Prevalence and Factors Associated with Driving Under the Influence of Alcohol in Brazil: An Analysis by Macroregion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Sampling and Setting
- (i)
- Macroregion Southeast: It is composed of the states of Rio de Janeiro, Sao Paulo, Espírito Santo and Minas Gerais. With an estimated population of 86.3 million inhabitants and has a population density of 87 inhabitants/km2. It is the richest in Brazil, contributing 53.2% of Brazil’s GDP;
- (ii)
- Macroregion South: It is composed of the states of Rio Grande do Sul, Santa Catarina and Paraná. With an estimated population of 29.4 million inhabitants and has a population density of 50 inhabitants/km2. It is the second richest macroregion in Brazil, contributing 17% of Brazil’s GDP;
- (iii)
- Macroregion Northeast: It is composed of the states of Maranhão, Rio Grande do Norte, Paraiba, Sergipe, Bahia, Alagoas, Pernambuco, Ceará and Piauí. With an estimated population of 56.9 million and a population density of 34 inhabitants/km2. It contributes 14.3% of Brazil’s GDP;
- (iv)
- Macroregion Central-West: It is composed of the states of Goiás, Mato Grosso, Mato Grosso do Sul and Federal District that houses Brasilia, capital of Brazil. With an estimated population of 15.6 million inhabitants and has a population density of 10 inhabitants/km2. It contributes 10.1% of Brazil’s GDP;
- (v)
- Macroregion North: It is composed of the states of Amazonas, Tocantins, Pará, Acre, Amapá, Roraima and Rondônia. With an estimated population of 17.7 million inhabitants and a population density of 4.6 inhabitants/km2. It contributes 5.4% of Brazil’s GDP.
2.2. Variables
2.2.1. Dependent Variable
2.2.2. Independent Variables
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Participants Characteristics
3.2. Prevalence of Driving Under the Influence of Alcohol
3.3. Predictors of Driving Under the Influence of Alcohol
3.3.1. All Brazil
3.3.2. Macroregions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018. Available online: http://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ (accessed on 12 May 2019).
- Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- De Andrade, S.S.C.A.; Mello-Jorge, M.H.P. Hospitalization due to road traffic injuries in Brazil, 2013: Hospital stay and costs. Epidemiol. Serviços Saúde 2017, 26, 31–38. [Google Scholar]
- De Andrade, S.S.C.A.; Mello-Jorge, M.H.P. Mortality and potential years of life lost by road traffic injuries in Brazil, 2013. Rev. Saude Publica 2016, 50, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnen, W.; Stipdonk, H. Social costs of road crashes: An international analysis. Accid. Anal. Prev. 2016, 94, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Andreuccetti, G.; Carvalho, H.B.; Cherpitel, C.J.; Ye, Y.; Ponce, J.C.; Kahn, T.; Leyton, V. Reducing the legal blood alcohol concentration limit for driving in developing countries: A time for change? Results and implications derived from a time–series analysis (2001–10) conducted in Brazil. Addiction 2011, 106, 2124–2131. [Google Scholar] [CrossRef] [Green Version]
- Instituto de Pesquisa Econômica Aplicada; Departamento Nacional de Trânsito; Associaçäo Nacional de Transportes Públicos. Impactos Sociais e Econômicos dos Acidentes de Trânsito nas Rodovias Brasileiras; Instituto de Pesquisa Econômica Aplicada: Brasília, Brazil, 2006.
- Taylor, B.; Irving, H.M.; Kanteres, F.; Room, R.; Borges, G.; Cherpitel, C.J.; Bond, J.; Greenfield, T.; Rehm, J. The more you drink the harder you fall: A systematic review and meta-analysis of how acute alcohol consumption and injury or collision risk increase together. Drug Alcohol Depend. 2010, 110, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Voas, R.B.; Fell, J.C. Preventing Alcohol Related Problems Through Health Policy Research. Alcohol Res. Heal. 2010, 33, 18–28. [Google Scholar]
- Killoran, A.; Canning, U.; Doyle, N.; Sheppard, L. Review of Effectiveness of Laws Limiting Blood Alcohol Concentration Levels to Reduce Alcohol-Related Road Injuries and Deaths; NICE: London, UK, 2010.
- World Health Organization. World Report on Road Traffic Injury Prevention. Available online: http://apps.who.int/iris/bitstream/10665/42871/1/9241562609.pdf (accessed on 12 September 2019).
- Erke, A.; Goldenbeld, C.; Vaa, T. The effects of drink-driving checkpoints on crashes—A meta-analysis. Accid. Anal. Prev. 2009, 41, 914–923. [Google Scholar] [CrossRef]
- Shults, R.A.; Elder, R.W.; Sleet, D.A.; Nichols, J.L.; Alao, M.O.; Carande-Kulis, V.G.; Zaza, S.; Sosin, D.M.; Thompson, R.S.; Task Force on Community Preventive Services. Reviews of evidence regarding interventions to reduce alcohol-impaired driving. Am. J. Prev. Med. 2001, 21, 66–88. [Google Scholar] [CrossRef]
- Rezaee-Zavareh, M.S.; Salamati, P.; Ramezani-Binabaj, M.; Saeidnejad, M.; Rousta, M.; Shokraneh, F.; Rahimi-Movaghar, V. Alcohol consumption for simulated driving performance: A systematic review. Chin. J. Traumatol. 2017, 20, 166–172. [Google Scholar] [CrossRef]
- Pechansky, F.; De Boni, R.; Von Diemen, L.; Bumaguin, D.; Pinsky, I.; Zaleski, M.; Caetano, R.; Laranjeira, R. Highly reported prevalence of drinking and driving in Brazil: Data from the first representative household study. Rev. Bras. Psiquiatr. 2009, 31, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; See, L.; Chan, K.W.; Lau, J.; Tsang, A.; Griffiths, S.M. A population-based study on the prevalence and correlates of drinking and driving in Hong Kong. Accid. Anal. Prev. 2010, 42, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Pengpeng, Y.; Yichong, L.; Lelei, D.; Limim, W.; Shults, R.A.; Roehler, D.R.; Yee, S.L. Prevalence of Drink-driving Among Adults in China: A Nationally Representative Survey in 2010. Traffic Inj. Prev. 2017, 18, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Ulinski, S.L.; Moyse’s, S.T.; Werneck, R.I.; Moyse´s, S.J. High-risk behaviors and experiences with traffic law among night drivers in Curitiba, Brazil. Braz. J. Psychiatry 2016, 38, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, V.R.; de Silva, R.S.E.; Duailibi, S.; Palacios, E.N.; Pinsky, I. Drinking and driving in southeastern Brazil: Results from a roadside survey study. Addict. Behav. 2013, 38, 1442–1447. [Google Scholar] [CrossRef]
- Pechansky, F.; Duarte, P.; Do, C.A.V.; de Boni, R.; von Diemen, L.; Bumaguin, D.B.; Kreische, F.; Hilgert, J.B.; Bozzetti, M.C. Predictors of positive Blood Alcohol Concentration (BAC) in a sample of Brazilian drivers. Braz. J. Psychiatry 2012, 34, 277–285. [Google Scholar] [CrossRef] [Green Version]
- De Boni, R.; von Diemen, L.; do Duarte, P.C.A.V.; Bumaguin, D.B.; Hilgert, J.B.; Bozzetti, M.C.; Sordi, A.; Pechansky, F. Regional differences associated with drinking and driving in Brazil. Braz. J. Psychiatry 2012, 34, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Presidência da República. Casa Civil Lei no 12.760, de 20 de Dezembro de 2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12760.htm (accessed on 18 December 2019).
