Contributions of Multiple Built Environment Features to 10-Year Change in Body Mass Index and Waist Circumference in a South Australian Middle-Aged Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Region
2.2. Measures
2.2.1. Outcome Measures—BMI and Waist Circumference
2.2.2. Built Environment
2.2.3. Area Socioeconomic Status
2.2.4. Covariate Variables
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Land Use Codes | Description | Type |
---|---|---|
4110 | Vacant allotment conservation or recreation | Passive |
4210 | Wooded area conservation | Passive |
4500 | Reserve | Passive |
4510 | Undeveloped reserve | Passive |
4520 | Developed reserve | Passive |
5560 | Botanical garden and arboretum | Passive |
7100 | Outdoor arenas, sports oval | Active |
7105 | Outdoor stadium/entertainment area | Active |
7110 | Athletics | Active |
7120 | Baseball | Active |
7130 | Cricket | Active |
7140 | Football | Active |
7141 | Australian rules | Active |
7142 | Soccer | Active |
7143 | Rugby | Active |
7150 | Hockey | Active |
7160 | Lacrosse | Active |
7210 | Archery | Active |
7220 | Basketball | Active |
7230 | Lawn Bowls | Active |
7240 | Croquet | Active |
7250 | Tennis | Active |
7260 | Sports grounds not elsewhere classified | Active |
7300 | Golf course | Active |
7310 | Golf—pitch and putt | Active |
7320 | Golf—putt putt | Active |
7330 | Golf—driving range | Active |
7420 | Racing track—bicycle | Active |
7530 | Parks and gardens including picnicking | Passive |
7900 | Recreation N.E.C. | Passive |
Appendix B
Category | Description |
---|---|
Fast Food Outlets | |
Hungry Jack’s | Major fast—food chain franchises (i.e., More than 10 franchises) |
McDonalds | Major fast—food chain franchises (i.e., More than 10 franchises) |
KFC | Major fast—food chain franchises (i.e., More than 10 franchises) |
Pizza Hut | Major fast—food chain franchises (i.e., More than 10 franchises) |
Red Rooster | Major fast—food chain franchises (i.e., More than 10 franchises) |
Barnacle Bill’s | Major fast—food chain franchises (i.e., More than 10 franchises) |
Fish and Chips | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Hamburgers, Hot Dogs | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Yiros | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Cooked Chicken | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Combination of the above | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Pizza | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Pies, Sausage Rolls, Pasties | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Snack bars | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Other | Independent fast—food takeaway stores (i.e., Independent store selling high—caloric food) |
Unhealthful retail | |
Patisserie, cake shops, cookies, pastry shops | Sweet food |
Chocolates, candies | Sweet food |
Ice cream/gelataria (e.g., Baskin n Robins, Cold Rock, Wendy’s, Mr. Whippy) | Sweet food |
Donut shop | Sweet food |
Muffin shop | Sweet food |
Convenience stores classified under grocer (e.g., 7-eleven, On the run, Topz Shopz, etc.) | Unhealthful food retailers |
Service station foodmarts | Unhealthful food retailers |
Bakeries | Bakeries |
Healthful retail | |
Green grocers | Healthful retailers |
Fresh Poultry | Healthful retailers |
Fresh Fish | Healthful retailers |
Butcher | Healthful retailers |
Health foods / nuts / natural remedies | Healthful retailers |
Supermarkets | Healthful retailers |
Fine Food (gourmet, pasta, cheeses etc.) | Healthful retailers |
References
- Caballero, B. The global epidemic of obesity: An overview. Epidemiol. Rev. 2007, 29, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global database on body mass index: An interactive surveillance tool for monitoring nutrition transition. Available online: http://apps.who.int/bmi/index.jsp (accessed on 11 September 2019).
- Mendis, S.; Puska, P.; Norrving, B. Global atlas on cardiovascular disease prevention and control: Policies, strategies and interventions. World Health Organisation. 2011. Available online: https://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/ (accessed on 17 February 2019).
