Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China
Abstract
:1. Background
2. Methods
2.1. Data
2.2. Health Status Measurement
- Hypertension
- Dyslipidemia
- Diabetes or high blood sugar
- Cancer or malignant tumor (excluding minor skin cancers)
- Chronic lung diseases, such as chronic bronchitis, emphysema (excluding tumors, or cancer)
- Liver disease (except fatty liver, tumors, and cancer)
- Heart attack, coronary heart disease, angina, congestive heart failure, or other heart problems
- Stroke
- Kidney disease (except for tumor or cancer)
- Stomach or other digestive disease (except for tumor or cancer)
- Emotional, nervous, or psychiatric problems
- Memory-related disease
- Arthritis or rheumatism
- Asthma
- Excellent
- Very good
- Good
- Fair
- Poor
2.3. Independent Variables
2.4. Coarsened Exact Matching Method
2.5. Statistical Analysis
2.6. Decomposition Method
3. Result
3.1. Matching Performance
3.2. Description of Health Status
3.3. Adjusted Associations between Health Status and its Determinants
3.4. Decomposition Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
Abbreviations
NBC | National Bureau of Statistics |
CHARLS | China Health and Retirement Longitudinal Study |
CEM | coarsened exact matching method |
SAH | self-assessed of health status |
Hukou | Chinese household registration system |
NCMS | New cooperative medical scheme |
95%CI | 95% Coefficient Interval |
References
- The National Bureau of Statistics. Survey Report on Rural-to-Urban Migrants. 2015. Available online: http://www.stats.gov.cn/tjsj/zxfb/201604/t20160428_1349713.html (accessed on 23 December 2019).
- Wu, M.; Duan, C.; Zhu, X. Effect of Social Support on Psychological Well-being in Elder Rural-urban Migrants. Popul. J. 2016, 4, 93–102. [Google Scholar]
- Yu, S. The Employment Promotion of Older Workers in the Context of Ageing. J. Wuhan Univ. Philos. Soc. Sci. 2017, 70, 30–41. [Google Scholar]
- Fan, C.C. Out to the city and back to the village: Experiences and contributions of rural women migrating from Sichuan and Anhui. In On the Move: Women in Rural-to-Urban Migration in Contemporary China; Gaetano, A.M., Jacka, T., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 177–206. [Google Scholar]
- Lu, Y. Test of the ‘healthy migrant hypothesis’: A longitudinal analysis of health selectivity of internal migration in Indonesia. Soc. Sci. Med. 2008, 67, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubalcava, L.N.; Teruel, G.M.; Thomas, D.; Goldman, N. The healthy migrant effect: New findings from the Mexican family life survey. Am. J. Public Health 2008, 98, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Internal migration and health: Re-examining the healthy migrant phenomenon in china. Soc. Sci. Med. 2011, 72, 1294–1301. [Google Scholar] [CrossRef]
- Poulter, N.R.; Khaw, K.T.; Hopwood, B.E.C.; Mugambi, M.; Sever, P.S. The Kenyan Luo migration study: Observations on the initiation of a rise in blood pressure. BMJ Clin. Res. 1990, 300, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Stanton, B.; Fang, X.; Xiong, Q.; Yu, S.; Lin, D.; Hong, Y.; Chen, X.; Wang, B. Mental health symptoms among rural-to-urban migrants in China: A comparison with their urban and rural counterparts. World Health Popul. 2009, 11, 24–38. [Google Scholar] [CrossRef]
- Jing, G.; Li, P.; Hui, F. Status and influencing factors of self-rated health among floating elderly population: An analysis with ordinal logistic regression. Chin. J. Public Health 2017, 33, 1697–1700. [Google Scholar]
- Wang, H. Self-rated health status and its influencing factors of the floating elderly: A Perspective of urban-rural difference. Northwest Popul. 2018, 3, 52–62. [Google Scholar]
- Chen, N.; Shi, R. Empirical Research on Health Disparity of the Floating Old People. Chongqing Soc. Sci. 2017, 7, 55–62. [Google Scholar]
- Hong, M.; Yue, L. Health difference and influence factors of middle-aged and elderly migrant workers in China. Popul. Soc. 2018, 3404, 42–50. [Google Scholar]
- Tong, Y.; Piotrowski, M.; Ye, H. Differences in the health–age profile across rural and urban sectors: A study on migrants and non-migrants in China. Public Health 2018, 158, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H. Elderly migrant workers health, work and social security status of silting. South. Popul. 2017, 32, 25–33. [Google Scholar]
- Sidney, J.A.; Coberley, C.; Pope, J.E.; Wells, A. Extending coarsened exact matching to multiple cohorts: An application to longitudinal well-being program evaluation within an employer population. Health Serv. Outcomes Res. Methodol. 2015, 15, 136–156. [Google Scholar] [CrossRef]
- Su, M.; Zhou, Z.; Si, Y.; Wei, X.; Xu, Y.; Fan, X.; Chen, G. Comparing the effects of China’s three basic health insurance schemes on the equity of health-related quality of life: Using the method of coarsened exact matching. Health Qual. Life Outcomes 2018, 16, 41. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort profile: The china health and retirement longitudinal study (Charls). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [Green Version]
- CHARLS. 2015. Available online: http://charls.pku.edu.cn/pages/data/2015-charls-wave4/zh-cn.html (accessed on 23 December 2019).