- Malta, D.C.; Bernal, R.T.I.; Mascarenhas, M.D.M.; da Silva, M.M.A.; Szwarcwald, C.L.; de Morais Neto, O.L. Alcohol consumption and driving in Brazilian capitals and Federal District according to two national health surveys. Rev. Bras. Epidemiol. 2015, 18, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Laranjeira, R.; Pinsky, I.; Zaleski, M.; Caetano, R. I Levantamento Nacional Sobre os Padrões de Consumo de Álcool na População Brasileira; Secretaria Nacional Andidrogas: Brasília, Brazil, 2007.
- Szwarcwald, C.L.; Malta, D.C.; Pereira, C.A.; Vieira, M.L.F.P.; Conde, W.L.; De Souza Junior, P.R.B.; Damacena, G.N.; Azevedo, L.O.; Azevedoe Silva, G.; Theme Filha, M.M.; et al. Pesquisa Nacional de Saude no Brasil: Concepcao e metodologia de aplicacao. Cien. Saude Colet. 2014, 19, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Macinko, J.; Mullachery, P.; Silver, D.; Jimenez, G.; Morais Neto, O.L. Patterns of Alcohol Consumption and Related Behaviors in Brazil: Evidence from the 2013 National Health Survey (PNS 2013). PLoS ONE 2015, 10, e0134153. [Google Scholar] [CrossRef]
- Allen, K.A.; Cunto, F.; Andreuccetti, G.; Neto, M.; Leyton, V.; Sinigawa, D.; Carvalho, H.; Wadhwaniya, S.; Hyder, A.A. Prevalence of behavioural risk factors for road traffic injuries: Regional differences in Brazil. Inj. Prev. 2016, 22, A231. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística Contas Regionais 2016. Available online: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/23038-contas-regionais-2016-entre-as-27-unidades-da-federacao-somente-roraima-teve-crescimento-do-pib (accessed on 27 December 2019).
- Nag, O. The Five Regions of Brazil. Available online: https://www.worldatlas.com/articles/the-five-regions-of-brazil.html (accessed on 27 December 2019).
- Morais Neto, O.L.; Andrade, A.L.; Guimarães, R.A.; Mandacarú, P.M.P.; Tobias, G.C. Regional disparities in road traffic injuries and their determinants in Brazil, 2013. Int. J. Equity Health 2016, 15, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministério do Planejamento Orçamento e Gestão; Instituto Brasileiro de Geografia e Estatística; Diretoria de Pesquisas. Coordenação de População e Indicadores Sociais Características Étnico-raciais da População: Um estudo das categorias de classificação de cor ou raça 2008; Ministério do Planejamento: Brasília, Brazil; Rio de Janeiro, Brazil, 2011.
- Courtney, K.E.; Polich, J. Binge Drinking in Young Adults: Data, Definitions, and Determinants. Psychol. Bull. 2009, 135, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.S.; Hellwig, N.; de Silva, G.A.E.; Menezes, P.R. Inequities in access to depression treatment: Results of the Brazilian National Health Survey—PNS. Int. J. Equity Health 2016, 15, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, I.S.; Tavares, B.F.; Munhoz, T.N.; de Almeida, L.S.P.; da Silva, N.T.B.; Tams, B.D.; Patella, A.M.; Matijasevich, A. Sensibilidade e especificidade do Patient Health Questionnaire-9 (PHQ-9) entre adultos da população geral. Cad. Saude Publica 2013, 29, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Crombach, L.J. Coefficiente alpha and the internal structure of tests. Psychometrika 1951, 16, 197–333. [Google Scholar]
- Aguilera, S.L.V.U.; Sripad, P.; Lunnen, J.C.; Chandran, S.T.M.A.; Moysés, S.J. Alcohol Consumption Among Drivers in Curitiba, Brazil. Traffic Inj. Prev. 2015, 16, 219–224. [Google Scholar] [CrossRef]
- Fan, A.Z.; Grant, B.F.; Ruan, W.J.; Huang, B.; Chou, S.P. Drinking and driving among adults in the United States: Results from the 2012–2013 national epidemiologic survey on alcohol and related conditions-III. Accid. Anal. Prev. 2019, 125, 49–55. [Google Scholar] [CrossRef]
- Choi, N.G.; Di Nitto, D.M.; Marti, C.N. Risk factors for self-reported driving under the influence of alcohol and/or illicit drugs among older adults. Gerontologist 2016, 56, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Lipari, R.N.; Hughes, A.; Bose, J. Driving Under the Influence of Alcohol and Illicit Drugs. Available online: https://www.ncbi.nlm.nih.gov/books/NBK424784/pdf/Bookshelf_NBK424784.pdf (accessed on 10 November 2019).