- Greaves, C.J.; Sheppard, K.E.; Abraham, C.; Hardeman, W.; Roden, M.; Evans, P.H.; Schwarz, P. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 2011, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Floyd, M.F.; Rodriguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Chaix, B. The influence of geographic life environments on cardiometabolic risk factors: A systematic review, a methodological assessment and a research agenda. Obes. Rev. 2011, 12, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Black, C.; Moon, G.; Baird, J. Dietary inequalities: What is the evidence for the effect of the neighbourhood food environment? Health Place 2014, 27, 229–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renalds, A.; Smith, T.H.; Hale, P.J. A systematic review of built environment and health. Fam. Community Health 2010, 33, 68–78. [Google Scholar] [CrossRef]
- Feng, J.; Glass, T.A.; Curriero, F.C.; Stewart, W.F.; Schwartz, B.S. The built environment and obesity: A systematic review of the epidemiologic evidence. Health Place 2010, 16, 175–190. [Google Scholar] [CrossRef]
- Moore, L.V.; Diez Roux, A.V.; Nettleton, J.A.; Jacobs, D.R.; Franco, M. Fast-food consumption, diet quality, and neighborhood exposure to fast food: The multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2009, 170, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Bodicoat, D.H.; Carter, P.; Comber, A.; Edwardson, C.; Gray, L.J.; Hill, S.; Webb, D.; Yates, T.; Davies, M.J.; Khunti, K. Is the number of fast-food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and associated risk factors? Public Health Nutr. 2015, 18, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Reitzel, L.R.; Regan, S.D.; Nguyen, N.; Cromley, E.K.; Strong, L.L.; Wetter, D.W.; McNeill, L.H. Density and proximity of fast food restaurants and body mass index among African Americans. Am. J. Public Health 2014, 104, 110–116. [Google Scholar] [CrossRef]
- Bodor, J.N.; Rose, D.; Farley, T.A.; Swalm, C.; Scott, S.K. Neighbourhood fruit and vegetable availability and consumption: The role of small food stores in an urban environment. Public Health Nutr. 2008, 11, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodor, J.N.; Rice, J.C.; Farley, T.A.; Swalm, C.M.; Rose, D. The association between obesity and urban food environments. J. Urban Health 2010, 87, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auchincloss, A.H.; Mujahid, M.S.; Shen, M.; Michos, E.D.; Whitt-Glover, M.C.; Diez Roux, A.V. Neighborhood health-promoting resources and obesity risk (the Multi-Ethnic Study of Atherosclerosis). Obesity 2013, 21, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Malambo, P.; Kengne, A.P.; De Villiers, A.; Lambert, E.V.; Puoane, T. Built environment, selected risk factors and major cardiovascular disease outcomes: A systematic review. PLoS ONE 2016, 11, e0166846. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, A.O.; Sen, B.; Rahurkar, S.; Engler, S.; Menachemi, N. The relationship between built environments and physical activity: A systematic review. Am. J. Public Health 2012, 102, e7–e13. [Google Scholar] [CrossRef]
- Foster, C.; Hillsdon, M.; Jones, A.; Grundy, C.; Wilkinson, P.; White, M.; Sheehan, B.; Wareham, N.; Thorogood, M. Objective measures of the environment and physical activity: Results of the environment and physical activity study in English adults. J. Phys. Act. Health 2009, 6, S70–S80. [Google Scholar] [CrossRef]
- Richardson, E.; Pearce, J.; Mitchell, R.; Day, P.; Kingham, S. The association between green space and cause-specific mortality in urban New Zealand: An ecological analysis of green space utility. BMC Public Health 2010, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Sundquist, K.; Eriksson, U.; Mezuk, B.; Ohlsson, H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: A population-based study on 512,061 Swedish adults. Health Place 2015, 31, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Daniel, M.; Moore, S.; Kestens, Y. Framing the biosocial pathways underlying associations between place and cardiometabolic disease. Health Place 2008, 14, 117–132. [Google Scholar] [CrossRef]
- Hill, A.B. The environment and disease: Association or causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, T.D.; Campbell, D.T. Quasi-Experimental Designs for Reaearch in the Field; Rand McNally: Chicago, IL, USA, 1979. [Google Scholar]
- South Australia (SSC), Usual Resident Profile: Table U01 Usual Resident Characteristics; No. 2004.0; Australian Bureau of Statistics: Canbera, Australia, 2003.
