci isolated from Slovak lactic acid dairy product “Žinčica“. Folia Microbiol. 2020, 65, 79–85. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Sukontasing, S.; Lee, J.S. Enterococcus thailandicus sp. nov.; isolated from fermented sausage mum in Thailand. Int. J. Syst. Evol. Microbiol. 2008, 58, 1630–1634. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Fraqueza, M.J.; Strompfová, V.; Pogány Simonová, M.; Elias, M.; Barreto, A. Bacteriocinogenic activity of Enterococcus faecalis strains from chourico, traditional sausage produced in southern Portugal. Afr. J. Microbiol. 2011, 5, 334–339. [Google Scholar]
- Bondi, M.; Lauková, A.; de Niederhausern, S.; Messi, P.; Papadopoulos, C.H. Natural preservatives to improve food quality and safety. J. Food Qual. 2017, 1090932. [Google Scholar] [CrossRef] [Green Version]
- Laranjo, M.; Talon, R.; Lauková, A.; Fraqueza, M.J.; Elias, M. Traditional meat product: Improvement of quality and safety. J. Food Qual. 2017, 2873793. [Google Scholar] [CrossRef] [Green Version]
- Alatoom, A.A.; Cunningham, S.A.; Ihde, S.; Mandrekar, J.; Patel, R. Comparison of direct colony method versus extraction method for identification of Gram-positive cocci by use of Bruker Biotyper matrix-assissted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 2868–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baelae, M.; Chiers, K.; Devriese, L.A.; Smith, H.E.; Wissenlik, H.J.; Vaneechoute, M.; Haesebrouk, F.R. The gram-positive tonsillar and nasal flora of piglets before and after weaning. J. Appl. Microbiol. 2001, 9, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kharroubi, A.; Jacques, P.; Piras, G.; van Beeumen, J.; Cozette, J.; Ghuzssen, J.M. The Enterococcus hirae R40 penicillin binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2p are similar. Biochem. J. 1991, 280, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodford, N.; Egelton, M.C.; Morrison, D. Comparison of PCR with phenotypic methods for the specification of enterococci. Adv. Exp. Med. 1997, 418, 405–408. [Google Scholar]
- Sanchez, J.; Borrero, J.; Gómez-Sala, B.; Basanta, A.; Herranz, C.; Cintas, L.M.; Hernández, P. Clonig and heterologous production of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichia Pastoris. Appl. Environm. Microbiol. 2008, 74, 2471–2479. [Google Scholar] [CrossRef] [Green Version]
- Semedo, T.; Santos, M.A.; Lopes, M.F.S.; Figueiredo Marques, J.J.; Barreto Crespo, M.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci:a common trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef]
- Chaieb, K.; Chehab, O.; Zmantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Slížová, M.; Nemcová, R.; Maďar, M.; Hádryová, J.; Gancarčíková, S.; Popper, M.; Pistl, J. Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol. 2015, 61, 437–466. [Google Scholar] [CrossRef]
- CLSI. Clinical laboratory standard institute guideline 2016. In 2016 Performance Standards for Antimicrobial Susceptibility Testing M100S, 26th ed.; The Clinical & Laboratory Standards Institute: Annapolis Junction, MD, USA, 2016. [Google Scholar]
- Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 2003, 94, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Plachá, I.; Pogány Simonová, M.; Čobanová, K.; Formelová, Z.; Ondruška, Ľ.; Strompfová, V. Bacteriocin substance durancin-like ED26E/7 and its experimental use in broiler rabbits husbandry. Maso 2015, 5, 56–59. (In Slovak) [Google Scholar]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Kandričáková, A.; Szabóová, R.; Strompfová, V.; Chrenková, M.; Čobanová, K.; Žitňan, R. Beneficial effect of lantibiotic nisin in rabbit husbandry. Prob. Antimicrob. Prot. 2014, 6, 41–46. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A. Virulence genes possessing Enterococcus faecalis strains from rabbits and their sensitivity to enterocins. World Rabbit Sci. 2017, 25, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Zommiti, M.; Cambronel, M.; Maillot, O.; Barreau, M.; Sebei, K.; Feilloley, M.; Ferchichi, M.; Connil, N. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal tunisian meat “dried ossban“. Front. Microbiol. 2018, 9, 1685. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Simonová, M.; Strompfová, V. Staphylococcus xylosus S3/1M/1/2, bacteriocin-producing meat starter culture or additive. Food Control. 2010, 21, 970–973. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The Ecology, epidemiology and virulence of enterococci. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.; Homer, K.A.; Tarelli, E.; Philpott-Howard, J.; Devriese, L.A.; Brighton, D. Distribution of endo-β-N-acetylglucosaminidaseamongst enterococci. J. Med. Microbiol. 2001, 50, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Pogány Simonová, M.; Lauková, A.; Tomáška, M. Bacteriocin-like activity of Enterococcus mundtii isolated from raw goats milk. In Proceedings of the International Conference “Food safety and control“, Piešťany, Slovakia, 26–27 March 2020; pp. 60–62, ISBN 978-80-552-2168-7. (In Slovak). [Google Scholar] [CrossRef]
- Marthur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj/Biofilm. Micorbioms 2018, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Lauková, A.; Strompfová, V.; Kandričáková, A.; Ščerbová, J.; Semedo-Lemsaddek, T.; Miltko, R.; Belzecki, G. Virulence factors genes in enterococci isolated from beavers (Castor fiber). Folia Microbiol. 2015, 60, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Malik, R.K.; Chauhan, P. Functional and safety aspects of enterococci in dairy foods. Ind. J. Microbiol. 2008, 48, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thal, L.A.; Chow, J.W.; Mahayni, R.; Bonilla, H.; Perri, M.B.; Donabedian, S.A.; Silverman, J.; Taber, S.; Zervos, M.J. Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrob. Agents Chemother. 1995, 39, 2112–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraffa, G. Enterococci in foods. FEMS Microbiol. Rev. 2002, 26, 163–171. [Google Scholar] [CrossRef]
- Giraffa, G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 2003, 88, 215–222. [Google Scholar] [CrossRef]
- Giaouris, E.; Heir, E.; Hébruad, M.; Chorianopolous, N.; Langsrud, S.; Moretro, T.; Habimana, O.; Desvaux, M.; Renier, S.; Nychas, G.J. Attachment and biofilm formation by foodborne bacteria in meat prodsessing environments:casues implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 2014, 92, 298–309. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S. Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza“, a traditional Slovak dairy product from sheep milk. Microbiol. Res. 2001, 156, 31–34. [Google Scholar] [CrossRef]
- Lauková, A.; Vlaemynck, G.; Czikková, S. Effect of Enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001, 46, 157–160. [Google Scholar] [CrossRef]
- Lauková, A.; Turek, P.; Mareková, M.; Nagy, J. Use of Ent M, new variant of Ent P to control Listeria innocua in experimentally contaminated Gombasek sausage. Arch. Lebensm. 2003, 54, 246–248. [Google Scholar]
- Lauková, A.; Czikková, S.; Laczková, S.; Turek, P. Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fertmented Hornád salami. Int. J. Food Microbiol. 1999, 52, 115–119. [Google Scholar] [CrossRef]
Strain | MALDI | Azm | T | Da | Gn | Amp |
---|---|---|---|---|---|---|
EF1BS | 2.465 | R | +20 | +20 | +15 | +11 |
EF1NS | 2.273 | R | +17 | +14 | +15 | R |
EF2SC | 2.271 | R | +20 | +18 | +12 | +14 |
EF2Kal | 2.264 | R | +20 | R | +12 | +11 |
EF4Kal | 2.292 | R | +10 | +16 | +10 | +10 |
EFKL5 | 2.436 | R | +14 | +20 | +11 | R |
EFPL3 | 2.095 | R | +20 | +20 | +11 | +11 |
EFPL4 | 2.247 | R | +17 | +20 | +17 | +10 |
EEPL1S | 2.211 | R | +15 | +14 | R | +10 |
EEKL2 | 2.307 | R | +15 | +20 | +20 | R |
EE1Sc | 2.401 | R | +20 | +20 | R | +11 |
EHLov1 | 2.181 | +19 | +20 | R | +13 | +15 |
EHPL2 | 2.226 | R | R | R | +12 | +10 |
EHTOK1 | 2.187 | R | +20 | +11 | +16 | +15 |
EHTOK2 | 2.401 | +12 | +20 | R | +10 | R |
Strains | Alkaline Phosphatase | Esterase (C4) | Esterase Lipase (C8) | Lipase (C14) | Leucin-Arylamidase | Valin-Arylamidase | Cystin-Arylamidase | Trypsin | α-Chymotrypsin | |