- Alonso, F.; Pastor, J.C.; Montoro, L.; Esteban, C. Driving under the influence of alcohol: Frequency, reasons, perceived risk and punishment. Subst. Abuse Treat. Prev. Policy 2015, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Bacchieri, G.; Barros, A.J.D. Traffic accidents in Brazil from 1998 to 2010: Many changes and few effects. Rev. Saude Publica 2011, 45, 949–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talwar, A.; Hill, L.L.; DiGuiseppi, C.; Betz, M.E.; Eby, D.W.; Molnar, L.J.; Kelley-Baker, T.; Villavicencio, L.; Andrews, H.F.; Li, G.; et al. Patterns of Self-Reported Driving While Intoxicated Among Older Adults. J. Appl. Gerontol. 2019, 11, 0733464819854005. [Google Scholar] [CrossRef] [PubMed]
- Caetano, R.; Vaeth, P.A.C.; Romano, E.; Canino, G.; Caetano, R.; Vaeth, P.A.C.; Romano, E.; Caetano, R.; Vaeth, P.A.C.; Romano, E.; et al. Drinking and Driving in Puerto Rico. Subst. Use Misuse 2018, 6084, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Machin, M.A.; Sankey, K.S. Relationships between young drivers’ personality characteristics, risk perceptions, and driving behavior. Accid. Anal. Prev. 2008, 40, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Campos, V.R.; Salgado, R.; Rocha, M.C.; Dualibi, S.; Laranjeira, R. Beber e dirigir: Características de condutores com bafômetro positivo. Rev. Psiquiatr. Clínica 2012, 39, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yau, K.K.W.; Gong, X. Traffic violations in Guangdong Province of China: Speeding and drunk driving. Accid. Anal. Prev. 2014, 64, 30–40. [Google Scholar] [CrossRef]
- Schulte, M.T.; Ramo, D.; Brown, S.A. Gender Differences in Factors Influencing Alcohol Use and Drinking Progression Among Adolescents. Clin. Psychol. Rev. 2009, 29, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Courtenay, W.H. Constructions of masculinity and their influence on men’s well-being: A theory of gender and healt. Soc. Sci. Med. 2000, 50, 1385–1401. [Google Scholar] [CrossRef]
- O’Malley, P.M.; Johnston, L.D. Epidemiology of alcohol and other drug use among American college students. J. Stud. Alcohol Drugs 2002, 14, 23–39. [Google Scholar] [CrossRef]
- Caetano, R.; McGrath, C. Driving under the influence (DUI) among U.S. ethnic groups. Accid. Anal. Prev. 2005, 37, 217–224. [Google Scholar] [CrossRef]
- Heydari, S.T.; Vossoughi, M.; Akbarzadeh, A.; Lankarani, K.B.; Sarikhani, Y.; Javanmardi, K.; Akbary, A.; Akbari, M.; Mahmoodi, M.; Shirazi, M.K.; et al. Prevalence and risk factors of alcohol and substance abuse among motorcycle drivers in Fars province, Iran. Chin. J. Traumatol. 2016, 19, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, G.; Norton, R.; Clark, T.; Jackson, R.; MacMahon, S. Motor vehicle driver injury and marital status: A cohort study with prospective and retrospective driver injuries. Inj. Prev. 2004, 10, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, K.E.; Rothbard, J.C. Alcohol and the marriage effect. J. Stud. Alcohol Drugs 1999, 13, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Reczek, C.; Pudrovska, T.; Carr, D.; Umberson, D.; Thomeer, M.B. Marital Histories and Heavy Alcohol Use Among Older Adults. J. Health Soc. Behav. 2016, 51, 77–96. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Alcohol and Health 2018. Available online: http://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf?ua=1 (accessed on 10 October 2019).
- Faller, S.; Webster, J.M.; Leukefeld, C.G.; Bumaguin, D.B.; do Duarte, P.C.A.V.; de Boni, R.; Pechansky, F. Psychiatric disorders among individuals who drive after the recent use of alcohol and drugs. Rev. Bras. Psiquiatr. 2012, 34, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoduto, G.; Dill, P.; Mann, R.E.; Wells-Parker, E.; Toneatto, T.; Shuggi, R. Examining the link between drinking-driving and depressed mood. J. Stud. Alcohol Drugs 2008, 69, 777–780. [Google Scholar] [CrossRef]
- Coelho, C.L.S.; Laranjeira, R.R.; Santos, J.L.F.; Pinsky, I.; Zaleski, M.; Caetano, R.; Crippa, J.A.S. Depressive symptoms and alcohol correlates among Brazilians aged 14 years and older: A cross-sectional study. Subst. Abuse Treat. Prev. Policy 2014, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Paljärvi, T.; Koskenvuo, M.; Poikolainen, K.; Kauhanen, J.; Sillanmäki, L.; Mäkelä, P. Binge drinking and depressive symptoms: A 5-year population-based cohort study. Addiction 2009, 104, 1168–1178. [Google Scholar] [CrossRef]
- Zhang, Y.; Sloan, F.A. Depression, Alcohol Dependence and Abuse, and Drinking and Driving Behavior. J. Behav. Heal. 2014, 3, 212–219. [Google Scholar] [CrossRef]
- Cerda, M.; Trady, M.; Galea, S. A prospective population based study of changes in alcohol use and binge drinking after a mass traumatic event. Drug Alcohol Depend. 2011, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.S.; Mohammadi, M.R.; Souri, H.; Kalhori, S.M.; Jannatifard, F.; Sepahbodi, G. Personality, Driving Behavior and Mental Disorders Factors as Predictors of Road Traffic Accidents Based on Logistic Regression. Iran. J. Med. Sci. 2017, 42, 24–31. [Google Scholar] [PubMed]
- World Health Organization. WHO Launches SAFER, a New Alcohol Control Initiative. Available online: https://www.who.int/substance_abuse/safer/en/ (accessed on 10 December 2019).
