Comparison of the Relative Abuse Liability of Electronic Cigarette Aerosol Extracts and Nicotine Alone in Adolescent Rats: A Behavioral Economic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Drugs and EC Liquids/Aerosols
2.3. Surgery
2.4. Phase 1: SA Acquisition
2.5. Phase 2: Elasticity of Demand
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, T.; Kennedy, S.; Marynak, K.; Persoskie, A.; Melstrom, P.; King, B.A. Characteristics of Electronic Cigarette Use Among Middle and High School Students—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1425–1429. [Google Scholar] [CrossRef] [Green Version]
- N National Academies of Sciences, Engineering, and Medicine. Public Health Consequences of e-Cigarettes; The National Academic Press: Washington, DC, USA, 2018. [Google Scholar]
- Arrazola, R.A.; Singh, T.; Corey, C.G.; Husten, C.G.; Neff, L.J.; Apelberg, B.J.; Bunnell, R.E.; Choiniere, C.J.; King, B.A.; Cox, S.; et al. Tobacco use among middle and high school students—United States, 2011–2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 381–385. [Google Scholar] [PubMed]
- Glasser, A.M.; Collins, L.; Pearson, J.L.; Abudayyeh, H.; Niaura, R.S.; Abrams, D.B.; Villanti, A.C. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am. J. Prev. Med. 2017, 52, e33–e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration FDA Takes New Steps to Address Epidemic of Youth E-cigarette Use, Including a Historic Action Against More Than 1,300 Retailers and 5 Major Manufacturers for Their Roles Perpetuating Youth Access. Available online: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/UCM620184.htm?utm_source=Eloqua&utm_medium=email&utm_term=stratcomms&utm_content=pressrelease&utm_campaign=CTP%20News%26Connect%26SOS%3A%20Sept%2012%20Announcement%20-%2091218 (accessed on 19 September 2018).
- FDA. Deeming Tobacco Products To Be Subject to the Federal Food, Drug, and Cosmetic Act, as Amended by the Family Smoking Prevention and Tobacco Control Act; Restrictions on the Sale and Distribution of Tobacco Products and Required Warning Statements for Tobacco Products. Final rule. Fed. Regist. 2016, 90, 28973–29106. [Google Scholar]
- LeSage, M.G.; Smethells, J.R.; Harris, A.C. Status and future directions of preclinical behavioral pharmacology in tobacco regulatory science. Behav. Anal. Res. Pract. 2018, 18, 252. [Google Scholar] [CrossRef]
- Donny, E.C.; Taylor, T.G.; LeSage, M.G.; Levin, M.; Buffalari, D.M.; Joel, D.; Sved, A.F. Impact of tobacco regulation on animal research: New perspectives and opportunities. Nicot. Tob. Res. Off. J. Soc. Res. Nicot. Tob. 2012, 14, 1319–1338. [Google Scholar] [CrossRef] [Green Version]
- Smethells, J.R.; Harris, A.C.; Burroughs, D.; Hursh, S.R.; LeSage, M.G. Substitutability of nicotine alone and an electronic cigarette liquid using a concurrent choice assay in rats: A behavioral economic analysis. Drug Alcohol Depend. 2018, 185, 58–88. [Google Scholar] [CrossRef]
- Harris, A.C.; Muelken, P.; Smethells, J.R.; Yershova, K.; Stepanov, I.; Olson, T.T.; Kellar, K.J.; LeSage, M.G. Effects of nicotine-containing and “nicotine-free” e-cigarette refill liquids on intracranial self-stimulation in rats. Drug Alcohol Depend. 2018, 185, 1–9. [Google Scholar] [CrossRef]
- Harris, A.C.; Muelken, P.; Smethells, J.R.; Krueger, M.; LeSage, M.G. Similar precipitated withdrawal effects on intracranial self-stimulation during chronic infusion of an e-cigarette liquid or nicotine alone. Pharmacol. Biochem. Behav. 2017, 161, 1–5. [Google Scholar] [CrossRef]