- Strauss, J.; Lei, X.; Park, A.; Shen, Y.; Smith, J.P.; Yang, Z.; Zhao, Y. Health outcomes and socio-economic status among the elderly in China: Evidence from the CHARLS Pilot. J. Popul. Ageing 2010, 3, 111–142. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Ling, X.; Chenggang, D.; Zhuochun, W. Comparison of different health indicators used to evaluate health equity. Med. Soc. 2010, 23, 1–3. [Google Scholar]
- Song, Y.; Sun, W. Health consequences of rural-to-urban migration: Evidence from panel data in China. Health Econ. 2015, 25, 1252–1267. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Teh, C.H.; Lim, K.K.; Lim, K.H.; Yeo, P.S.; Kee, C.C.; Omar, M.A.; Ahmad, N.A. Lifestyle, chronic diseases and self-rated health among malaysian adults: Results from the 2011 national health and morbidity survey (NHMS). BMC Public Health 2015, 15, 754. [Google Scholar] [CrossRef] [Green Version]
- Kumparatana, P.; Cournos, F.; Terlikbayeva, A.; Rozental, Y.; Gilbert, L. Factors associated with self-rated health among migrant workers: Results from a population-based cross-sectional study in Almaty, Kazakhstan. Int. J. Public Health 2017, 62, 541–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.; Meng, X.; Cui, S.; Wang, J.; Li, C. Income-related health inequality of migrant workers in china and its decomposition: An analysis based on the 2012 china labor-force dynamics survey data. J. Chin. Med. Assoc. 2016, 79, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, L.; Lin, C. Analysis of influencing factors on health status of migrant workers. South. Popul. 2010, 25, 10–17. [Google Scholar]
- Preibisch, K.; Hennebry, J. Temporary migration, chronic effects: The health of international migrant workers in canada. CMAJ Can. Med. Assoc. J. 2011, 183, 1033–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, O.; Doorslaer, E.V.; Wagstaff, A.; Lindelow, M. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation; World Bank: Washington, DC, USA, 2008; Volume 86, p. 816. [Google Scholar]
- Mark, G.; Subramanian, S.V.; Daniel, V.; Danny, D. Internal migration, area effects and health: Does where you move to impact upon your health? Soc. Sci. Med. 2015, 136–137, 27–34. [Google Scholar]
- Ho, D.E.; Imai, K.; Stuart, K.E.A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 2007, 15, 199–236. [Google Scholar] [CrossRef] [Green Version]
- Baldacci, E.; Teresa, M.G.; Demello, O.L. More on the effectiveness of public spending on health care and education. J. Int. Dev. 2010, 15, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Iacus, S.M.; King, G.; Porro, G. Causal inference without balance checking: Coarsened exact matching. Polit. Anal. 2012, 20, 1–24. [Google Scholar] [CrossRef]