Variables | Total n = 9537 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 2146 | 40.2 | 36.6–43.9 | 1.00 | 1.00 | ||||
Male | 7391 | 54.7 | 51.4–56.0 | 2.30 | 1.91–2.77 | <0.001 | 2.38 | 1.94–2.92 | <0.001 |
Age (years) | |||||||||
18–29 | 2697 | 25.0 | 22.3–28.0 | 1.00 | 1.00 | ||||
30–39 | 2850 | 28.3 | 25.3–31.5 | 1.13 | 0.97–1.32 | 0.120 | 1.21 | 1.04–1.41 | 0.014 |
40–59 | 3220 | 22.5 | 20.0–25.1 | 0.90 | 0.76–1.06 | 0.196 | 1.09 | 0.92–1.28 | 0.309 |
≥60 | 770 | 16.1 | 12.5–20.6 | 0.64 | 0.50–0.84 | 0.001 | 0.94 | 0.72–1.22 | 0.636 |
Race/skin color | |||||||||
White | 4575 | 22.2 | 19.9–24.7 | 1.00 | 1.00 | ||||
Black | 784 | 26.3 | 21.1–32.3 | 1.19 | 0.92–1.53 | 0.181 | 1.12 | 0.88–1.43 | 0.357 |
Brown | 4042 | 27.5 | 25.0–30.0 | 1.24 | 1.08–1.42 | 0.002 | 1.13 | 0.97–1.31 | 0.106 |
Others | 136 | 15.8 | 9.4–25.3 | 0.71 | 0.43–1.19 | 0.192 | 0.66 | 0.39–1.13 | 0.133 |
Education | |||||||||
Illiterate or elementary school incomplete | 2387 | 22.5 | 19.7–25.5 | 1.00 | 1.00 | ||||
Elementary school complete or high school incomplete | 1434 | 20.7 | 17.5–24.3 | 0.92 | 0.75–1.12 | 0.418 | 0.98 | 0.80–1.21 | 0.876 |
High school complete or college school incomplete | 3530 | 27.9 | 25.4–30.5 | 1.24 | 1.08–1.43 | 0.002 | 1.48 | 1.28–1.70 | <0.001 |
College school complete or above | 2186 | 22.9 | 20.0–26.0 | 1.02 | 0.85–1.21 | 0.850 | 1.47 | 1.21–1.77 | <0.001 |
Marital status | |||||||||
With partner | 5744 | 22.9 | 20.8–25.1 | 1.00 | 1.00 | ||||
Without partner | 3793 | 26.7 | 24.3–29.3 | 1.17 | 1.03–1.33 | 0.019 | 1.15 | 1.01–1.30 | 0.033 |
Depression | |||||||||
No | 9024 | 24.1 | 22.4–25.8 | 1.00 | 1.00 | ||||
Yes | 513 | 30.0 | 23.5–37.4 | 1.25 | 0.99–1.57 | 0.063 | 1.45 | 1.15–1.83 | 0.002 |
Binge drinking | |||||||||
No | 4312 | 16.0 | 14.1–18.1 | 1.00 | 1.00 | ||||
Yes | 5225 | 32.3 | 30.2–34.5 | 2.02 | 1.78–2.29 | <0.001 | 1.80 | 1.58–2.05 | <0.001 |
Age at start of alcohol use (years) | |||||||||
≥18 | 5002 | 21.8 | 19.9–23.9 | 1.00 | 1.00 | ||||
<18 | 4535 | 27.1 | 24.9–39.4 | 1.24 | 1.11–1.38 | <0.001 | 1.06 | 0.95–1.18 | 0.325 |
Tobacco use | |||||||||
No | 7325 | 24.3 | 22.5–26.2 | 1.00 | |||||
Yes | 2212 | 24.5 | 21.5–27.8 | 1.01 | 0.88–0.16 | 0.879 | |||
Residence area | |||||||||
Capital | 4598 | 21.3 | 18.9–23.9 | 1.00 | 1.00 | ||||
Metropolitan region | 1279 | 19.2 | 16.3–22.5 | 0.90 | 0.74–1.10 | 0.300 | 0.93 | 0.77–1.13 | 0.468 |
Other regions | 3660 | 26.6 | 24.3–29.0 | 1.25 | 1.08–1.45 | 0.003 | 1.32 | 1.17–1.48 | <0.001 |
Macroregion | |||||||||
Southeast | 2226 | 20.8 | 18.1–23.7 | 1.00 | 1.00 | ||||
South | 1648 | 22.9 | 19.9–26.3 | 1.10 | 0.91–1.34 | 0.328 | 1.19 | 0.98–1.45 | 0.076 |
Central-West | 1512 | 29.6 | 26.3–33.2 | 1.43 | 1.19–1.70 | <0.001 | 1.27 | 1.15–1.63 | <0.001 |
Northeast | 2573 | 29.4 | 26.7–32.4 | 1.42 | 1.20–1.67 | <0.001 | 1.27 | 1.08–1.50 | 0.005 |
North | 1578 | 27.5 | 23.4–32.0 | 1.32 | 1.08–1.62 | 0.008 | 1.14 | 0.95–1.37 | 0.161 |
Variables | Total n = 2226 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 523 | 11.0 | 8.2–14.7 | 1.00 | 1.00 | ||||
Male | 1703 | 23.3 | 20.4–26.5 | 2.11 | 1.53–1.90 | <0.001 | 2.26 | 1.57–3.23 | <0.001 |
Age (years) | |||||||||
18–29 | 495 | 19.2 | 14.7–24.6 | 1.00 | 1.00 | ||||
30–39 | 623 | 26.9 | 21.7–32.8 | 1.40 | 0.99–1.98 | 0.056 | 1.39 | 1.00–1.91 | 0.045 |
40–59 | 849 | 20.6 | 16.4–24.3 | 1.04 | 0.73–1.49 | 0.805 | 1.26 | 0.90–1.76 | 0.171 |
≥60 | 259 | 12.2 | 8.0–18.2 | 0.63 | 0.41–0.99 | 0.045 | 1.01 | 0.62–1.65 | 0.948 |
Race/skin color | |||||||||
White | 1329 | 18.1 | 15.0–21.7 | 1.00 | 1.00 | ||||
Black | 177 | 27.3 | 18.0–39.1 | 1.50 | 0.94–2.40 | 0.084 | 1.55 | 1.00–2.38 | 0.045 |
Brown | 681 | 24.9 | 20.1–30.5 | 1.37 | 1.06–1.77 | 0.015 | 1.37 | 1.08–1.74 | 0.009 |
Others | 39 | 15.0 | 6.4–31.4 | 0.82 | 0.36–1.90 | 0.659 | 0.87 | 0.37–2.03 | 0.754 |
Education | |||||||||
Illiterate or elementary school incomplete | 441 | 16.5 | 11.8–22.6 | 1.00 | 1.00 | ||||
Elementary school complete or high school incomplete | 320 | 17.3 | 12.4–23.6 | 1.04 | 0.69–1.57 | 0.828 | 1.11 | 0.71–1.74 | 0.633 |