- LeSage, M.G.; Staley, M.; Muelken, P.; Smethells, J.R.; Stepanov, I.; Vogel, R.I.; Pentel, P.R.; Harris, A.C. Abuse liability assessment of an e-cigarette refill liquid using intracranial self-stimulation and self-administration models in rats. Drug Alcohol Depend. 2016, 168, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Biswas, L.; Harrison, E.; Gong, Y.; Avusula, R.; Lee, J.; Zhang, M.; Rousselle, T.; Lage, J.; Liu, X. Enhancing effect of menthol on nicotine self-administration in rats. Psychopharmacology 2016, 233, 3417–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, A.C.; Evans, S.E. Abuse potential of non-nicotine tobacco smoke components: Acetaldehyde, nornicotine, cotinine, and anabasine. Nicot. Tob. Res. 2013, 15, 622–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.C.; Muelken, P.; Haave, Z.; Swain, Y.; Smethells, J.R.; LeSage, M.G. Propylene glycol, a major electronic cigarette constituent, attenuates the adverse effects of high dose nicotine as measured by intracranial self-stimulation in rats. Drug Alcohol Depend. 2018, 193, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.D.; Kenny, P.J. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology 2014, 76 Pt B, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Sartor, C.E.; Lessov-Schlaggar, C.N.; Scherrer, J.F.; Bucholz, K.K.; Madden, P.A.; Pergadia, M.L.; Grant, J.D.; Jacob, T.; Xian, H. Initial response to cigarettes predicts rate of progression to regular smoking: Findings from an offspring-of-twins design. Addict. Behav. 2010, 35, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoft, N.R.; Stitzel, J.A.; Hutchison, K.E.; Ehringer, M.A. CHRNB2 promoter region: Association with subjective effects to nicotine and gene expression differences. Genes Brain Behav. 2011, 10, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.P.; DeVito, E.E.; Herman, A.I.; Valentine, G.W.; Gelernter, J.; Sofuoglu, M. A CHRNA5 Smoking Risk Variant Decreases the Aversive Effects of Nicotine in Humans. Neuropsychopharmacology 2015, 40, 2813–2821. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, S.; Terhorst, L. Intermittent and daily smokers’ subjective responses to smoking. Psychopharmacology 2017, 234, 2911–2917. [Google Scholar] [CrossRef]
- Belluzzi, J.D.; Wang, R.; Leslie, F.M. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology 2005, 30, 705–712. [Google Scholar] [CrossRef]
- Shram, M.J.; Li, Z.; Le, A.D. Age differences in the spontaneous acquisition of nicotine self-administration in male Wistar and Long-Evans rats. Psychopharmacology 2008, 197, 45–58. [Google Scholar] [CrossRef]
- Shram, M.J.; Funk, D.; Li, Z.; Le, A.D. Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology 2006, 186, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.C.; Muelken, P.; Swain, Y.; Palumbo, M.; Jain, V.; Goniewicz, M.L.; Stepanov, I.; LeSage, M.G. Non-nicotine constituents in e-cigarette aerosol extract attenuate nicotine’s aversive effects in adolescent rats. Drug Alcohol Depend. 2019, 203, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Marusich, J.A.; Wiley, J.L.; Silinski, M.A.R.; Thomas, B.F.; Meredith, S.E.; Gahl, R.F.; Jackson, K.J. Comparison of cigarette, little cigar, and waterpipe tobacco smoke condensate and e-cigarette aerosol condensate in a self-administration model. Behav. Brain Res. 2019, 372, 112061. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Koob, G.F.; George, O. Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacology 2012, 37, 2153–2160. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, L.E.; Chen, S.A.; Smith, R.T.; Specio, S.E.; Balster, R.L.; Paterson, N.E.; Markou, A.; Zorrilla, E.P.; Koob, G.F. Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats. J. Pharmacol. Exp. Ther. 2007, 320, 180–193. [Google Scholar] [CrossRef]