- Gotsadze, G.; Murphy, A.; Shengelia, N.; Zoidze, A. Healthcare utilization and expenditures for chronic and acute conditions in Georgia: Does benefit package design matter? BMC Health Serv. Res. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Iacus, S.M.; King, G.; Porro, G. Multivariate matching methods that are monotonic imbalance bounding. J. Am. Stat. Assoc. 2011, 106, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Oaxaca, R.L.; Ransom, M.R. On discrimination and the decomposition of wage differentials. J. Econ. 1994, 61, 5–21. [Google Scholar] [CrossRef]
- Blinder, A.S. Wage discrimination: Reduced form and structural estimates. J. Hum. Resour. 1973, 8, 436–455. [Google Scholar] [CrossRef]
- Jiménez-Rubio, D.; Hernández-Quevedo, C. Inequalities in the use of health services between immigrants and the native population in Spain: What is driving the differences? Eur. J. Health Econ. 2011, 12, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, A.V.; Fang, H.; Garza, J.; Carter-Pokras, O.; Wallace, S.P.; Rizzo, J.A.; Ortega, A.N. Variations in healthcare access and utilization among Mexican immigrants: The role of documentation status. J. Immigr. Minor. Health 2012, 14, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Fairlie, R.W. The absence of the African-American owned business: An analysis of the dynamics of self-employment. J. Labor Econ. 1999, 17, 80–108. [Google Scholar] [CrossRef] [Green Version]
- Fairlie, R.W.; Moore, A.G.; Bauskin, A.R.; Russell, P.K.; Zhang, H.P.; Breit, S.N. MIC-1 is a novel TGF-β superfamily cytokine associated with macrophage activation. J. Leukoc. Biol. 1999, 65, 2–5. [Google Scholar] [CrossRef]
- Singh, R.; Mukherjee, P. ‘Whatever she may study, she can’t escape from washing dishes’: Gender inequity in secondary education-evidence from a longitudinal study in India. Comp. J. Comp. Int. Educ. 2018, 48, 262–280. [Google Scholar] [CrossRef]
- Qi, Y.; Niu, J.N.; William, M. Study on the Health Selection Mechanism in China’s Population Movement. Popul. Stud. 2012, 102–112. [Google Scholar]
- Sun, W.; Wang, X.; Bai, C. Income inequality and mobility of rural households in China from 2003 to 2006. China Agric. Econ. Rev. 2014, 6, 73–91. [Google Scholar] [CrossRef]
- McKay, S.; Craw, M.; Chopra, D. Migrant Workers in England and Wales: An Assessment of Migrant Worker Health and Safety Risks; Health and Safety Executive: London, UK, 2006. [Google Scholar]
- Wang, X.; Huang, W.; Yang, J.; Ren, L.; Deng, K.; Xu, Y. Study on the relationship between chronic diseases and self-evaluation of health among rural elderly. Chin. J. Mod. Med. 2013, 232, 100–103. [Google Scholar]
- Zhang, F.; Xu, H. A study on the relationship between health self-assessment and chronic diseases in the elderly population. Chin. J. Gerontol. 2008, 28, 2353–2355. [Google Scholar]
