Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sulfur-Oxidizing Bacteria (SOB) Media
2.2. Laboratory-Scale Experiment
2.3. Pilot-Scale Test
2.4. Analytical Methods
3. Results and Discussion
3.1. SOB Activation Period
3.2. H2S Removal in a Lab-Scale Experiment
3.3. SOB Media Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adhikari, J.R.; Lohani, S.P. Design, installation, operation and experimentation of septic tank–UASB wastewater treatment system. Renew. Energy 2019, 143, 1406–1415. [Google Scholar] [CrossRef]
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Lusk, M.G.; Toor, G.S.; Yang, Y.Y.; Mechtensimer, S.; De, M.; Obreza, T.A. A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Crit. Rev. Environ. Sci. Tehnol. 2017, 47, 455–541. [Google Scholar] [CrossRef]
- Neisi, A.K.; Shakhi, Z.; Naghan, D.J.; Goodarzi, G.; Yari, A.R.; Mohammadi, M.J. Removal of hydrogen sulfide from septic tank by vermicomposting bio filter. Arch. Hyg. Sci. 2016, 5, 278–285. [Google Scholar]
- Zuo, Z.; Chang, J.; Lu, Z.; Wang, M.; Lin, Y.; Zheng, M.; Zhu, D.Z.; Yu, T.; Huang, X.; Liu, Y. Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role? Environ. Sci. Water Res. 2019, 5, 839–848. [Google Scholar] [CrossRef]
- Panza, D.; Belgiorno, V. Hydrogen sulphide removal from landfill gas. Process Saf. Environ. 2010, 88, 420–424. [Google Scholar] [CrossRef]
- Ho, K.L.; Lin, W.C.; Chung, Y.C.; Chen, Y.P.; Tseng, C.P. Elimination of high concentration hydrogen sulfide and biogas purification by chemical–biological process. Chemosphere 2013, 92, 1396–1401. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tsapekos, P.; Alfaro, N.; Díaz, I.; Fdz-Polanco, M.; Rafiee, S.; Angelidaki, I. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization. Biofuel Res. J. 2017, 4, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Namgung, H.K.; Song, J. The effect of oxygen supply on the dual growth kinetics of Acidithiobacillus thiooxidans under acidic conditions for biogas desulfurization. Int. J. Environ. Res. Public Health 2015, 12, 1368–1386. [Google Scholar] [CrossRef] [Green Version]
- Promnuan, K.; Sompong, O. Biological hydrogen sulfide and sulfate removal from rubber smoked sheet wastewater for enhanced biogas production. Energy Procedia 2017, 138, 569–574. [Google Scholar] [CrossRef]
- Yousef, N.; Mawad, A.; Aldaby, E.; Hassanein, M. Isolation of sulfur oxidizing bacteria from polluted water and screening for their efficiency of sulfide oxidase production. Glob. NEST J. 2019, 21, 259–264. [Google Scholar]
- Pokorna, D.; Zabranska, J. Sulfur-oxidizing bacteria in environmental technology. Biotechnol. Adv. 2015, 33, 1246–1259. [Google Scholar] [CrossRef]
- De Rink, R.; Klok, J.B.; van Heeringen, G.J.; Keesman, K.J.; Janssen, A.J.; ter Heijne, A.; Buisman, C.J. Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions. J. Hazard. Mater. 2020, 383, 121104. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Dorado, A.D.; Bonsfills, A.; Sanahuja, R.; Gabriel, D.; Gamisans, X. Optimization of oxygen transfer through venturi-based systems applied to the biological sweetening of biogas. J. Chem. Technol. Biotechnol. 2012, 87, 854–860. [Google Scholar] [CrossRef]
- Luo, J.F.; Lin, W.T.; Guo, Y. Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl. Microbial. Biotechnol. 2011, 90, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Chaiprapat, S.; Mardthing, R.; Kantachote, D.; Karnchanawong, S. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem. 2011, 46, 344–352. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuan, T.; Deng, Y.; Lin, C.; Zhou, J.; Lei, Z.; Zhang, Z. Use of sulfur-oxidizing bacteria enriched from sewage sludge to biologically remove H2S from biogas at an industrial-scale biogas plant. Bioresour. Technol. Rep. 2018, 3, 43–50. [Google Scholar] [CrossRef]
- Potivichayanon, S.; Pokethitiyook, P.; Kruatrachue, M. Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 2006, 41, 708–715. [Google Scholar] [CrossRef]
- Lohwacharin, J.; Annachhatre, A.P. Biological sulfide oxidation in an airlift bioreactor. Bioresour. Technol. 2010, 101, 2114–2120. [Google Scholar] [CrossRef]
- Rattanapan, C.; Boonsawang, P.; Kantachote, D. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Bioresour. Technol. 2009, 100, 125–130. [Google Scholar] [CrossRef]
- Rollbusch, P.; Bothe, M.; Becker, M.; Ludwig, M.; Grünewald, M.; Schlüter, M.; Franke, R. Bubble columns operated under industrially relevant conditions–current understanding of design parameters. Chem. Eng. Sci. 2015, 126, 660–678. [Google Scholar] [CrossRef]
- Zytoon, M.A.; El-Shazly, A.H.; Noweir, M.H.; Al-Zahrani, A.A. Biological treatment of hydrogen sulfide in an airlift bioreactor with direct gas injection. Environ. Prot. Eng. 2015, 41, 131–142. [Google Scholar]
- Ramírez, M.; Gómez, J.M.; Aroca, G.; Cantero, D. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresour. Technol. 2009, 100, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Aroca, G.; Urrutia, H.; Núñez, D.; Oyarzún, P.; Arancibia, A.; Guerrero, K. Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron. J. Biotechnol. 2007, 10, 514–520. [Google Scholar] [CrossRef] [Green Version]
SOB Cultivation Period (Days) | pH | Residual SO42− in Solution (mg) | H2S Removed (mg) | SO42−/H2S |
---|---|---|---|---|
Without SOB | 7.2 | 32.1 | 111.3 | 0.29 |
5 | 7.1 | 33.8 | 113.2 | 0.30 |
12 | 6.9 | 35.6 | 115.1 | 0.31 |
23 | 6.3 | 88.3 | 168.3 | 0.52 |
30 | 6.0 | 176.2 | 275.4 | 0.64 |
45 | 5.7 | 232.6 | 327.3 | 0.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Namgung, H.-G.; Cho, J.-I.; Yoo, S.S.; Lee, B.-J.; Ji, H.W. Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria. Int. J. Environ. Res. Public Health 2020, 17, 684. https://doi.org/10.3390/ijerph17030684
Kang J-H, Namgung H-G, Cho J-I, Yoo SS, Lee B-J, Ji HW. Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria. International Journal of Environmental Research and Public Health. 2020; 17(3):684. https://doi.org/10.3390/ijerph17030684
Chicago/Turabian StyleKang, Jeong-Hee, Hyeong-Gyu Namgung, Jeong-Il Cho, Sung Soo Yoo, Bong-Jae Lee, and Hyon Wook Ji. 2020. "Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria" International Journal of Environmental Research and Public Health 17, no. 3: 684. https://doi.org/10.3390/ijerph17030684
APA StyleKang, J. -H., Namgung, H. -G., Cho, J. -I., Yoo, S. S., Lee, B. -J., & Ji, H. W. (2020). Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria. International Journal of Environmental Research and Public Health, 17(3), 684. https://doi.org/10.3390/ijerph17030684