- LeSage, M.G.; Keyler, D.E.; Shoeman, D.; Raphael, D.; Collins, G.; Pentel, P.R. Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacol. Biochem. Behav. 2002, 72, 279–289. [Google Scholar] [CrossRef]
- Hursh, S.R. Economic concepts for the analysis of behavior. J. Exp. Anal. Behav. 1980, 34, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Hursh, S.R.; Galuska, C.M.; Winger, G.; Woods, J.H. The economics of drug abuse: A quantitative assessment of drug demand. Mol. Interv. 2005, 5, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Hursh, S.R. Behavioral economics of drug self-administration and drug abuse policy. J. Exp. Anal. Behav. 1991, 56, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Hursh, S.R.; Silberberg, A. Economic demand and essential value. Psychol. Rev. 2008, 115, 186–198. [Google Scholar] [CrossRef]
- Bickel, W.K.; Marsch, L.A.; Carroll, M.E. Deconstructing relative reinforcing efficacy and situating the measures of pharmacological reinforcement with behavioral economics: A theoretical proposal. Psychopharmacology 2000, 153, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W.; Bickel, W.K. Replacing relative reinforcing efficacy with behavioral economic demand curves. J. Exp. Anal. Behav. 2006, 85, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Diergaarde, L.; van Mourik, Y.; Pattij, T.; Schoffelmeer, A.N.; De Vries, T.J. Poor impulse control predicts inelastic demand for nicotine but not alcohol in rats. Addict. Biol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Day, H.R.; Ambrose, B.K.; Schroeder, M.J.; Corey, C.G. Point of Sale Scanner Data for Rapid Surveillance of the E-cigarette Market. Tob. Regul. Sci. 2017, 3, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Alsharari, S.D.; King, J.R.; Nordman, J.C.; Muldoon, P.P.; Jackson, A.; Zhu, A.Z.; Tyndale, R.F.; Kabbani, N.; Damaj, M.I. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice. PLoS ONE 2015, 10, e0137070. [Google Scholar] [CrossRef]
- Henderson, B.J.; Wall, T.R.; Henley, B.M.; Kim, C.H.; McKinney, S.; Lester, H.A. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability. Neuropsychopharmacology 2017, 42, 2285–2291. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Balakrishna, S.; Jabba, S.V.; Bonner, P.E.; Taylor, S.R.; Picciotto, M.R.; Jordt, S.E. Menthol decreases oral nicotine aversion in C57BL/6 mice through a TRPM8-dependent mechanism. Tob. Control 2016, 25, ii50–ii54. [Google Scholar] [CrossRef]
- Kosmider, L.; Jackson, A.; Leigh, N.; O’Connor, R.; Goniewicz, M.L. Circadian puffing behavior and topography among e-cigarette users. Tob. Regul. Sci. 2018, 4, 41–49. [Google Scholar] [CrossRef]
- Brennan, K.A.; Crowther, A.; Putt, F.; Roper, V.; Waterhouse, U.; Truman, P. Tobacco particulate matter self-administration in rats: Differential effects of tobacco type. Addict. Biol. 2015, 20, 227–235. [Google Scholar] [CrossRef]
- Brennan, K.A.; Putt, F.; Truman, P. Nicotine-, tobacco particulate matter- and methamphetamine-produced locomotor sensitisation in rats. Psychopharmacology 2013, 228, 659–672. [Google Scholar] [CrossRef]
- Brennan, K.A.; Putt, F.; Roper, V.; Waterhouse, U.; Truman, P. Nicotine and tobacco particulate self-administration: Effects of mecamylamine, SCH23390 and ketanserin pretreatment. Curr. Psychopharmacol. 2013, 2, 229–240. [Google Scholar] [CrossRef]