- Meng, Q.; Zhang, J.; Yan, F.; Hoekstra, E.J.; Zhuo, J. One country, two worlds—The health disparity in China. Glob. Public Health 2012, 7, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, Z.; Si, Y.; Xu, Y.; Shen, C.; Wang, Y.; Wang, X. Unequal distribution of health human resource in mainland China: What are the determinants from a comprehensive perspective? Int. J. Equity Health 2018, 17, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, A.H. Studies of bathing water quality and health. Am. J. Public Health Nations Health 1953, 43, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Laposky, A.D.; Van Cauter, E.; Diez-Roux, A.V. Reducing health disparities: The role of sleep deficiency and sleep disorders. Sleep Med. 2016, 18, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Sekine, M.; Chandola, T.; Martikainen, P.; McGeoghegan, D.; Marmot, M.; Kagamimori, S. Explaining social inequalities in health by sleep: The Japanese civil servants study. J. Public Health 2005, 28, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H. Ensuring sleep to promote a healthy brain and mind, sleep, mental and physical health, the brain, and lifestyle in the elderly. Community Public Health 2002, 6, 4–27. (In Japanese) [Google Scholar]
- Gabriella, C.; James, H.; Sergio, U. The education-health gradient. Am. Econ. Rev. 2010, 100, 234–238. [Google Scholar]
- Guo, X. The social security system the social capital and the rural elderly farmers’ health—An empirical analysis based on chinese general social survey data in 2010. Econ. Survey. 2017, 1, 44–49. [Google Scholar]
- Beibei, H. Analysis on the present situation and countermeasures of medical insurance for migrant workers in China. Manag. Obs. 2017, 9, 141–142. [Google Scholar]
- Hu, F. Migration, remittances, and children’s high school attendance: The case of rural china. International J. Educ. Dev. 2012, 32, 401–411. [Google Scholar] [CrossRef]
- Julnes, G. Review of experimental and quasi-experimental designs for generalized causal inference: By w.r. shadish, t.d. cook, d.t. campbell, 2002; houghton-mifflin, boston. Eval. Prog. Plan. 2004, 27, 173–185. [Google Scholar] [CrossRef]
Variable | Before Matching N (%) | After Matching N (%) | |||||
---|---|---|---|---|---|---|---|
Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | p-Value | Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | p-Value * | p-Value # | |
Gender | 0.195 | 0.089 | 1 | ||||
Men † | 110 (42.47) | 1496 (46.74) | 84 (39.07) | 303 (27.87) | |||
Women | 149 (57.53) | 1705 (53.26) | 131 (60.93) | 784 (72.13) | |||
Age | 0.588 | 0.849 | 0.4889 | ||||
50–54 † | 98 (38.58) | 1236 (38.61) | 88 (40.93) | 463 (42.59) | |||
55–60 | 66 (25.98) | 925 (28.90) | 63 (29.30) | 386 (35.51) | |||
61–65 | 90 (35.43) | 1040 (32.49) | 64 (29.77) | 238 (21.90) | |||
Living arrangement | 0.191 | 0.121 | 1 | ||||
Live with spouse † | 227 (87.64) | 2699 (84.32) | 195 (90.70) | 1033 (95.03) | |||
Live without spouse | 32 (12.36) | 502 (15.68) | 20 (9.30) | 54 (4.97) | |||
Educational attainment | <0.05 | 0.085 | 1 | ||||
Below primary school † | 215 (84.65) | 2542 (79.41) | 79 (36.74) | 317 (29.16) | |||
Primary school | 31 (12.20) | 461 (14.40) | 70 (32.56) | 406 (37.35) | |||