High school complete or college school incomplete | 814 | 23.7 | 19.9–27.9 | 1.43 | 1.04–1.96 | 0.026 | 1.70 | 1.20–2.39 | 0.002 |
College school complete or above | 651 | 21.4 | 17.1–26.5 | 1.29 | 0.88–1.88 | 0.179 | 1.81 | 1.22–2.70 | 0.003 |
Marital status | |||||||||
With partner | 1310 | 18.4 | 6.0–22.1 | 1.00 | 1.00 | ||||
Without partner | 916 | 23.8 | 19.7–284 | 1.26 | 0.96–1.65 | 0.097 | 1.17 | 0.91–1.52 | 0.208 |
Depression | |||||||||
No | 2114 | 20.4 | 17.8–23.2 | 1.00 | 1.00 | ||||
Yes | 112 | 28.8 | 17.2–44.1 | 1.41 | 0.88–1.25 | 0.148 | 1.67 | 1.03–2.69 | 0.034 |
Binge drinking | |||||||||
No | 1151 | 13.6 | 11.0–16.8 | 1.00 | 1.00 | ||||
Yes | 1075 | 28.8 | 25.0–33.0 | 2.12 | 1.67–2.68 | <0.001 | 1.95 | 1.55–2.43 | <0.001 |
Age at start of alcohol use (years) | |||||||||
≥18 | 1285 | 19.9 | 16.8–23.5 | 1.00 | |||||
<18 | 941 | 21.9 | 18.3–25.9 | 1.09 | 0.88–1.35 | 0.388 | |||
Tobacco use | |||||||||
No | 1663 | 20.9 | 18.1–24.0 | 1.00 | |||||
Yes | 563 | 20.5 | 15.9–26.0 | 0.98 | 0.75–1.27 | 0.889 | |||
Residence area | |||||||||
Capital | 1028 | 18.1 | 15.1–21.5 | 1.00 | 1.00 | ||||
Metropolitan region | 393 | 17.6 | 13.0–23.3 | 0.97 | 0.71–1.32 | 0.857 | 0.92 | 0.71–1.21 | 0.588 |
Other regions | 805 | 22.8 | 19.2–26.9 | 1.26 | 0.97–1.64 | 0.080 | 1.22 | 1.00–1.48 | 0.045 |
State | |||||||||
Espírito Santo | 254 | 17.1 | 20.4–26.9 | 1.00 | 1.00 | ||||
São Paulo | 948 | 18.5 | 16.2–21.0 | 1.08 | 0.65–1.77 | 0.758 | 1.21 | 0.82–1.79 | 0.328 |
Rio de Janeiro | 395 | 20.8 | 15.6–27.0 | 1.21 | 0.69–2.10 | 0.494 | 1.32 | 0.82–2.11 | 0.246 |
Minas Gerais | 629 | 26.6 | 19.4–35.4 | 1.55 | 0.88–2.74 | 0.126 | 1.58 | 1.00–2.48 | 0.045 |
Variables | Total n = 1648 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 443 | 9.6 | 6.1–14.9 | 1.00 | 1.00 | ||||
Male | 1205 | 26.9 | 23.4–30.7 | 2.79 | 1.77–4.38 | <0.001 | 2.56 | 1.63–4.02 | <0.001 |
Age (years) | |||||||||
18–29 | 410 | 21.7 | 16.6–27.8 | 1.00 | 1.00 | ||||
30–39 | 467 | 27.7 | 22.1–34.0 | 1.27 | 0.89–1.81 | 0.172 | 1.48 | 1.05–2.06 | 0.023 |
40–59 | 591 | 21.7 | 17.1–27.2 | 1.00 | 0.67–1.49 | 0.985 | 1.20 | 0.81–1.77 | 0.354 |
≥60 | 180 | 17.3 | 10.3–27.5 | 0.79 | 0.51–1.24 | 0.319 | 1.15 | 0.77–1.71 | 0.488 |
Race/skin color | |||||||||
White | 1410 | 22.5 | 19.1–26.5 | 1.00 | 1.00 | ||||
Black | 63 | 13.7 | 7.3–24.4 | 0.60 | 0.32–1.14 | 0.125 | 0.59 | 0.32–1.11 | 0.103 |
Brown | 163 | 28.7 | 19.4–40.3 | 1.27 | 0.83–1.93 | 0.256 | 1.07 | 0.69–1.66 | 0.732 |
Others | 12 | 14.4 | 3.8–41.6 | 0.64 | 0.18–2.26 | 0.488 | 0.56 | 0.13–2.40 | 0.445 |
Education | |||||||||
Illiterate or elementary school incomplete | 331 | 21.9 | 16.0–29.2 | 1.00 | |||||
Elementary school complete or high school incomplete | 212 | 19.6 | 12.7–29.0 | 0.89 | 0.51–1.53 | 0.684 | |||
High school complete or college school incomplete | 593 | 26.3 | 21.1–32.2 | 1.19 | 0.89–1.61 | 0.230 | |||
College school complete or above | 512 | 20.6 | 15.7–26.5 | 0.93 | 0.61–1.42 | 0.767 | |||
Marital status | |||||||||
With partner | 1023 | 21.8 | 18.4–25.7 | 1.00 | |||||
Without partner | 625 | 25.0 | 20.0–30.7 | 1.14 | 0.88–1.47 | 0.302 | |||
Depression | |||||||||
No | 1564 | 23.0 | 18.9–26.5 | 1.00 | |||||
Yes | 84 | 20.1 | 11.9–32.1 | 0.87 | 0.52–1.45 | 0.605 | |||
Binge drinking | |||||||||
No | 1047 | 16.1 | 12.9–19.9 | 1.00 | 1.00 | ||||
Yes | 601 | 34.3 | 28.7–40.4 | 2.13 | 1.65–2.74 | <0.001 | 1.95 | 1.49–2.55 | <0.001 |
Age at start of alcohol use (years) | |||||||||
≥18 | 825 | 19.9 | 16.2–24.2 | 1.00 | 1.00 | ||||
<18 | 823 | 25.8 | 21.7–30.4 | 1.29 | 1.02–1.64 | 0.030 | 1.08 | 0.84–1.39 | 0.521 |
Tobacco use | |||||||||
No | 1292 | 22.3 | 18.9–26.1 | 1.00 | |||||
Yes | 356 | 25.5 | 19.5–32.5 | 1.14 | 0.85–1.51 | 0.365 | |||
Residence area | |||||||||
Capital | 751 | 17.4 | 14.5–20.7 | 1.00 | 1.00 | ||||
Metropolitan region | 307 | 18.3 | 13.6–24.1 | 1.04 | 0.71–1.53 | 0.808 | 1.07 | 0.76–1.51 | 0.688 |
Other regions | 590 | 24.6 | 20.9–28.8 | 1.41 | 1.02–1.95 | 0.034 | 1.36 | 1.01–1.83 | 0.039 |
State | |||||||||