- Hieda, Y.; Keyler, D.E.; VanDeVoort, J.T.; Niedbala, R.S.; Raphael, D.E.; Ross, C.A.; Pentel, P.R. Immunization of rats reduces nicotine distribution to brain. Psychopharmacology 1999, 143, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.C.; Burroughs, D.; Pentel, P.R.; LeSage, M.G. Compensatory nicotine self-administration in rats during reduced access to nicotine: An animal model of smoking reduction. Exp. Clin. Psychopharmacol. 2008, 16, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Lesage, M.G. Toward a nonhuman model of contingency management: Effects of reinforcing abstinence from nicotine self-administration in rats with an alternative nondrug reinforcer. Psychopharmacology 2009, 203, 13–22. [Google Scholar] [CrossRef] [Green Version]
- LeSage, M.G.; Burroughs, D.; Dufek, M.; Keyler, D.E.; Pentel, P.R. Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol. Biochem. Behav. 2004, 79, 507–513. [Google Scholar] [CrossRef]
- LeSage, M.G.; Burroughs, D.; Muelken, P.; Harris, A.C. Self-administration of smokeless tobacco products in rats. Tob. Regul. Sci. 2016, 2, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Grebenstein, P.E.; Burroughs, D.; Roiko, S.A.; Pentel, P.R.; LeSage, M.G. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy. Drug Alcohol Depend. 2015, 151, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef]
- Costello, M.R.; Reynaga, D.D.; Mojica, C.Y.; Zaveri, N.T.; Belluzzi, J.D.; Leslie, F.M. Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacology 2014, 39, 1843–1851. [Google Scholar] [CrossRef]
- Wagner, K.A.; Flora, J.W.; Melvin, M.S.; Avery, K.C.; Ballentine, R.M.; Brown, A.P.; McKinney, W.J. An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion. Regul. Toxicol. Pharmacol. 2018, 95, 153–160. [Google Scholar] [CrossRef]
- Pazo, D.Y.; Moliere, F.; Sampson, M.M.; Reese, C.M.; Agnew-Heard, K.A.; Walters, M.J.; Holman, M.R.; Blount, B.C.; Watson, C.H.; Chambers, D.M. Mainstream Smoke Levels of Volatile Organic Compounds in 50 U.S. Domestic Cigarette Brands Smoked With the ISO and Canadian Intense Protocols. Nicot. Tob. Res. 2016, 18, 1886–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, C.D.; Tuesta, L.; Kenny, P.J. Role of alpha5* nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice. Psychopharmacology 2013, 229, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.D.; Lu, Q.; Johnson, P.M.; Marks, M.J.; Kenny, P.J. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 2011, 471, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Donny, E.C.; Caggiula, A.R.; Rowell, P.P.; Gharib, M.A.; Maldovan, V.; Booth, S.; Mielke, M.M.; Hoffman, A.; McCallum, S. Nicotine self-administration in rats: Estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology 2000, 151, 392–405. [Google Scholar] [CrossRef]
- Grebenstein, P.; Burroughs, D.; Zhang, Y.; LeSage, M.G. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: Implications for nicotine regulation policy. Pharmacol. Biochem. Behav. 2013, 114–115, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Lynch, W.J. Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacol. Biochem. Behav. 2009, 94, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.E. Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology 2006, 184, 274–285. [Google Scholar] [CrossRef]
- Leventhal, A.M.; Goldenson, N.I.; Cho, J.; Kirkpatrick, M.G.; McConnell, R.S.; Stone, M.D.; Pang, R.D.; Audrain-McGovern, J.; Barrington-Trimis, J.L. Flavored E-cigarette Use and Progression of Vaping in Adolescents. Pediatrics 2019, 144. [Google Scholar] [CrossRef]
- Robinson, R.J.; Hensel, E.C.; Morabito, P.N.; Roundtree, K.A. Electronic Cigarette Topography in the Natural Environment. PLoS ONE 2015, 10, e0129296. [Google Scholar] [CrossRef]
