#Climatechange vs. #Globalwarming: Characterizing Two Competing Climate Discourses on Twitter with Semantic Network and Temporal Analyses
Abstract
:1. Introduction
- RQ1: What is the difference in how the two the discourses are associated with important climate concepts in people’s minds?
- RQ2: How did the two competing climate discourses evolve from 2009 to 2018?
- RQ3: Did the two competing discourses converge or diverge in this decade?
2. Background
2.1. Climate Change, Global Warming, and Frames
2.2. Network Model for Cognition
2.3. Hashtags as Frame Vehicles on Social Media
3. Methods
3.1. Data Source
3.2. Data
3.3. Measurement
3.3.1. Hashtag Co-Occurrence Network
3.3.2. Temporal Analysis
4. Results
4.1. General Descriptions
4.2. Association Network Analysis
4.3. Temporal Analysis of the Associations in the Two Discourses
5. Discussion
5.1. Themes and Structure of the Two Discourses
5.1.1. Phenomenon vs. Mechanism of Action
5.1.2. Political Connotations
5.1.3. Discourse Structure
5.2. Evolution of Associations in the Two Discourses
5.2.1. Shrinking of Traditional Political Discussions and Emergence of Discourse Alliance
5.2.2. Strengthened Associations between Global Warming and Weather Abnormalities
5.3. Discrepancy between the Two Discourses
6. Conclusions
Limitation and Future Directions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Nisbet, M.C. Communicating climate change: Why frames matter for public engagement. Environ. Sci. Policy Sustain. Dev. 2009, 51, 12–23. [Google Scholar] [CrossRef]
- Roxburgh, N.; Guan, D.; Shin, K.J.; Rand, W.; Managi, S.; Lovelace, R.; Meng, J. Characterising climate change discourse on social media during extreme weather events. Glob. Environ. Chang. 2019, 54, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, J.P.; Konrath, S.H.; Schwarz, N. “Global warming” or “climate change”? Whether the planet is warming depends on question wording. Public Opin. Q. 2011, 75, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Villar, A.; Krosnick, J.A. Global warming vs. climate change, taxes vs. prices: Does word choice matter? Clim. Chang. 2011, 105, 1–12. [Google Scholar] [CrossRef]
- Jang, S.M.; Hart, P.S. Polarized frames on “climate change” and “global warming” across countries and states: Evidence from Twitter big data. Glob. Environ. Chang. 2015, 32, 11–17. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Climate Change: Basic Information. Available online: https://19january2017snapshot.epa.gov/climatechange/climate-change-basic-information_.html (accessed on 10 October 2019).
- Caitlyn Kennedy, R.L. What’s the Difference between Global Warming and Climate Change? 2015. Available online: https://www.climate.gov/news-features/climate-qa/whats-difference-between-global-warming-and-climate-change (accessed on 10 October 2019).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Whitmarsh, L. What’s in a name? Commonalities and differences in public understanding of “climate change” and “global warming”. Public Underst. Sci. 2009, 18, 401–420. [Google Scholar] [CrossRef]
- Shehata, A.; Hopmann, D.N. Framing climate change: A study of US and Swedish press coverage of global warming. Journal. Stud. 2012, 13, 175–192. [Google Scholar] [CrossRef]
- Schuldt, J.P.; Roh, S. Of accessibility and applicability: How heat-related cues affect belief in “global warming” versus “climate change”. Soc. Cogn. 2014, 32, 217–238. [Google Scholar] [CrossRef]
- McCright, A.M.; Dunlap, R.E. Challenging global warming as a social problem: An analysis of the conservative movement’s counter-claims. Soc. Probl. 2000, 47, 499–522. [Google Scholar] [CrossRef]
- Lineman, M.; Do, Y.; Kim, J.Y.; Joo, G.J. Talking about climate change and global warming. PLoS ONE 2015, 10, e0138996. [Google Scholar] [CrossRef]
- Anderson, J.R. The Architecture of Cognition; Psychology Press: London, UK, 2013. [Google Scholar]