Rio Grande do Sul | 664 | 21.8 | 16.8–27.7 | 1.00 | 1.00 | ||||
Paraná | 589 | 23.5 | 18.8–29.0 | 1.07 | 0.77–1.50 | 0.653 | 1.09 | 0.78–1.53 | 0.598 |
Santa Catarina | 395 | 24.0 | 18.1–31.0 | 1.10 | 0.76–1.59 | 0.610 | 1.05 | 0.71–1.55 | 0.801 |
Variables | Total n = 1512 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 402 | 14.7 | 10.5–20.3 | 1.00 | 1.00 | ||||
Male | 1110 | 34.1 | 29.9–38.6 | 2.31 | 1.61–3.31 | <0.001 | 2.53 | 1.72–3.73 | <0.001 |
Age (years) | |||||||||
18–29 | 441 | 32.4 | 25.7–40.0 | 1.00 | 1.00 | ||||
30–39 | 436 | 31.4 | 24.3–39.4 | 0.96 | 0.72–1.29 | 0.818 | 1.12 | 0.79–1.58 | 0.510 |
40–59 | 537 | 26.4 | 22.1–31.1 | 0.83 | 0.58–1.12 | 0.211 | 1.10 | 0.80–1.49 | 0.567 |
≥60 | 98 | 22.4 | 11.1–39.9 | 0.68 | 0.35–1.32 | 0.264 | 0.97 | 0.57–1.63 | 0.923 |
Race/skin color | |||||||||
White | 667 | 28.1 | 24.3–32.3 | 1.00 | 1.00 | ||||
Black | 100 | 33.3 | 23.3–45.0 | 1.18 | 0.78–1.78 | 0.419 | 1.06 | 0.71–1.58 | 0.751 |
Brown | 724 | 32.1 | 26.3–36.4 | 1.10 | 0.93–1.30 | 0.230 | 1.09 | 0.91–1.30 | 0.307 |
Others | 21 | 8.5 | 1.9–30.2 | 0.30 | 0.07–1.26 | 0.100 | 0.27 | 0.05–1.45 | 0.128 |
Education | |||||||||
Illiterate or elementary school incomplete | 370 | 20.7 | 15.9–26.6 | 1.00 | 1.00 | ||||
Elementary school complete or high school incomplete | 233 | 29.9 | 20.8–41.0 | 1.44 | 0.86–2.42 | 0.163 | 1.50 | 0.91–2.45 | 0.106 |
High school complete or college school incomplete | 552 | 34.0 | 28.1–40.4 | 1.64 | 1.15–2.32 | 0.006 | 1.83 | 1.32–2.51 | <0.001 |
College school complete or above | 357 | 32.0 | 26.4–38.3 | 1.54 | 1.13–2.11 | 0.006 | 2.12 | 1.53–2.95 | <0.001 |
Marital status | |||||||||
With partner | 888 | 26.7 | 23.9–29.6 | 1.00 | 1.00 | ||||
Without partner | 624 | 34.4 | 27.7–41.7 | 1.28 | 1.03–1.60 | 0.024 | 1.21 | 1.00–1.46 | 0.049 |
Depression | |||||||||
No | 1429 | 29.1 | 25.6–32.8 | 1.00 | 1.00 | ||||
Yes | 83 | 38.2 | 27.4–50.4 | 1.32 | 0.94–1.83 | 0.109 | 1.38 | 0.97–1.95 | 0.066 |
Binge drinking | |||||||||
No | 652 | 19.3 | 14.2–25.5 | 1.00 | 1.00 | ||||
Yes | 860 | 36.9 | 33.4–40.4 | 1.91 | 1.44–2.54 | <0.001 | 1.74 | 1.33–2.26 | <0.001 |
Age at start of alcohol use (years) | |||||||||
≥18 | 806 | 24.2 | 20.1–28.9 | 1.00 | 1.00 | ||||
<18 | 706 | 35.4 | 29.2–42.1 | 1.46 | 1.09–1.95 | 0.010 | 1.23 | 0.93–1.62 | 0.123 |
Tobacco use | |||||||||
No | 1158 | 30.7 | 26.5–35.1 | 1.00 | |||||
Yes | 354 | 25.8 | 20.7–31.6 | 0.73 | 0.63–1.10 | 0.210 | |||
Residence area | |||||||||
Capital | 823 | 28.3 | 24.7–32.2 | 1.00 | |||||
Metropolitan region | 73 | 29.5 | 23.8–36.0 | 1.04 | 0.81–1.33 | 0.741 | |||
Other regions | 616 | 30.6 | 25.1–36.8 | 1.08 | 0.85–1.36 | 0.512 | |||
State | |||||||||
Distrito Federal | 388 | 24.7 | 21.1–28.7 | 1.00 | 1.00 | ||||
Mato Grosso do Sul | 403 | 26.3 | 13.4–29.4 | 1.06 | 0.87–1.28 | 0.533 | 1.11 | 0.95–1.30 | 0.166 |
Mato Grosso | 273 | 32.9 | 24.8–42.1 | 1.32 | 0.98–1.80 | 0.070 | 1.43 | 1.08–1.88 | 0.011 |
Goiás | 448 | 32.7 | 26.0–38.1 | 1.28 | 1.00–1.64 | 0.047 | 1.40 | 1.15–1.70 | 0.001 |
Variables | Total n = 2573 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 445 | 13.0 | 9.1–18.2 | 1.00 | 1.00 | ||||
Male | 2128 | 32.2 | 29.1–35.5 | 2.47 | 1.73–3.53 | <0.001 | 2.54 | 1.75–3.69 | <0.001 |
Age (years) | |||||||||
18–29 | 816 | 30.6 | 15.8–35.8 | 1.00 | 1.00 | ||||
30–39 | 805 | 30.2 | 25.2–35.7 | 0.98 | 0.78–1.24 | 0.913 | 1.03 | 0.82–1.29 | 0.772 |
40–59 | 780 | 27.8 | 24.1–31.8 | 0.90 | 0.73–1.12 | 0.367 | 0.98 | 0.76–1.27 | 0.934 |
≥ 60 | 172 | 26.1 | 16.0–39.7 | 0.85 | 0.52–1.39 | 0.528 | 0.99 | 0.61–1.61 | 0.980 |
Race/skin color | |||||||||
White | 779 | 33.9 | 27.6–40.9 | 1.00 | 1.00 | ||||
Black | 291 | 26.5 | 19.3–35.2 | 0.78 | 0.55–1.10 | 0.161 | 0.79 | 0.57–1.10 | 0.174 |
Brown | 1473 | 28.0 | 24.5–31.8 | 0.82 | 0.64–1.05 | 0.131 | 0.77 | 0.61–0.98 | 0.040 |
Others | 30 | 12.5 | 3.7–34.8 | 0.36 | 0.11–1.18 | 0.093 | 0.44 | 0.13–1.45 | 0.178 |
Education | |||||||||
Illiterate or elementary school incomplete | 850 | 27.9 | 23.4–32.8 | 1.00 | 1.00 | ||||