- Sleiman, M.; Logue, J.M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nicotine | Nicotine + ETOH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ID # | α | Q0 | Pmax | Omax | r2 | ID # | α | Q0 | Pmax | Omax | r2 |
1 | 0.0010660 | 4 | 42.2 | 56.1 | 0.6 | 7 | 0.0009008 | 2.16 | 92.0 | 66.5 | 0.79 |
2 | 0.0002490 | 2.51 | 287.5 | 240 | 0.95 | 8 | 0.0000860 | 5.09 | 415.6 | 700.0 | 0.96 |
3 | 0.0001998 | 1.91 | 471.2 | 299.1 | 0.99 | 9 | 0.0003445 | 0.90 | 581.1 | 174.0 | 0.86 |
4 | 0.0001455 | 3.21 | 384.7 | 410.7 | 0.99 | 10 | 0.0002182 | 1.68 | 493.7 | 274.7 | 0.96 |
5 | 0.0001593 | 1.98 | 570.1 | 375.1 | 0.97 | 11 | 0.0002273 | 1.44 | 551.1 | 263.6 | 0.96 |
6 | 0.0002260 | 1.48 | 536.5 | 264.4 | 0.97 | 12 | 0.0001247 | 1.43 | 1012 | 481.0 | 0.98 |
13 | 0.0007798 | 2.30 | 100.9 | 76.8 | 0.98 | ||||||
14 | 0.0008966 | 3.11 | 64.7 | 66.8 | 0.89 | ||||||
15 | 0.0002182 | 1.68 | 491.7 | 273.9 | 0.96 | ||||||
Mean | 0.00034093 | 2.52 | 382 | 274.2 | 0.91 | Mean | 0.0004218 | 2.20 | 422.5 | 264.1 | 0.93 |
SEM | 0.00014589 | 0.38 | 79.9 | 51.1 | 0.06 | SEM | 0.0001138 | 0.42 | 101.4 | 70.6 | 0.02 |
Vuse | Dark Honey | ||||||||||
16 | 0.0003346 | 2.12 | 254.1 | 178.6 | 0.96 | 24 | 0.0010910 | 4.72 | 35.0 | 54.8 | 0.96 |
17 | 0.0003082 | 1.69 | 345.2 | 193.9 | 0.93 | 25 | 0.0005600 | 1.24 | 259.6 | 106.7 | 0.93 |
18 | 0.0001185 | 1.6 | 949.6 | 504.3 | 0.97 | 26 | 0.0000490 | 2.54 | 1444.9 | 1220.6 | 0.93 |
19 | 0.0002000 | 2.03 | 443.4 | 298.8 | 0.98 | 27 | 0.0002127 | 1.40 | 602.2 | 281.0 | 0.94 |
20 | 0.0003380 | 0.85 | 626.2 | 176.8 | 0.84 | 28 | 0.0010740 | 0.36 | 458.8 | 55.6 | 0.75 |
21 | 0.0005376 | 1.38 | 243.3 | 111.2 | 0.95 | 29 | 0.0000830 | 2.12 | 1024.6 | 720.2 | 0.97 |
22 | 0.0006735 | 3.14 | 85.1 | 88.7 | 0.78 | 30 | 0.0000792 | 2.54 | 893.4 | 754.2 | 0.95 |
23 | 0.0002529 | 2.54 | 280.5 | 236.3 | 0.95 | 31 | 0.0011260 | 3.60 | 44.4 | 53.1 | 0.73 |
Mean | 0.0003454 | 1.92 | 367.5 | 204.4 | 0.92 | Mean | 0.0005344 | 2.32 | 540.4 | 368.5 | 0.9 |
SEM | 0.0000637 | 0.25 | 97.7 | 47.9 | 0.02 | SEM | 0.0001743 | 0.49 | 175.0 | 151.0 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, A.C.; Smethells, J.R.; Palumbo, M.; Goniewicz, M.; LeSage, M.G. Comparison of the Relative Abuse Liability of Electronic Cigarette Aerosol Extracts and Nicotine Alone in Adolescent Rats: A Behavioral Economic Analysis. Int. J. Environ. Res. Public Health 2020, 17, 860. https://doi.org/10.3390/ijerph17030860
Harris AC, Smethells JR, Palumbo M, Goniewicz M, LeSage MG. Comparison of the Relative Abuse Liability of Electronic Cigarette Aerosol Extracts and Nicotine Alone in Adolescent Rats: A Behavioral Economic Analysis. International Journal of Environmental Research and Public Health. 2020; 17(3):860. https://doi.org/10.3390/ijerph17030860
Chicago/Turabian StyleHarris, Andrew C., John R. Smethells, Mary Palumbo, Maciej Goniewicz, and Mark G. LeSage. 2020. "Comparison of the Relative Abuse Liability of Electronic Cigarette Aerosol Extracts and Nicotine Alone in Adolescent Rats: A Behavioral Economic Analysis" International Journal of Environmental Research and Public Health 17, no. 3: 860. https://doi.org/10.3390/ijerph17030860
APA StyleHarris, A. C., Smethells, J. R., Palumbo, M., Goniewicz, M., & LeSage, M. G. (2020). Comparison of the Relative Abuse Liability of Electronic Cigarette Aerosol Extracts and Nicotine Alone in Adolescent Rats: A Behavioral Economic Analysis. International Journal of Environmental Research and Public Health, 17(3), 860. https://doi.org/10.3390/ijerph17030860