- Pan, B.; Zheng, Y.; Wilkie, D.; Shahabi, C. Crowd sensing of traffic anomalies based on human mobility and social media. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8 November 2013; pp. 344–353. [Google Scholar]
- Rogstadius, J.; Vukovic, M.; Teixeira, C.A.; Kostakos, V.; Karapanos, E.; Laredo, J.A. CrisisTracker: Crowdsourced social media curation for disaster awareness. IBM J. Res. Dev. 2013, 57, 4:1–4:13. [Google Scholar] [CrossRef]
- Leetaru, K.; Wang, S.; Cao, G.; Padmanabhan, A.; Shook, E. Mapping the global Twitter heartbeat: The geography of Twitter. First Monday 2013, 18. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Molodtsova, T.; Stepchenkova, S.O. People as sensors: Mass media and local temperature influence climate change discussion on Twitter. Glob. Environ. Chang. 2015, 30, 92–100. [Google Scholar] [CrossRef]
- Gamson, W.A.; Modigliani, A. Media discourse and public opinion on nuclear power: A constructionist approach. Am. J. Sociol. 1989, 95, 1–37. [Google Scholar] [CrossRef]
- Entman, R.M. Framing: Toward clarification of a fractured paradigm. J. Commun. 1993, 43, 51–58. [Google Scholar] [CrossRef]
- McCombs, M.; Llamas, J.P.; Lopez-Escobar, E.; Rey, F. Candidate images in Spanish elections: Second-level agenda-setting effects. Journal. Mass Commun. Q. 1997, 74, 703–717. [Google Scholar] [CrossRef]
- Druckman, J.N. On the limits of framing effects: Who can frame? J. Politics 2001, 63, 1041–1066. [Google Scholar] [CrossRef]
- Druckman, J.N. The implications of framing effects for citizen competence. Political Behav. 2001, 23, 225–256. [Google Scholar] [CrossRef]
- Teigen, K.H.; Karevold, K.I. Looking back versus looking ahead: Framing of time and work at different stages of a project. J. Behav. Decis. Mak. 2005, 18, 229–246. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, C.R.; Nelson, J.D. What a speaker’s choice of frame reveals: Reference points, frame selection, and framing effects. Psychon. Bull. Rev. 2003, 10, 596–602. [Google Scholar] [CrossRef]
- Du, Y.R. Same events, different stories: Internet censorship in the Arab Spring seen from China. Journal. Mass Commun. Q. 2016, 93, 99–117. [Google Scholar] [CrossRef]
- Schuldt, J.P.; Roh, S. Media frames and cognitive accessibility: What do “global warming” and “climate change” evoke in partisan minds? Environ. Commun. 2014, 8, 529–548. [Google Scholar] [CrossRef]
- Sonnett, J. Climates of risk: A field analysis of global climate change in US media discourse, 1997–2004. Public Underst. Sci. 2010, 19, 698–716. [Google Scholar] [CrossRef]
- Jaspal, R.; Nerlich, B.; Van Vuuren, K. Embracing and resisting climate identities in the Australian press: Sceptics, scientists and politics. Public Underst. Sci. 2016, 25, 807–824. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Chen, C.; Xiong, J.; Fu, H. What Framework Promotes Saliency of Climate Change Issues on Online Public Agenda: A Quantitative Study of Online Knowledge Community Quora. Sustainability 2019, 11, 1619. [Google Scholar] [CrossRef] [Green Version]
- Gifford, R.; Comeau, L.A. Message framing influences perceived climate change competence, engagement, and behavioral intentions. Glob. Environ. Chang. 2011, 21, 1301–1307. [Google Scholar] [CrossRef]
- Jiang, H.; Qiang, M.; Zhang, D.; Wen, Q.; Xia, B.; An, N. Climate Change Communication in an Online Q&A Community: A Case Study of Quora. Sustainability 2018, 10, 1509. [Google Scholar]
- Kaplan, S. Cognitive maps in perception and thought. In Image and Environment: Cognitive Mapping and Spatial Behavior; Transaction Publishers: Piscataway, NJ, USA, 1973; pp. 63–78. [Google Scholar]
- James, W.; Burkhardt, F.; Bowers, F.; Skrupskelis, I.K. The Principles of Psychology; Macmillan London: London, UK, 1890. [Google Scholar]