- Grant, J.F.; Chittleborough, C.R.; Taylor, A.W.; Dal Grande, E.; Wilson, D.H.; Phillips, P.J.; Adams, R.J.; Cheek, J.; Price, K.; Gill, T.; et al. The North West Adelaide Health Study: Detailed methods and baseline segmentation of a cohort for selected chronic diseases. Epidemiol. Perspect. Innov. 2006, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, J.F.; Taylor, A.W.; Ruffin, R.E.; Wilson, D.H.; Phillips, P.J.; Adams, R.J.; Price, K. Cohort profile: The North West Adelaide Health Study (NWAHS). Int. J. Epidemiol. 2009, 38, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, R.W. Statistical Geography Volume 1 Australian Standard Geographical Classification (ASGC) 2001; Australian Bureau of Statistics: Canbera, Australia, September 2001.
- Leslie, E.; Coffee, N.; Frank, L.; Owen, N.; Bauman, A.; Hugo, G. Walkability of local communities: Using geographic information systems to objectively assess relevant environmental attributes. Health Place 2007, 13, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Defries, R.S.; Townshend, J.R.G. NDVI—derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Paquet, C.; Orschulok, T.P.; Coffee, N.T.; Howard, N.J.; Hugo, G.; Taylor, A.W.; Adams, R.J.; Daniel, M. Are accessibility and characteristics of public open spaces associated with a better cardiometabolic health? Landsc. Urban Plan. 2013, 118, 70–78. [Google Scholar] [CrossRef]
- Turrell, G.; Giskes, K. Socioeconomic disadvantage and the purchase of takeaway food: A multilevel analysis. Appetite 2008, 51, 69–81. [Google Scholar] [CrossRef]
- Babey, S.H.; Diamant, A.L.; Hastert, T.A.; Harvey, S.; Goldstein, H.; Flournoy, R.; Banthia, R.; Rubin, V.; Treuhaft, S. Designed for Disease: The Link between Local Food Environments and Obesity and Diabetes; California Centre for Public Health Advocacy: Davis, CA, USA; PolicyLink: Oakland, CA, USA; UCLA Center for Health Policy Research: Los Angeles, CA, USA, 2008. [Google Scholar]
- Australian Bureau of Statistics. Statistical Geography Volume 2: Census Geographic Areas Australia; Australian Bureau of Statistics: Canberra, Australia, 2002.