Middle school and above | 8 (3.15) | 198 (6.19) | 66 (30.70) | 364 (33.49) | |||
Medical scheme | 0.352 | 0.466 | 0.3362 | ||||
Yes † | 219 (84.56) | 2773 (86.63) | 195 (90.70) | 1002 (92.18) | |||
None | 25 (9.65) | 250 (7.81) | 20 (9.30) | 85 (7.82) | |||
Basic endowment scheme | < 0.05 | < 0.05 | 0.059 | 0.1436 | |||
Yes † | 169 (65.25) | 2287 (71.45) | 142 (66.05) | 808 (74.33) | |||
None | 90 (34.75) | 914 (28.55) | 73 (33.95) | 279 (25.67) | |||
Social activity | < 0.01 | 0.073 | 1 | ||||
None † | 154 (59.46) | 1576 (49.23) | 130 (60.47) | 764 (70.29) | |||
1 | 59 (22.78) | 949 (29.65) | 51 (23.72) | 197 (18.12) | |||
≥2 | 46 (17.76) | 676 (21.12) | 34 (15.81) | 126 (11.59) | |||
Sleeping time | 0.774 | 0.630 | 1 | ||||
≤4 † | 38 (14.96) | 419 (14.09) | 26 (12.09) | 121 (11.13) | |||
4–8 | 141 (55.51) | 1859 (58.08) | 130 (60.47) | 746 (68.63) | |||
>8 | 75 (29.53) | 923 (28.83) | 59 (27.44) | 220 (20.24) | |||
Smoke | < 0.05 | 0.072 | 1 | ||||
Yes † | 80 (31.50) | 878 (27.43) | 59 (27.44) | 198 (18.22) | |||
No | 174 (68.50) | 2323 (72.57) | 156 (72.56) | 889 (81.78) | |||
Alcohol use | 0.164 | 0.092 | 1 | ||||
Yes † | 104 (40.94) | 1079 (33.71) | 76 (35.35) | 272 (25.02) | |||
No | 150 (59.06) | 2211 (66.29) | 139 (64.65) | 815 (74.98) | |||
Bath | |||||||
Yes † | 108 (42.52) | 1615 (50.45) | 89 (41.40) | 172 (15.93) | |||
No | 146 (57.48) | 1586 (49.55) | 126 (58.60) | 908 (84.07) | |||
Region | <0.001 | <0.05 | 0.1673 | ||||
East † | 55 (21.24) | 1223 (38.21) | 47 (21.86) | 406 (37.35) | |||
Middle | 60 (23.17) | 875 (27.34) | 50 (23.26) | 289 (26.59) | |||
West | 144 (55.6) | 1103 (34.46) | 118 (54.88) | 392 (36.06) | |||
Income quantiles | 0.326 | 0.897 | 0.3826 | ||||
Poorest † | 71 (16.82) | 2423 (22.90) | 48 (22.33) | 226 (20.79) | |||
Poorer | 108 (25.59) | 2268 (21.43) | 42 (19.53) | 214 (19.69) | |||
Middle | 96 (22.75) | 2136 (20.19) | 50 (23.26) | 224 (20.61) | |||
Richer | 71 (16.82) | 2164 (20.45) | 30 (13.95) | 236 (21.71) | |||
Richest | 76 (18.01) | 1590 (15.03) | 45 (20.93) | 187 (17.20) | |||
N | 259 | 3201 | 215 | 1302 |
Variable | Good SAH | Bad SAH | Suffering from Chronic Disease | Not Suffering from Chronic Disease | ||||
---|---|---|---|---|---|---|---|---|
Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | |
Gender | ||||||||
Men † | 77 (40.10) | 7 (30.43) | 244 (26.01) | 59 (39.60) | 65(38.92) | 19(39.58) | 216(26.93) | 87(30.53) |
Women | 115 (59.90) | 16 (69.57) | 694(73.99) | 90 (60.40) | 102(61.08) | 29(60.42) | 586(73.07) | 198(69.47) |
Age | ||||||||
50–54 | 79 (41.15) | 9 (39.13) | 404 (43.07) | 59 (39.60) | 76(45.51) | 12(25.00) | 358(44.64) | 105(36.84) |
55–60 | 62 (32.29) | 1 (4.35) | 327 (34.86) | 59 (39.60) | 43(25.75) | 20(41.67) | 278(34.66) | 108(37.89) |
61–65 | 51(26.56) | 13 (56.52) | 207 (22.07) | 31 (20.81) | 48(28.74) | 16(33.33) | 166(20.70) | 72(25.26) |
Living arrangement | ||||||||
Live with spouse † | 173 (90.10) | 22(95.65) | 893(95.20) | 140 (93.96) | 151(90.42) | 44(91.67) | 772(96.26) | 261(91.58) |