- Alonso, E.; Mondragón, E. Associative Learning and Behaviour: An Algebraic Search for Psychological Symmetries. In Language, Representation and Reasoning: Memorial Volume to Isabel Gómez Txurruka; Universidad del País Vasco: Bilbao, Spain, 2007; p. 35. [Google Scholar]
- Lang, A. The limited capacity model of mediated message processing. J. Commun. 2000, 50, 46–70. [Google Scholar] [CrossRef]
- Tulving, E. Episodic and semantic memory. Organ. Mem. 1972, 1, 381–403. [Google Scholar]
- Rosch, E. Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 1975, 104, 192. [Google Scholar] [CrossRef]
- Klimesch, W. The Structure of Long-Term Memory: A Connectivity Model of Semantic Processing; Psychology Press: London, UK, 2013. [Google Scholar]
- Collins, A.M.; Loftus, E.F. A spreading-activation theory of semantic processing. Psychol. Rev. 1975, 82, 407. [Google Scholar] [CrossRef]
- Guo, L.; Vu, H.T.; McCombs, M. An expanded perspective on agenda-setting effects: Exploring the third level of agenda setting. Rev. De Comun. 2012, 11, 51–68. [Google Scholar]
- Cheng, Y.; Chan, C.M. The third level of agenda setting in contemporary China: Tracking descriptions of moral and national education (MNE) in media coverage and people’s minds. Int. J. Commun. 2015, 9, 18. [Google Scholar]
- Wettler, M.; Rapp, R. Computation of Word Associations Based on Co-occurrences of Words in Large Corpora. In Proceedings of the VLC@ACL 1993, Columbus, OH, USA, 22 June 1993. [Google Scholar]
- Collins, A.M.; Quillian, M.R. How to make a language user. In Organization of Memory; Academic Press: New York, NY, USA, 1972; p. 309. [Google Scholar]
- Danowski, J.A. Inferences from word networks in messages. In The Content Analysis Reader; SAGE: Thousand Oaks, CA, USA, 2009; pp. 421–429. [Google Scholar]
- Hamed, A.A.; Ayer, A.A.; Clark, E.M.; Irons, E.A.; Taylor, G.T.; Zia, A. Measuring climate change on Twitter using Google’s algorithm: Perception and events. Int. J. Web Inf. Syst. 2015, 11, 527–544. [Google Scholar] [CrossRef]
- Haunschild, R.; Leydesdorff, L.; Bornmann, L.; Hellsten, I.; Marx, W. Does the public discuss other topics on climate change than researchers? A comparison of explorative networks based on author keywords and hashtags. J. Inf. 2019, 13, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Veltri, G.A.; Atanasova, D. Climate change on Twitter: Content, media ecology and information sharing behaviour. Public Underst. Sci. 2017, 26, 721–737. [Google Scholar] [CrossRef]
- Abbar, S.; Zanouda, T.; Berti-Equille, L.; Borge-Holthoefer, J. Using twitter to understand public interest in climate change: The case of qatar. In Proceedings of the Tenth International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016. [Google Scholar]
- Olteanu, A.; Castillo, C.; Diakopoulos, N.; Aberer, K. Comparing events coverage in online news and social media: The case of climate change. In Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- Hermida, A.; Fletcher, F.; Korell, D.; Logan, D. Share, like, recommend: Decoding the social media news consumer. J. Stud. 2012, 13, 815–824. [Google Scholar] [CrossRef]
- Small, T.A. What the hashtag? A content analysis of Canadian politics on Twitter. Inf. Commun. Soc. 2011, 14, 872–895. [Google Scholar] [CrossRef]
- Bruns, A.; Stieglitz, S. Quantitative approaches to comparing communication patterns on Twitter. J. Technol. Hum. Serv. 2012, 30, 160–185. [Google Scholar] [CrossRef] [Green Version]
- Yang, G. Narrative agency in hashtag activism: The case of# BlackLivesMatter. Media Commun. 2016, 4, 13. [Google Scholar]
- Bruns, A.; Burgess, J.E. The use of Twitter hashtags in the formation of ad hoc publics. In Proceedings of the 6th European Consortium for Political Research (ECPR) General Conference 2011, Reykjavík, Iceland, 25–27 August 2011. [Google Scholar]