---|---|---|---|---|---|---|---|---|---|---|
EF1BS | 5 | 20 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | |
EF1NS | 5 | 5 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | |
EF2SC | 0 | 20 | 10 | 5 | 10 | 0 | 0 | 0 | 0 | |
EF2Kal | 0 | 20 | 10 | 5 | 20 | 0 | 0 | 0 | 0 | |
EF4Kal | 5 | 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | |
EFKL5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | |
EFPL1s | 5 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | |
EFPL3 | 5 | 10 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | |
EFPL4 | 5 | 10 | 10 | 5 | 0 | 0 | 0 | 0 | 0 | |
EEKL2 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | |
EE1Sc | 5 | 20 | 20 | 0 | 5 | 0 | 5 | 0 | 10 | |
EHLo1 | 5 | 10 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | |
EHPL2 | 0 | 10 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | |
TOK1 | 0 | 5 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | |
TOK2 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | |
Strains | Acidic Phosphatase | Naftol-AS-BI-phospho-hydrolase | α-Galactosidase | β-Galactosidase | β-Glucuronidase | α-Glucosidase | β-Glucosidase | N-Acetyl-β-glucosamonidase | α-Manosidase | α-Fucosidase |
EF1BS | 5 | 5 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EF1NS | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EF2SC | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EF2Kal | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EF4Kal | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 0 |
EFKL5 | 0 | 0 | 0 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EFPL1s | 10 | 20 | 5 | 5 | 0 | 5 | 5 | 0 | 0 | 0 |
EFPL3 | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 0 |
EFPL4 | 10 | 0 | 5 | 5 | 5 | 5 | 5 | 0 | 5 | 5 |
EEKL2 | 5 | 0 | 5 | 5 | 5 | 5 | 5 | 0 | 5 | 5 |
EE1Sc | 10 | 5 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 5 |
EHLo1 | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 0 | 5 | 0 |
EHPL2 | 5 | 0 | 0 | 0 | 0 | 5 | 5 | 0 | 5 | 5 |
TOK1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 0 | 5 | 5 |
TOK2 | 5 | 0 | 5 | 5 | 0 | 5 | 5 | 5 | 5 | 5 |
Strain | Bi | ED | A/P | Gal | Nis |
---|---|---|---|---|---|
EF1BS | 0.117 ± 0.34 | 3200 | ng | 6400 | 1600 |
EF1NS | 0.113 ± 0.30 | 6400 | ng | 12,800 | 3200 |
EF2SC | 0.075 ± 0.03 | 3200 | ng | 12,800 | 3200 |
EF2Kal | nt | 800 | ng | 25,600 | 3200 |
EF4Kal | 0.085 ± 0.02 | 1600 | ng | 25,600 | 3200 |
EFKL5 | 0.178 ± 0.08 | 800 | ng | 3200 | 3200 |
EEPL1S | 0.115 ± 0.03 | 6400 | 100 | 1600 | 800 |
EFPL3 | 0.217 ± 0.05 | 3200 | 100 | 1600 | 3200 |
EFPL4 | 0.222 ± 0.06 | 800 | ng | 1600 | 3200 |
EEKL2 | 0.020 ± 0.00 | 6400 | 100 | 6400 | 6400 |
EE1Sc | 0.367 ± 0.08 | ng | ng | 200 | 3200 |
EHLov1 | 0.128 ± 0.04 | 3200 | ng | 6400 | 6400 |
EHPL2 | 0.222 ± 0.06 | 6400 | ng | 6400 | 1600 |
EHTOK1 | 0.168 ± 0.08 | 400 | 100 | 1600 | 6400 |
EHTOK2 | 0.085 ± 0.06 | 1600 | ng | 6400 | 3200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Kandričáková, A.; Bino, E. Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market. Int. J. Environ. Res. Public Health 2020, 17, 9586. https://doi.org/10.3390/ijerph17249586
Lauková A, Kandričáková A, Bino E. Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market. International Journal of Environmental Research and Public Health. 2020; 17(24):9586. https://doi.org/10.3390/ijerph17249586
Chicago/Turabian StyleLauková, Andrea, Anna Kandričáková, and Eva Bino. 2020. "Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market" International Journal of Environmental Research and Public Health 17, no. 24: 9586. https://doi.org/10.3390/ijerph17249586
APA StyleLauková, A., Kandričáková, A., & Bino, E. (2020). Susceptibility to Enterocins and Lantibiotic Bacteriocins of Biofilm-Forming Enterococci Isolated from Slovak Fermented Meat Products Available on the Market. International Journal of Environmental Research and Public Health, 17(24), 9586. https://doi.org/10.3390/ijerph17249586