Live without spouse | 19 (9.90) | 1 (4.35) | 45 (4.80) | 9 (6.04) | 16(9.58) | 4(8.33) | 30(3.74) | 24(8.42) |
Educational attainment | ||||||||
Below primary school † | 70 (36.46) | 9(39.13) | 271(28.89) | 46 (30.87) | 55(32.93) | 24(50.00) | 226(28.18) | 91(31.93) |
Primary school | 64 (33.33) | 6 (26.09) | 353 (37.63) | 53 (35.57) | 52(31.14) | 18(37.50) | 298(37.16) | 108(37.89) |
Middle school and above | 58 (30.21) | 8 (34.78) | 314 (33.48) | 50 (33.56) | 60(35.93) | 6(12.50) | 278(34.66) | 86(30.18) |
Medical scheme | ||||||||
Yes † | 175 (91.15) | 20 (86.96) | 961 (81.79) | 141 (94.63) | 148(88.62) | 47(97.92) | 728(90.77) | 274(96.14) |
None | 17 (8.85) | 3 (13.04) | 77 (8.21) | 8 (5.37) | 19(11.38) | 1(2.08) | 74(9.32) | 11(3.86) |
Basic endowment scheme | ||||||||
Yes † | 123 (64.06) | 19 (82.61) | 699 (74.52) | 109 (73.15) | 105(62.87) | 37(77.08) | 586(73.07) | 222(77.89) |
None | 69 (35.94) | 4 (17.39) | 239 (25.48) | 40 (26.85) | 62(37.13) | 11(22.92) | 216(26.93) | 63(22.11) |
Social activity | ||||||||
None † | 116(60.42) | 14 (60.87) | 666 (71.00) | 98 (65.77) | 105(62.87) | 25(52.08) | 560(69.83) | 204(71058) |
1 | 43 (22.40) | 8 (34.78) | 171 (18.23) | 26 (17.45) | 39(23.34) | 12(25.00) | 148(18.45) | 49(17.19) |
≥2 | 33 (17.19) | 1 (4.35) | 101 (10.77) | 25 (16.78) | 23(13.77) | 11(22.92) | 94(11.72) | 32(11.23) |
Sleeping time | ||||||||
≤4 | 22 (11.46) | 4 (17.39) | 112(11.94) | 9 (6.04) | 24(14.37) | 2(4.17) | 110(13.72) | 11(3.86) |
4~8 | 120 (62.50) | 10 (43.48) | 640 (68.23) | 106 (71.14) | 98 (58.68) | 32(66.67) | 534(66.58) | 212(74.39) |
>8 | 50 (26.04) | 9 (39.13) | 186 (19.83) | 34 (22.82) | 45(25.95) | 14(29.17) | 158(19.70) | 62(21.75) |
Smoke | ||||||||
Yes † | 52 (27.08) | 7 (30.43) | 155 (16.52) | 43 (28.86) | 46 (27.54) | 13(27.08) | 127 (15.84) | 71(254.91) |
No | 140 (72.92) | 16 (69.57) | 783 (83.48) | 106 (71.14) | 121 (72.46) | 35(72.92) | 675 (84.16) | 214(75.09) |
Alcohol use | ||||||||
Yes † | 70 (36.46) | 6(26.09) | 220(23.45) | 52 (34.90) | 58(34.73) | 18(37.50) | 195(24.31) | 77(27.02) |
No | 122 (63.54) | 17(73.91) | 718(76.55) | 97 (65.10) | 109(65.27) | 30(62.50) | 607(75.69) | 208(72.98) |
Bath | ||||||||
Yes † | 77 (40.10) | 12 (52.17) | 414 (44.14) | 86 (57.72) | 69 (41.32) | 20 (41.67) | 349 (43.52) | 151 (52.98) |
No | 115 (59.90) | 11 (47.83) | 524 (55.86) | 63 (42.28) | 98 (58.68) | 28 (58.33) | 453 (56.48) | 134 (47.02) |
Region | ||||||||
East † | 38 (19.79) | 9 (39.13) | 331 (35.29) | 75 (50.34) | 34(20.36) | 13(27.08) | 278(34.66) | 128(44.91) |
Middle | 44 (22.92) | 6 (26.09) | 251(26.76) | 38 (25.50) | 33(19.76) | 17(35.42) | 225(28.05) | 64(22.46) |
West | 110 (57.29) | 8 (34.78) | 356 (37.95) | 365 (24.16) | 100(59.88) | 18(37.50) | 299(37.28) | 93(32.63) |
Income quantiles | ||||||||
Poorest † | 41 (21.35) | 7 (30.43) | 202 (21.54) | 24 (16.11) | 37(22.16) | 11(22.92) | 168(20.95) | 58(20.35) |