- Rzeszotarski, J.M.; Spiro, E.S.; Matias, J.N.; Monroy-Hernández, A.; Morris, M.R. Is anyone out there?: Unpacking Q&A hashtags on twitter. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 2755–2758. [Google Scholar]
- Tsur, O.; Rappoport, A. What’s in a hashtag?: Content based prediction of the spread of ideas in microblogging communities. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Seattle, WA, USA, 8–12 February 2012; pp. 643–652. [Google Scholar]
- Yang, L.; Sun, T.; Zhang, M.; Mei, Q. We know what@ you# tag: Does the dual role affect hashtag adoption? In Proceedings of the 21st international conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 261–270. [Google Scholar]
- Weller, K.; Dröge, E.; Puschmann, C. Citation Analysis in Twitter: Approaches for Defining and Measuring Information Flows within Tweets during Scientific Conferences. In Proceedings of the Making Sense of Microposts 2011, Heraklion, Greece, 30 May 2011; pp. 1–12. [Google Scholar]
- Meraz, S. Hashtag wars and networked framing: The private/public networked protest repertoires of occupy on twitter. In Between the Public and Private in Mobile Communication; Routledge: Abingdon, UK, 2017; pp. 303–323. [Google Scholar]
- Meraz, S.; Papacharissi, Z. Networked gatekeeping and networked framing on# Egypt. Int. J. Press. 2013, 18, 138–166. [Google Scholar]
- Papacharissi, Z.; de Fatima Oliveira, M. Affective news and networked publics: The rhythms of news storytelling on# Egypt. J. Commun. 2012, 62, 266–282. [Google Scholar]
- Wang, X.; Wei, F.; Liu, X.; Zhou, M.; Zhang, M. Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Scotland, UK, 24–28 October 2011; pp. 1031–1040. [Google Scholar]
- Laniado, D.; Mika, P. Making sense of twitter. In Proceedings of the International Semantic Web Conference 2010, Shanghai, China, 7–11 November 2010; pp. 470–485. [Google Scholar]
- González-Ibánez, R.; Muresan, S.; Wacholder, N. Identifying sarcasm in Twitter: A closer look. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers—Volume 2, Portland, OR, USA, 19–24 June 2011; pp. 581–586. [Google Scholar]
- Conover, M.D.; Ratkiewicz, J.; Francisco, M.; Gonçalves, B.; Menczer, F.; Flammini, A. Political polarization on twitter. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Kitzie, V.; Ghosh, D. # Criming and# Alive: Network and content analysis of two sides of a story on twitter. In Proceedings of the 78th ASIS&T Annual Meeting: Information Science with Impact: Research in and for the Community, St. Louis, MO, USA, 6–10 October; 2015; p. 41. [Google Scholar]
- Burgess, J.; Galloway, A.; Sauter, T. Hashtag as hybrid forum: The case of# agchatoz. In Hashtag Publics. The Power and Politics of Discursive Networks; Peter Lang: New York, NY, USA, 2015; pp. 61–76. [Google Scholar]
- Rushkoff, D. 17. Permanent revolution: Occupying democracy. In The Playful Citizen; Amsterdam University Press: Amsterdam, The Netherlands, 2013; p. 335. [Google Scholar]
- Grundberg, M.D.; Lindgren, S. Translocal frame extensions in a networked protest: Situating the# IdleNoMore hashtag. IC Rev. Científica De Inf. Y Comun. 2015, 11, 49–57. [Google Scholar]
- Bruns, A.; Burgess, J.E. # ausvotes: How Twitter covered the 2010 Australian federal election. Commun. Politics Cult. 2011, 44, 37–56. [Google Scholar]
- Pearce, W.; Holmberg, K.; Hellsten, I.; Nerlich, B. Climate change on Twitter: Topics, communities and conversations about the 2013 IPCC Working Group 1 report. PLoS ONE 2014, 9, e94785. [Google Scholar] [CrossRef]
- Zhao, W.X.; Jiang, J.; Weng, J.; He, J.; Lim, E.P.; Yan, H.; Li, X. Comparing twitter and traditional media using topic models. In Proceedings of the European Conference on Information Retrieval, Dublin, Ireland, 18–21 April 2011; pp. 338–349. [Google Scholar]
- Doctor, V. Hashtag History: When and What Started It? Available online: https://www.hashtags.org/featured/hashtag-history-when-and-what-started-it/ (accessed on 16 January 2020).