- Ngo, A.; Paquet, C.; Howard, N.; Coffee, N.; Taylor, A.; Adams, R.; Daniel, M. Area-level socioeconomic characteristics, prevalence and trajectories of cardiometabolic risk. Int. J. Environ. Res. Public Health 2014, 11, 830–848. [Google Scholar] [CrossRef] [Green Version]
- Murray, G.D.; Findlay, J.G. Correcting for the bias caused by drop-outs in hypertension trials. Stat. Med. 1988, 7, 941–946. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurence; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Wilcox, S.; Castro, C.; King, A.C.; Housemann, R.; Brownson, R.C. Determinants of leisure time physical activity in rural compared with urban older and ethnically diverse women in the United States. J. Epidemiol. Community Health 2000, 54, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Armitage, P.; Berry, G. Statistical Methods in Medical Research, 3rd ed.; Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Smith, K.R.; Brown, B.B.; Yamada, I.; Kowaleski-Jones, L.; Zick, C.D.; Fan, J.X. Walkability and body mass index: Density, design, and new diversity measures. Am. J. Prev. Med. 2008, 35, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Riley, D.L.; Mark, A.E.; Kristjansson, E.; Sawada, M.C.; Reid, R.D. Neighbourhood walkability and physical activity among family members of people with heart disease who participated in a randomized controlled trial of a behavioural risk reduction intervention. Health Place 2013, 21, 148–155. [Google Scholar] [CrossRef]
- Kruger, D.J.; Greenberg, E.; Murphy, J.B.; DiFazio, L.A.; Youra, K.R. Local concentration of fast-food outlets is associated with poor nutrition and obesity. Am. J. Health Promot. 2014, 28, 340–343. [Google Scholar] [CrossRef]
- Cooper, R.; Boyko, C.T.; Cooper, C. Design for health: The relationship between design and noncommunicable diseases. J. Health Commun. 2011, 16, 134–157. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Gee, G.C.; Fan, Y.; Takeuchi, D.T. Do physical neighborhood characteristics matter in predicting traffic stress and health outcomes? Transp. Res. Part F Traffic. Psychol. Behav. 2007, 10, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Blaine, B. Does depression cause obesity? A meta-analysis of longitudinal studies of depression and weight control. J. Health Psychol. 2008, 13, 1190–1197. [Google Scholar] [CrossRef]
- Mannan, M.; Mamun, A.; Doi, S.; Clavarino, A. Is there a bi-directional relationship between depression and obesity among adult men and women? Systematic review and bias-adjusted meta analysis. Asian J. Psychiatr. 2016, 21, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Lachowycz, K.; Jones, A.P. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Mavoa, S.; Villanueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Gehring, U.; Strak, M.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Janssen, N.A.H. Green space definition affects associations of green space with overweight and physical activity. Environ. Res. 2018, 160, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Leal, C.; Evans, D. Neighborhood-level confounding in epidemiologic studies: Unavoidable challenges, uncertain solutions. Epidemiology 2010, 21, 124–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, L.W.; Kreuter, M.W. Health Promotion Planning: An Educational and Ecological Approach, 3rd ed.; Mayfield Publishing Co.: Mountain View, CA, USA, 1999. [Google Scholar]