Elementary school complete or high school incomplete | 381 | 25.5 | 19.3–33.0 | 0.91 | 0.67–1.23 | 0.566 | 0.91 | 0.67–1.23 | 0.557 |
High school complete or college school incomplete | 931 | 34.1 | 29.4–39.1 | 1.22 | 0.96–1.54 | 0.091 | 1.41 | 1.12–1.77 | 0.003 |
College school complete or above | 411 | 26.4 | 20.5–33.3 | 0.94 | 0.72–1.24 | 0.699 | 1.33 | 1.00–1.76 | 0.044 |
Marital status | |||||||||
With partner | 1596 | 29.3 | 25.9–32.8 | 1.00 | |||||
Without partner | 977 | 29.7 | 24.6–35.4 | 1.01 | 0.80–1.27 | 0.901 | |||
Depression | |||||||||
No | 2429 | 29.1 | 26.3–32.0 | 1.00 | 1.00 | ||||
Yes | 144 | 36.8 | 26.0–49.1 | 1.26 | 0.91–1.74 | 0.150 | 1.51 | 1.10–2.07 | 0.011 |
Binge drinking | |||||||||
No | 915 | 19.8 | 15.5–24.8 | 1.00 | 1.00 | ||||
Yes | 1658 | 35.0 | 31.6–38.6 | 1.77 | 1.38–2.27 | <0.001 | 1.67 | 1.29–2.14 | <0.001 |
Age at start of alcohol use (years) | |||||||||
≥ 18 | 1258 | 26.0 | 22.1–30.3 | 1.00 | 1.00 | ||||
< 18 | 1315 | 32.7 | 29.3–36.3 | 1.25 | 1.04–1.50 | 0.014 | 1.15 | 0.95–1.39 | 0.145 |
Tobacco use | |||||||||
No | 2025 | 29.1 | 25.7–32.6 | 1.00 | |||||
Yes | 548 | 30.7 | 24.7–37.4 | 1.05 | 0.81–1.26 | 0.671 | |||
Residence area | |||||||||
Capital | 1145 | 25.6 | 21.0–30.7 | 1.00 | 1.00 | ||||
Metropolitan region | 388 | 21.3 | 15.3–29.0 | 0.83 | 0.57–1.21 | 0.342 | 0.86 | 0.60–1.23 | 0.410 |
Other regions | 1040 | 32.4 | 19.0–36.0 | 1.26 | 1.01–1.57 | 0.035 | 1.34 | 1.08–1.66 | 0.006 |
State | |||||||||
Alagoas | 205 | 20.5 | 13.3–30.2 | 1.00 | 1.00 | ||||
Maranhão | 215 | 38.9 | 30.4–48.2 | 1.90 | 1.18–3.04 | 0.008 | 1.96 | 1.27–3.02 | 0.002 |
Piauí | 319 | 37.1 | 30.9–43.7 | 1.81 | 1.15–2.83 | 0.009 | 1.89 | 1.23–2.91 | 0.004 |
Ceará | 313 | 30.8 | 24.0–38.3 | 1.49 | 0.93–2.40 | 0.093 | 1.52 | 0.96–2.39 | 0.068 |
Rio Grande do Norte | 265 | 36.1 | 26.7–46.7 | 1.76 | 1.07–2.90 | 0.026 | 1.67 | 1.10–2.52 | 0.015 |
Paraíba | 228 | 32.9 | 23.0–44.6 | 1.60 | 0.94–2.72 | 0.079 | 1.59 | 0.99–2.55 | 0.052 |
Pernambuco | 358 | 22.5 | 15.7–32.1 | 1.09 | 0.64–1.88 | 0.732 | 1.08 | 0.66–1.75 | 0.751 |
Sergipe | 235 | 24.8 | 21.4–28.5 | 1.21 | 0.78–1.87 | 0.390 | 1.30 | 0.86–1.98 | 0.207 |
Bahia | 435 | 27.3 | 22.7–32.5 | 1.33 | 0.85–2.09 | 0.207 | 1.29 | 0.85–1.96 | 0.230 |
Variables | Total n = 1578 | DUIA Prevalence | Bivariate Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
% | 95.0% CI | cPR | 95.0% CI | p-Value | aPR | 95.0% CI | p-Value | ||
Sex | |||||||||
Female | 333 | 21.1 | 11.9–34.5 | 1.00 | 1.00 | ||||
Male | 1245 | 28.8 | 24.8–33.2 | 1.36 | 0.81–2.30 | 0.239 | 1.43 | 0.89–2.30 | 0.138 |
Age (years) | |||||||||
18–29 | 535 | 32.8 | 24.5–42.2 | 1.00 | 1.00 | ||||
30–39 | 519 | 27.8 | 21.2–35.6 | 0.84 | 0.58–1.22 | 0.383 | 0.89 | 0.63–1.27 | 0.554 |
40–59 | 463 | 20.3 | 14.0–28.4 | 0.61 | 0.37–1.02 | 0.060 | 0.72 | 0.43–1.21 | 0.221 |
≥ 60 | 61 | 13.9 | 6.5–27.1 | 0.42 | 0.19–0.92 | 0.032 | 0.59 | 0.24–1.44 | 0.251 |
Race/skin color | |||||||||
White | 390 | 21.6 | 16.5–27.7 | 1.00 | 1.00 | ||||
Black | 153 | 32.8 | 21.7–43.9 | 1.47 | 0.91–2.38 | 0.113 | 1.31 | 0.81–2.12 | 0.265 |
Brown | 1001 | 28.9 | 23.2–35.1 | 1.33 | 0.98–1.81 | 0.066 | 1.32 | 1.03–1.69 | 0.026 |
Others | 34 | 36.7 | 14.9–65.7 | 1.70 | 0.72–3.99 | 0.223 | 1.47 | 0.74–2.90 | 0.262 |
Education | |||||||||
Illiterate or elementary school incomplete | 395 | 28.6 | 21.6–36.7 | 1.00 | 1.00 | ||||
Elementary school complete or high school incomplete | 288 | 16.0 | 11.3–22.3 | 0.56 | 0.015 | 0.52 | 0.32–0.85 | 0.010 | |
High school complete or college school incomplete | 640 | 33.7 | 27.2–40.9 | 1.17 | 0.35–0.89 | 0.229 | 1.22 | 0.88–1.70 | 0.216 |
College school complete or above | 255 | 21.0 | 15.6–27.7 | 0.73 | 0.90–1.54 | 0.156 | 0.95 | 0.61–1.48 | 0.848 |
Marital status | 0.47–1.12 | ||||||||
With partner | 927 | 24.7 | 20.3–29.6 | 1.00 | 1.00 | ||||
Without partner | 651 | 32.6 | 25.1–38.8 | 1.27 | 0.97–1.67 | 0.074 | 1.27 | 0.97–1.67 | 0.076 |
Depression | |||||||||
No | 1488 | 27.5 | 23.4–32.1 | 1.00 | |||||
Yes | 90 | 26.4 | 12.4–47.6 | 0.95 | 0.47–1.92 | 0.902 | |||
Binge drinking | |||||||||