- Newman, T.P. Tracking the release of IPCC AR5 on Twitter: Users, comments, and sources following the release of the Working Group I Summary for Policymakers. Public Underst. Sci. 2017, 26, 815–825. [Google Scholar] [CrossRef]
- Segerberg, A.; Bennett, W.L. Social media and the organization of collective action: Using Twitter to explore the ecologies of two climate change protests. Commun. Rev. 2011, 14, 197–215. [Google Scholar] [CrossRef]
- Statista. Number of Monthly Active Twitter Users Worldwide from 1st Quarter 2010 to 1st Quarter 2019 (in Millions). 2019. Available online: https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/ (accessed on 10 October 2019).
- Liu, Y.; Kliman-Silver, C.; Mislove, A. The tweets they are a-changin’: Evolution of Twitter users and behavior. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, USA, 1–4 June 2014. [Google Scholar]
- Williams, H.T.; McMurray, J.R.; Kurz, T.; Lambert, F.H. Network analysis reveals open forums and echo chambers in social media discussions of climate change. Glob. Environ. Chang. 2015, 32, 126–138. [Google Scholar] [CrossRef]
- Guo, L.; Rohde, J.A.; Wu, H.D. Who is responsible for Twitter’s echo chamber problem? Evidence from 2016 US election networks. Inf. Commun. Soc. 2020, 23, 234–251. [Google Scholar] [CrossRef]
- Gephi. Websites of Gephi. Available online: https://gephi.org (accessed on 16 January 2020).
- Calabrese, C.; Anderton, B.N.; Barnett, G.A. Online Representations of “Genome Editing” Uncover Opportunities for Encouraging Engagement: A Semantic Network Analysis. Sci. Commun. 2019, 41, 222–242. [Google Scholar] [CrossRef]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Myers, J.L.; Well, A.D.; Lorch, R.F., Jr. Research Design and Statistical Analysis; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Krackhardt, D. Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Soc. Netw. 1988, 10, 359–381. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002; Volume 6. [Google Scholar]
- Zaval, L.; Keenan, E.A.; Johnson, E.J.; Weber, E.U. How warm days increase belief in global warming. Nat. Clim. Chang. 2014, 4, 143. [Google Scholar] [CrossRef]
- Marx, S.M.; Weber, E.U.; Orlove, B.S.; Leiserowitz, A.; Krantz, D.H.; Roncoli, C.; Phillips, J. Communication and mental processes: Experiential and analytic processing of uncertain climate information. Glob. Environ. Chang. 2007, 17, 47–58. [Google Scholar] [CrossRef]
- Bostrom, A.; Morgan, M.G.; Fischhoff, B.; Read, D. What do people know about global climate change? 1. Mental models. Risk Anal. 1994, 14, 959–970. [Google Scholar] [CrossRef]
- Moser, S.C. Communicating climate change: History, challenges, process and future directions. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 31–53. [Google Scholar] [CrossRef]
- Huang, J.; Thornton, K.M.; Efthimiadis, E.N. Conversational tagging in twitter. In Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, Toronto, ON, Canada, 13–16 June 2010; pp. 173–178. [Google Scholar]
- Callon, M. Acting in an Uncertain World; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- O’Neill, S.; Williams, H.T.; Kurz, T.; Wiersma, B.; Boykoff, M. Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report. Nat. Clim. Chang. 2015, 5, 380. [Google Scholar] [CrossRef]
- Brian Kennedy, M.H. U.S. Concern about Climate Change Is Rising, but Mainly among Democrats. 2019. Available online: https://www.pewresearch.org/fact-tank/2019/08/28/u-s-concern-about-climate-change-is-rising-but-mainly-among-democrats/ (accessed on 10 October 2019).