- Chaix, B.; Merlo, J.; Evans, D.; Leal, C.; Havard, S. Neighbourhoods in eco-epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Soc. Sci. Med. 2009, 69, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Müller-Riemenschneider, F.; Pereira, G.; Villanueva, K.; Christian, H.; Knuiman, M.; Giles-Corti, B.; Bull, F.C. Neighborhood walkability and cardiometabolic risk factors in Australian adults: An observational study. BMC Public Health 2013, 13, 755. [Google Scholar] [CrossRef] [Green Version]
- Coffee, N.T.; Howard, N.; Paquet, C.; Hugo, G.; Daniel, M. Is walkability associated with a lower cardiometabolic risk? Health Place 2013, 21, 163–169. [Google Scholar] [CrossRef]
- Villanueva, K.; Knuiman, M.; Nathan, A.; Giles-Corti, B.; Christian, H.; Foster, S.; Bull, F. The impact of neighborhood walkability on walking: Does it differ across adult life stage and does neighborhood buffer size matter? Health Place 2014, 25, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, S. The Modifiable Areal Unit Problem (Concepts and Techniques in Modern Geography); GeoBooks: Norwich, UK, 1984. [Google Scholar]
- Sugiyama, T.; Neuhaus, M.; Cole, R.; Giles-Corti, B.; Owen, N. Destination and route attributes associated with adults’ walking: A review. Med. Sci. Sports Exerc. 2012, 44, 1275–1286. [Google Scholar] [CrossRef]
- Sugiyama, T.; Gunn, L.D.; Christian, H.; Francis, J.; Foster, S.; Hooper, P.; Owen, N.; Giles-Corti, B. Quality of public open spaces and recreational walking. Am. J. Public Health 2015, 105, 2490–2495. [Google Scholar] [CrossRef]
- Carroll, S.J.; Paquet, C.; Howard, N.J.; Coffee, N.T.; Taylor, A.W.; Niyonsenga, T.; Daniel, M. Local descriptive norms for overweight/obesity and physical inactivity, features of the built environment, and 10-year change in glycosylated haemoglobin in an Australian population-based biomedical cohort. Soc. Sci. Med. 2016, 166, 233–243. [Google Scholar] [CrossRef]
Individual-Level Characteristics | n | Mean or % | SD | Median | Min | Max |
Age (Years) | 2253 | 51.0 | 16.9 | 50.0 | 18.0 | 90.0 |
Sex: Male | 1109 | 49.2% | - | - | - | - |
Female | 1144 | 50.8% | - | - | - | - |
Marital Status: married/de facto | 1390 | 61.7% | - | - | - | - |
not married/ de facto | 863 | 38.3% | - | - | - | - |
Smoking Status: smoker | 442 | 19.6% | - | - | - | - |
non-smoker | 1811 | 80.4% | - | - | - | - |
Employment Status: full/part-time employed | 1200 | 53.3% | - | - | - | - |
not currently employed | 1053 | 46.7% | - | - | - | - |
Education: university educated | 275 | 12.2% | - | - | - | - |
not university educated | 1978 | 87.8% | - | - | - | - |
Environmental exposures a | n | Mean or % | SD | Median | Min | Max |
Area SES | 2253 | 8.1% | 4.74 | 6.65 | 0.92 | 21.24 |
Dwelling density (n/km2) | 2253 | 1583.74 | 311.73 | 1577.47 | 83.67 | 2705.17 |
Intersection density (n/km2) | 2253 | 44.59 | 21.01 | 46.68 | 2.50 | 91.95 |
Land use mix | 2253 | 0.64 | 0.14 | 0.64 | 0.08 | 1.00 |
POS Area (total km2) | 2253 | 1.00 | 0.67 | 0.94 | 0.04 | 4.64 |
POS count | 2253 | 23.4 | 9.3 | 22.0 | 5.0 | 55.0 |
Greenness (median NDVI) | 2253 | −4.3 | 6.1 | −5.0 | −20.0 | 17.0 |
Fast food count (n) | 2253 | 7.2 | 4.5 | 7.0 | 0.0 | 26.0 |
RFEI | 2253 | 2.3 | 1.5 | 2.0 | 0.0 | 13.0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Baseline BMI | 1 n = 2253 | - | - | - | - | - | - | - | - | - | - | - |