Poorer | 41 (21.35) | 1 (4.35) | 188(20.04) | 26 (17.45) | 34(20.36) | 8(16.67) | 155(19.33) | 59(20.70) |
Middle | 41 (21.35) | 9 (39.13) | 185 (19.72) | 39 (26.17) | 36(21.56) | 14(29.17) | 148(18.45) | 76(26.67) |
Richer | 27 (14.06) | 3 (13.04) | 204(21.75) | 32 (21.48) | 29(17.37) | 1(2.08) | 182(22.69) | 54(18.95) |
Richest | 41 (21.88) | 3 (13.04) | 159 (16.95) | 28 (18.79) | 31(18.56) | 14(29.17) | 149(18.580) | 38(13.33) |
N | 192(89.30) | 23 (10.70) | 938 (86.29) | 149 (13.71) | 167(76.77) | 48(22.33) | 822(73.78) | 285(26.22) |
Variable | SAH | Chronic Disease Condition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Older Rural-to-Urban Migrant Workers | Older Rural Dwellers | Older Rural-to-Urban Migrant Workers | older Rural Dwellers | |||||||||
Coefficient | [95% CI] | Coefficient | [95% CI] | Coefficient | [95% CI] | Coefficient | [95% CI] | |||||
Gender | −1.5718 | −4.4291 | 1.2856 | 0.0378 | −0.6869 | 0.7625 | −0.2126 | −1.4023 | 0.9772 | −0.8626 *** | −1.5119 | −0.2133 |
Age | ||||||||||||
55–60 | 1.6919 | −0.8663 | 4.2501 | −0.2398 | −0.6521 | 0.1724 | −0.6197 | −1.6093 | 0.3700 | −0.2805 | −0.6110 | 0.0501 |
61–65 | −1.8364 * | −3.6417 | −0.0310 | −0.1102 | −0.6367 | 0.4163 | −0.3953 | −1.3944 | 0.6039 | −0.2352 | −0.6386 | 0.1682 |
Living arrangement | 3.9501 * | 0.8196 | 7.0807 | −0.0812 | −0.8790 | 0.7165 | 0.5437 | −0.8025 | 1.8900 | −0.5560 | −1.1678 | 0.0559 |
Educational attainment | ||||||||||||
Primary school | −0.3456 | −2.2686 | 1.5774 | 0.0548 | −0.3984 | 0.5081 | −0.0809 | −0.9503 | 0.7886 | 0.0270 | −0.3279 | 0.3820 |
Middle school and above | −0.5405 | −2.5374 | 1.4563 | −0.0174 | −0.4987 | 0.4638 | 1.2849 ** | 0.1313 | 2.4385 | 0.2530 | −0.1290 | 0.6351 |
Medical scheme | −0.5099 | −3.2417 | 2.2219 | 0.1897 | −0.5964 | 0.9757 | 1.6634 | −0.5694 | 3.8963 | 0.5960 | −0.0816 | 1.2736 |
endowment scheme | 2.4554 * | 0.2016 | 4.7091 | 0.0531 | −0.3595 | 0.4658 | 0.9223 | −0.0404 | 1.8849 | 0.2240 | −0.1193 | 0.5674 |
Social activity | ||||||||||||
1 | −1.1014 | −2.8714 | 0.6686 | 0.1575 | −0.3427 | 0.6577 | −0.4311 | −1.4568 | 0.5946 | 0.2068 | −0.1819 | 0.5954 |
≥2 | 2.7588 | −0.3220 | 5.8396 | −0.2825 | −0.8409 | 0.2758 | −0.7236 | −1.7992 | 0.3521 | 0.3164 | −0.1721 | 0.8050 |
Sleeping time | ||||||||||||
4~8 | 2.2319 * | 0.0519 | 4.4119 | −0.3607 | −1.1074 | 0.3860 | −1.1958 | −2.8496 | 0.4581 | −1.3422 *** | −2.0044 | −0.6800 |
>8 | 1.2174 | −1.0711 | 3.5059 | −0.5215 | −1.3348 | 0.2917 | −0.9221 | −2.6711 | 0.8269 | −1.3115 *** | −2.0259 | −0.5971 |
Alcohol use | 0.2774 | −1.8238 | 2.3786 | 0.1804 | −0.1370 | 0.4978 | 0.6628 | −0.3256 | 1.6511 | 0.0184 | −0.2504 | 0.2872 |
Smoke | 2.6763 | −0.1549 | 5.5075 | 0.3907 | −0.2965 | 1.0779 | −0.1906 | −1.4793 | 1.0980 | 1.2873 ** | 0.6626 | 1.9119 |
Bath | 0.6029 | −0.9571 | 2.1629 | 0.5189 | 0.1279 | 0.9099 | −0.3518 | −1.2942 | 0.5905 | 0.3081 * | 0.0017 | 0.6146 |
Region | ||||||||||||