- Carroll, L. George Takei Says White House Removed Pages about Climate Change, Civil Rights from Website. 2017. Available online: https://www.politifact.com/punditfact/statements/2017/jan/23/george-takei/george-takei-says-white-house-removed-pages-about-/l (accessed on 10 October 2019).
- Haug, G.H.; Günther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, K.A.; Aeschlimann, B. Climate and the collapse of Maya civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef]
- Kennett, D.J.; Breitenbach, S.F.; Aquino, V.V.; Asmerom, Y.; Awe, J.; Baldini, J.U.; Bartlein, P.; Culleton, B.J.; Ebert, C.; Jazwa, C.; et al. Development and disintegration of Maya political systems in response to climate change. Science 2012, 338, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Fredland, J.S. Unlabel Their Frankenstein Foods: Evaluating a US Challenge to the European Commission’s Labeling Requirements for Food Products Containing Genetically-Modified Organisms. Vanderbilt J. Transnatl. Law 2000, 33, 183. [Google Scholar]
- Scott, I.M. Green symbolism in the genetic modification debate. J. Agric. Environ. Ethics 2000, 13, 293–311. [Google Scholar] [CrossRef]
- Nisbet, M.C.; Scheufele, D.A.; Shanahan, J.; Moy, P.; Brossard, D.; Lewenstein, B.V. Knowledge, reservations, or promise? A media effects model for public perceptions of science and technology. Commun. Res. 2002, 29, 584–608. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Gignac, G.E.; Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Chang. 2013, 3, 399. [Google Scholar] [CrossRef]
- Houghton, J. Global Warming: The Complete Briefing; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Pew. The Science People See on Social Media. Available online: http://www.pewinternet.org/2018/03/21/the-science-people-see-on-social-media/ (accessed on 16 January 2020).
- Walter, S.; De Silva-Schmidt, F.; Brüggemann, M. From “knowledge brokers” to opinion makers: How physical presence affected scientists’ Twitter use during the COP21 climate change conference. Int. J. Commun. 2017, 11, 570–591. [Google Scholar]
- Peterson, T.C.; Connolley, W.M.; Fleck, J. The myth of the 1970s global cooling scientific consensus. Bull. Am. Meteorol. Soc. 2008, 89, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Mazur, A. Global environmental change in the news: 1987–1990 vs. 1992–1996. Int. Sociol. 1998, 13, 457–472. [Google Scholar] [CrossRef]
- Statista. Reach of Selected Social Networks in the United States as of February 2017, by Age Group. Available online: https://www.statista.com/statistics/305245/us-social-network-penetration-age-group/ (accessed on 16 January 2020).
- O’Connor, B.; Balasubramanyan, R.; Routledge, B.R.; Smith, N.A. From tweets to polls: Linking text sentiment to public opinion time series. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Zannettou, S.; Caulfield, T.; De Cristofaro, E.; Sirivianos, M.; Stringhini, G.; Blackburn, J. Disinformation warfare: Understanding state-sponsored trolls on Twitter and their influence on the web. In Proceedings of the Companion of The 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 218–226. [Google Scholar]
- Shao, C.; Ciampaglia, G.L.; Varol, O.; Yang, K.C.; Flammini, A.; Menczer, F. The spread of low-credibility content by social bots. Nat. Commun. 2018, 9, 4787. [Google Scholar] [CrossRef] [Green Version]
No. | #Climatechange | #Globalwarming | ||
---|---|---|---|---|
Hashtag | Centrality | Hashtag | Centrality | |
1 | climate | 0.466 | climate | 0.530 |