No | 547 | 21.8 | 15.6–29.7 | 1.00 | 1.00 | ||||
Yes | 1031 | 30.4 | 25.5–35.8 | 1.38 | 0.97–1.97 | 0.067 | 1.23 | 0.85–1.77 | 0.264 |
Age at start of alcohol use (years) | |||||||||
≥18 | 828 | 24.3 | 20.0–29.2 | 1.00 | 1.00 | ||||
<18 | 750 | 31.2 | 24.0–39.4 | 1.28 | 0.93–1.75 | 0.117 | 1.17 | 0.88–1.55 | 0.258 |
Tobacco use | |||||||||
No | 1187 | 27.0 | 22.7–31.9 | 1.00 | |||||
Yes | 391 | 29.2 | 23.1–36.1 | 1.08 | 0.85–1.35 | 0.510 | |||
Residence area | |||||||||
Capital | 851 | 19.6 | 15.5–24.6 | 1.00 | 1.00 | ||||
Metropolitan region | 118 | 22.6 | 18.4–27.5 | 1.15 | 0.84–1.56 | 0.357 | 1.20 | 0.87–1.66 | 0.246 |
Other regions | 609 | 32.1 | 27.1–37.6 | 1.63 | 1.23–2.17 | 0.001 | 1.74 | 1.33–2.26 | <0.001 |
State | |||||||||
Alagoas | 242 | 24.4 | 18.1–32.1 | 1.00 | 1.00 | ||||
Maranhão | 204 | 26.4 | 21.7–31.7 | 1.07 | 0.76–1.52 | 0.662 | 0.88 | 0.65–1.19 | 0.419 |
Piauí | 172 | 25.1 | 18.1–33.7 | 1.02 | 0.67–1.57 | 0.900 | 0.98 | 0.77–1.25 | 0.913 |
Ceará | 280 | 35.2 | 29.1–41.9 | 1.44 | 1.02–2.02 | 0.035 | 1.50 | 0.94–2.39 | 0.085 |
Rio Grande do Norte | 227 | 27.9 | 20.2–37.1 | 1.14 | 0.75–1.74 | 0.537 | 0.88 | 0.64–1.23 | 0.484 |
Paraíba | 148 | 26.4 | 22.1–31.1 | 1.07 | 0.77–1.50 | 0.655 | 1.18 | 0.85–1.63 | 0.302 |
Pernambuco | 305 | 30.0 | 23.5–37.3 | 1.22 | 0.84–1.77 | 0.277 | 1.06 | 0.75–1.50 | 0.707 |
Sergipe | 235 | 24.8 | 21.4–28.5 | 1.21 | 0.78–1.87 | 0.390 | 1.30 | 0.86–1.98 | 0.207 |
Bahia | 435 | 27.3 | 22.7–32.5 | 1.33 | 0.85–2.09 | 0.207 | 1.29 | 0.85–1.96 | 0.230 |
Variables | Brazil | Southeast | South | Central-West | Northeast | North |
---|---|---|---|---|---|---|
Age (years) | 30–39 | 30–39 | 30–39 | - | - | - |
Sex | Male | Male | Male | Male | Male | - |
Race/skin color | - | Black and Brown | - | - | Brown* | Brown |
Education | Elementary school complete or high school incomplete and College school complete or above | Elementary school complete or high school incomplete and College school complete or above | - | Elementary school complete or high school incomplete and College school complete or above | Elementary school complete or high school incomplete and College school complete or above | Elementary school complete or high school incomplete** |
Marital status | Without partner | - | - | Without partner | - | - |
Binge drinking | Yes | Yes | Yes | Yes | Yes | - |
Depression | Yes | Yes | - | - | Yes | - |
Residence area | Living in outside the capital or metropolitan regions (other regions) | Living in outside the capital or metropolitan regions (other regions) | Living in outside the capital or metropolitan regions (other regions) | - | Living in outside the capital or metropolitan regions (other regions) | Living in outside the capital or metropolitan regions (other regions) |
State | - | Minas Gerais | - | Goias and Mato Grosso | Maranhão, Piauí and Rio Grande do Norte | - |
Macroregion | Central-West and Northeast | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, R.A.; Morais Neto, O.L. Prevalence and Factors Associated with Driving Under the Influence of Alcohol in Brazil: An Analysis by Macroregion. Int. J. Environ. Res. Public Health 2020, 17, 767. https://doi.org/10.3390/ijerph17030767
Guimarães RA, Morais Neto OL. Prevalence and Factors Associated with Driving Under the Influence of Alcohol in Brazil: An Analysis by Macroregion. International Journal of Environmental Research and Public Health. 2020; 17(3):767. https://doi.org/10.3390/ijerph17030767
Chicago/Turabian StyleGuimarães, Rafael Alves, and Otaliba Libânio Morais Neto. 2020. "Prevalence and Factors Associated with Driving Under the Influence of Alcohol in Brazil: An Analysis by Macroregion" International Journal of Environmental Research and Public Health 17, no. 3: 767. https://doi.org/10.3390/ijerph17030767
APA StyleGuimarães, R. A., & Morais Neto, O. L. (2020). Prevalence and Factors Associated with Driving Under the Influence of Alcohol in Brazil: An Analysis by Macroregion. International Journal of Environmental Research and Public Health, 17(3), 767. https://doi.org/10.3390/ijerph17030767