2 | Baseline WC (males) | - | 1 n = 1109 | - | - | - | - | - | - | - | - | - | - |
3 | Baseline WC (females) | - | - | 1 n = 1144 | - | - | - | - | - | - | - | - | - |
4 | Area SES | −0.043* n = 2253 | −0.023 n = 1109 | −0.097** n = 1144 | 1 n = 2253 | - | - | - | - | - | - | - | - |
5 | Dwelling Density (per km2 within 1600m buffer) | −0.033 n = 2253 | −0.005 n = 1109 | −0.074* n = 1144 | 0.528**** n = 2253 | 1 n = 2253 | - | - | - | - | - | - | - |
6 | Land use mix (Entropy value within 1600m buffer) | 0.016 n = 2253 | 0.013 n = 1109 | 0.031 n = 1144 | −0.056** n = 2253 | 0.076*** n = 2253 | 1 n = 2253 | - | - | - | - | - | - |
7 | Intersection Density (per km2 within 1600m buffer) | −0.023 n = 2253 | −0.057 n = 1109 | −0.030 n = 1144 | 0.261**** n = 2253 | 0.367**** n = 2253 | −0.203**** n = 2253 | 1 n = 2253 | - | - | - | - | - |
8 | POS Count (number of POS parcels within 1600m buffer) | 0.005 n = 2253 | −0.013 n = 1109 | 0.045 n = 1144 | −0.161**** n = 2253 | −0.085**** n = 2253 | 0.031 n = 2253 | 0.006 n = 2253 | 1 n = 2253 | - | - | - | - |
9 | POS Area-all (Total m2 area per buffer) | −0.021 n = 2253 | 0.011 n = 1109 | 0.024 n = 1144 | −0.021 n = 2253 | −0.183**** n = 2253 | 0.234**** n = 2253 | −0.224**** n = 2253 | 0.375**** n = 2253 | 1 n = 2253 | - | - | - |
10 | Greenness (Median NDVI per all POS within buffer) | <−0.001 n = 2253 | −0.035 n = 1109 | −0.013 n = 1144 | 0.281**** n = 2253 | 0.150**** n = 2253 | −0.015 n = 2253 | 0.199**** n = 2253 | −0.132**** n = 2253 | −0.074*** n = 2253 | 1 n = 2253 | - | - |
11 | Fast Food Count (Fast Food within buffer) | −0.002 n = 2253 | 0.013 n = 1109 | −0.015 n = 1144 | 0.283**** n = 2253 | 0.346**** n = 2253 | −0.014 n = 2253 | 0.446**** n = 2253 | −0.024 n = 2253 | −0.155**** n = 2253 | 0.248**** n = 2253 | 1 n = 2253 | - |
12 | Retail Food Environment Index (RFEI per buffer) | −0.004 n = 2253 | −0.054 n = 1109 | 0.071* n = 1144 | −0.029 n = 2253 | 0.063** n = 2253 | 0.106**** n = 2253 | 0.035 n = 2253 | 0.0106 n = 2253 | −0.030 n = 2253 | −0.240 n = 2253 | 0.258**** n = 2253 | 1 n = 2253 |
Model I AIC = 23,344.67 | Model II AIC = 23,350.06 | Model III AIC = 23,354.58 | Model IV AIC = 23,361.57 | |
---|---|---|---|---|
Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | |
Age | −0.007**** (−0.008, −0.005) | −0.007**** (−0.008, −0.005) | −0.007**** (−0.008, −0.005) | −0.007**** (−0.008, −0.005) |
Sex (female) | 0.056**** (0.030, 0.083) | 0.056**** (0.030, 0.082) | 0.056**** (0.030, 0.082) | 0.055**** (0.029, 0.081) |
Employment (not employed) | 0.028 (−0.011, 0.067) | 0.028 (−0.011, 0.068) | 0.029 (−0.011, 0.068) | 0.028 (−0.012, 0.068) |
Education | −0.035 (−0.075, 0.006) | −0.034 (−0.075, 0.006) | −0.033 (−0.073, 0.007) | −0.033 (−0.073, 0.007) |
Marital Status | −0.016 (−0.048, 0.017) | −0.013 (−0.045, 0.019) | −0.014 (−0.047, 0.018) | −0.014 (−0.046, 0.018) |
Smoking Status (smoker) | 0.081** (0.035, 0.128) | 0.081** (0.035, 0.128) | 0.080** (0.034, 0.127) | 0.081** (0.034, 0.127) |
Area SES | −0.016 (−0.034, 0.001) | −0.024* (−0.042, −0.005) | −0.025** (−0.043, −0.007) | −0.025* (−0.043, −0.006) |
Dwelling Density | - | 0.019* (0.004, 0.035) | 0.022** (0.008, 0.037) | 0.022** (0.008, 0.037) |
Intersection Density | - | −0.005 (−0.022, 0.011) | −0.003 (−0.019, 0.014) | −0.003 (−0.021, 0.014) |
Land use mix | - | −0.005 (−0.021, 0.012) | −0.009 (−0.026, 0.008) | −0.010 (−0.027, 0.008) |