2 | environment | 0.465 | environment | 0.446 |
3 | climateaction | 0.391 | science | 0.319 |
4 | sustainability | 0.316 | earth | 0.296 |
5 | science | 0.314 | weather | 0.280 |
6 | energy | 0.283 | us * | 0.280 |
7 | trump | 0.257 | trump | 0.263 |
8 | us * | 0.247 | pollution | 0.256 |
9 | cop21 * | 0.232 | co2 | 0.244 |
10 | parisagreement * | 0.232 | green | 0.239 |
11 | actonclimate * | 0.225 | tcot * | 0.229 |
12 | water | 0.221 | nature | 0.213 |
13 | pollution | 0.210 | news | 0.198 |
14 | earth | 0.207 | energy | 0.192 |
15 | green | 0.200 | climatechangeisreal | 0.187 |
16 | climatechangeisreal | 0.195 | obama | 0.181 |
17 | renewableenergy * | 0.194 | climateaction | 0.175 |
18 | health | 0.193 | algore * | 0.174 |
19 | nature | 0.187 | water | 0.171 |
20 | renewables | 0.186 | agw * | 0.164 |
21 | cleanenergy | 0.176 | carbon | 0.164 |
22 | carbon | 0.175 | sustainability | 0.163 |
23 | co2 | 0.174 | snow | 0.161 |
24 | weather | 0.169 | world | 0.157 |
25 | solar | 0.165 | gop * | 0.156 |
26 | economy | 0.164 | arctic | 0.150 |
27 | auspol | 0.163 * | winter | 0.145 |
28 | education | 0.155 | p2 * | 0.144 |
29 | news | 0.152 | drought | 0.142 |
30 | drought | 0.150 | epa * | 0.141 |
31 | coal | 0.147 | global | 0.137 |
32 | sustainable | 0.147 | eco | 0.137 |
33 | cdnpoli | 0.144 * | actonclimate | 0.136 |
34 | sdgs | 0.143 * | health | 0.134 |
35 | china | 0.143 | un * | 0.133 |
36 | gop | 0.143 * | solar | 0.132 |
37 | food | 0.141 | economy | 0.131 |
38 | un | 0.141 * | hoax | 0.131 |
39 | cop24 * | 0.140 | california | 0.130 |
40 | agriculture | 0.138 | politics | 0.129 |
41 | environmental | 0.136 | india | 0.128 |
42 | fossilfuels | 0.134 | china | 0.127 |
43 | arctic | 0.134 | planet | 0.127 |
44 | epa * | 0.133 | parisagreement * | 0.126 |
45 | biodiversity | 0.132 | heatwave | 0.125 |
46 | future | 0.131 | summer | 0.121 |
47 | canada | 0.128 | nyc * | 0.118 |
48 | emissions | 0.128 | nasa | 0.118 |
49 | obama | 0.127 | future | 0.118 |
50 | politics | 0.125 | oil | 0.117 |
Unique | Shared | |
---|---|---|
#climatechange | china, solar, water, food, economy, coal, sustainability | co2, news, carbon, green, climate, |
#globalwarming | pollution, earth | us, energy, science, environment |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Fu, H.; Wang, P.; Chen, C.; Xiong, J. #Climatechange vs. #Globalwarming: Characterizing Two Competing Climate Discourses on Twitter with Semantic Network and Temporal Analyses. Int. J. Environ. Res. Public Health 2020, 17, 1062. https://doi.org/10.3390/ijerph17031062
Shi W, Fu H, Wang P, Chen C, Xiong J. #Climatechange vs. #Globalwarming: Characterizing Two Competing Climate Discourses on Twitter with Semantic Network and Temporal Analyses. International Journal of Environmental Research and Public Health. 2020; 17(3):1062. https://doi.org/10.3390/ijerph17031062
Chicago/Turabian StyleShi, Wen, Haohuan Fu, Peinan Wang, Changfeng Chen, and Jie Xiong. 2020. "#Climatechange vs. #Globalwarming: Characterizing Two Competing Climate Discourses on Twitter with Semantic Network and Temporal Analyses" International Journal of Environmental Research and Public Health 17, no. 3: 1062. https://doi.org/10.3390/ijerph17031062
APA StyleShi, W., Fu, H., Wang, P., Chen, C., & Xiong, J. (2020). #Climatechange vs. #Globalwarming: Characterizing Two Competing Climate Discourses on Twitter with Semantic Network and Temporal Analyses. International Journal of Environmental Research and Public Health, 17(3), 1062. https://doi.org/10.3390/ijerph17031062