Middle | 2.9654 ** | −0.5666 | 5.3642 | 0.3566 | −0.0941 | 0.8074 | −0.5750 | −1.7166 | 0.5666 | 0.4815 ** | 0.1059 | 0.8571 |
West | 3.1471 *** | 1.0595 | 5.2347 | 0.6995 ** | 0.2494 | 1.1497 | 0.4132 | −0.6000 | 1.4264 | 0.3377 | −0.0026 | 0.6780 |
Income quantiles | ||||||||||||
Poorer | 5.6175 ** | 1.5209 | 9.7140 | 0.0637 | −0.5587 | 0.6861 | 0.3611 | −0.9562 | 1.6783 | 0.1077 | −0.3444 | 0.5599 |
Middle | 0.3727 | −1.4043 | 2.1497 | −0.4378 | −1.0112 | 0.1356 | −0.6025 | −1.7702 | 0.5651 | −0.2560 | −0.6916 | 0.1797 |
Richer | 1.7620 | −1.2203 | 4.7444 | −0.1380 | −0.7218 | 0.4458 | 2.2093 | −0.1301 | 4.5486 | 0.3146 | −0.1331 | 0.7623 |
Richest | 2.2512 | −0.1742 | 4.6766 | −0.2623 | −0.8752 | 0.3505 | −0.3599 | −1.5185 | 0.7987 | 0.3789 | −0.1160 | 0.8738 |
Terms of Decomposition | SAH | Chronic Disease Condition | ||||
---|---|---|---|---|---|---|
Total gap (%) | −0.0354 | −0.0299 | ||||
Explained (%) | −0.0036 (10.44%) | −0.0093 (31.34%) | ||||
Explained | ||||||
Contribution to difference | Contribution (%) | 95%CI | Contribution (%) | 95%CI | ||
Gender | 7.74 | −0.0056 | 0.0107 | −13.44 | −0.0052 | 0.0107 |
Age | −12.48 | −0.0027 | 0.0017 | −0.29 | −0.0019 | 0.0025 |
Living arrangement | 7.17 | −0.0026 | 0.0025 | −0.23 | −0.0022 | 0.0025 |
Educational attainment | 10.44 | −0.0018 | 0.0029 | −14.40 * | 0.0004 | 0.0087 |
medical scheme | 12.57 | −0.0012 | 0.0112 | −11.19 * | 0.0002 | 0.0048 |
Endowment scheme | −7.21 | −0.0041 | 0.0041 | 13.88 | −0.0083 | 0.0004 |
Social activity | 5.75 | −0.0027 | 0.0045 | −1.28 | −0.0027 | 0.0040 |
Sleeping time | 10.55 | −0.0014 | 0.0075 | 18.04 ** | −0.0097 | 0.0001 |
Alcohol use | −13.80 | −0.0090 | 0.0050 | −10.88 | −0.0032 | 0.0089 |
Smoke | 18.46 | −0.0021 | 0.0063 | 13.99 | −0.0134 | 0.0035 |
Bath | −22.14 * | −0.0102 | 0.0012 | 5.04 | −0.0047 | 0.0019 |
Quantiles | −6.61 | −0.0097 | 0.0075 | 13.05 | −0.0154 | 0.0075 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhou, Z.; Shen, C.; Zhang, J.; Yang, W.; Nawaz, R. Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China. Int. J. Environ. Res. Public Health 2020, 17, 955. https://doi.org/10.3390/ijerph17030955
Li D, Zhou Z, Shen C, Zhang J, Yang W, Nawaz R. Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China. International Journal of Environmental Research and Public Health. 2020; 17(3):955. https://doi.org/10.3390/ijerph17030955
Chicago/Turabian StyleLi, Dan, Zhongliang Zhou, Chi Shen, Jian Zhang, Wei Yang, and Rashed Nawaz. 2020. "Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China" International Journal of Environmental Research and Public Health 17, no. 3: 955. https://doi.org/10.3390/ijerph17030955
APA StyleLi, D., Zhou, Z., Shen, C., Zhang, J., Yang, W., & Nawaz, R. (2020). Health Disparity between the Older Rural-to-Urban Migrant Workers and Their Rural Counterparts in China. International Journal of Environmental Research and Public Health, 17(3), 955. https://doi.org/10.3390/ijerph17030955