POS area | - | - | 0.019* (0.001, 0.037) | 0.018 (−0.001, 0.037) |
POS count | - | - | 0.001 (−0.017, 0.019) | 0.001 (−0.017, 0.019) |
Greenness (NDVI) | - | - | −0.003 (−0.018, 0.013) | −0.003 (−0.018, 0.013) |
Fast food count (n) | - | - | - | −0.001 (−0.016, 0.014) |
RFEI | - | - | - | 0.006 (−0.012, 0.024) |
Model I AIC = 35,905.55 | Model II AIC = 35,907.31 | Model III AIC = 35,908.26 | Model IV AIC = 35,914.08 | |
---|---|---|---|---|
Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | Estimate (95% CI) | |
Age | −0.013**** (−0.017, −0.008) | −0.013**** (−0.018, −0.008) | −0.013**** (−0.018, −0.009) | −0.013**** (−0.018, −0.009) |
Sex (female) | 0.115* (0.020, 0.209) | 0.112* (0.018, 0.206) | 0.110* (0.016, 0.205) | 0.110* (0.015, 0.205) |
Employment (not employed) | 0.122 (−0.003, 0.247) | 0.124 (−0.001, 0.249) | 0.126 (0.000, 0.251) | 0.123 (−0.003, 0.250) |
Education | −0.099 (−0.227, 0.029) | −0.097 (−0.226, 0.031) | −0.097 (−0.224, 0.030) | −0.101 (−0.228, 0.026) |
Marital Status | −0.032 (−0.146, 0.082) | −0.019 (−0.133, 0.094) | −0.022 (−0.136, 0.091) | −0.020 (−0.134, 0.094) |
Smoking status (smoker) | 0.313**** (0.191, 0.434) | 0.314**** (0.194, 0.433) | 0.314**** (0.194, 0.434) | 0.313**** (0.192, 0.433) |
Area SES | −0.049 (−0.099, 0.000) | −0.083** (−0.134, −0.032) | −0.096**** (−0.145, −0.047) | −0.098**** (−0.148, −0.048) |
Dwelling Density | - | 0.093**** (0.043, 0.143) | 0.108**** (0.057, 0.159) | 0.106**** (0.057, 0.155) |
Intersection Density | - | −0.033 (−0.087, 0.020) | −0.028 (−0.079, 0.023) | −0.035 (−0.089, 0.019) |
Land use mix | - | −0.025 (−0.075, 0.025) | −0.040 (−0.089, 0.010) | −0.042 (−0.091, 0.006) |
POS area | - | - | 0.063** (0.017, 0.110) | 0.064* (0.015, 0.114) |
POS Count | - | - | −0.026 (−0.082, 0.031) | −0.026 (−0.082, 0.030) |
Greenness (NDVI) | - | - | 0.012 (−0.038, 0.062) | 0.010 (−0.040, 0.060) |
Fast Food Count (n) | - | - | - | 0.019 (−0.036, 0.073) |
RFEI | - | - | - | 0.013 (−0.038, 0.065) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, S.J.; Dale, M.J.; Taylor, A.W.; Daniel, M. Contributions of Multiple Built Environment Features to 10-Year Change in Body Mass Index and Waist Circumference in a South Australian Middle-Aged Cohort. Int. J. Environ. Res. Public Health 2020, 17, 870. https://doi.org/10.3390/ijerph17030870
Carroll SJ, Dale MJ, Taylor AW, Daniel M. Contributions of Multiple Built Environment Features to 10-Year Change in Body Mass Index and Waist Circumference in a South Australian Middle-Aged Cohort. International Journal of Environmental Research and Public Health. 2020; 17(3):870. https://doi.org/10.3390/ijerph17030870
Chicago/Turabian StyleCarroll, Suzanne J., Michael J. Dale, Anne W. Taylor, and Mark Daniel. 2020. "Contributions of Multiple Built Environment Features to 10-Year Change in Body Mass Index and Waist Circumference in a South Australian Middle-Aged Cohort" International Journal of Environmental Research and Public Health 17, no. 3: 870. https://doi.org/10.3390/ijerph17030870
APA StyleCarroll, S. J., Dale, M. J., Taylor, A. W., & Daniel, M. (2020). Contributions of Multiple Built Environment Features to 10-Year Change in Body Mass Index and Waist Circumference in a South Australian Middle-Aged Cohort. International Journal of Environmental Research and Public Health, 17(3), 870. https://doi.org/10.3390/ijerph17030870