Exploring the Diagnostic Accuracy of the KidFit Screening Tool for Identifying Children with Health and Motor Performance-Related Fitness Impairments: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Procedures and Measures
2.2.1. Standardised Motor Proficiency Measure (BOT2) (Reference Measure)
2.2.2. Motor Skills Screening Tool (SAMS)
2.2.3. Anthropometric Measurements
2.2.4. Gold Standard Cardiorespiratory Fitness (CRF) Measure (VO2peak)
2.2.5. Cardiorespiratory Fitness Screening Tool (MSTP)
2.2.6. KidFit Screening Tool
2.2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, Y.S. Consequences of childhood obesity. Ann. Acad. Med. Singap. 2009, 38, 75–77. [Google Scholar] [PubMed]
- Sugerman, H.J.; DeMaria, E.J.; Felton, W.L.; Nakatsuka, M.; Sismanis, A. Increased intra-abdominal pressure and cardiac filling pressures in obesity-associated pseudotumor cerebri. Neurology 1997, 49, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Mallory, G.B., Jr.; Fiser, D.H.; Jackson, R. Sleep-associated breathing disorders in morbidly obese children and adolescents. J. Pediatr. 1989, 115, 892–897. [Google Scholar] [CrossRef]
- Marcus, C.L.; Curtis, S.; Koerner, C.B.; Joffe, A.; Serwint, J.R.; Loughlin, G.M. Evaluation of pulmonary function and polysomnography in obese children and adolescents. Pediatr. Pulmonol. 1996, 21, 176–183. [Google Scholar] [CrossRef]
- Silvestri, J.M.; Weese-Mayer, D.E.; Bass, M.T.; Kenny, A.S.; Hauptman, S.A.; Pearsall, S.M. Polysomnography in obese children with a history of sleep-associated breathing disorders. Pediatr. Pulmonol. 1993, 16, 124–129. [Google Scholar] [CrossRef]
- Redline, S.; Strohl, K.P. Recognition and Consequences of Obstructive Sleep Apnea Hypopnea Syndrome. Otolaryngol. Clin. N. Am. 1999, 32, 303–331. [Google Scholar] [CrossRef]
- Rhodes, S.K.; Shimoda, K.C.; Waid, L.R.; O’Neil, P.M.; Oexmann, M.J.; Collop, N.A.; Willi, S.M. Neurocognitive deficits in morbidly obese children with obstructive sleep apnea. J. Pediatr. 1995, 127, 741–744. [Google Scholar] [CrossRef]
- Freedman, D.S.; Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009, 124, S23–S34. [Google Scholar] [CrossRef] [Green Version]
- Taras, H.; Potts-Datema, W. Obesity and student performance at school. J. Sch. Health 2005, 75, 291–295. [Google Scholar] [CrossRef]
- Telford, R.D.; Cunningham, R.B.; Telford, R.M.; Abhayaratna, W.P. Schools with fitter children achieve better literacy and numeracy results: Evidence of a school cultural effect. Pediatr. Exerc. Sci. 2012, 24, 45–57. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregoski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Davis, C.L.; Miller, P.H.; Naglieri, J.A. Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 2008, 20, 111. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, L.M.; Van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Wrotniak, B.H.; Epstein, L.H.; Dorn, J.M.; Jones, K.E.; Kondilis, V.A. The relationship between motor proficiency and physical activity in children. Pediatrics 2006, 118, e1758–e1765. [Google Scholar] [CrossRef]
- Lee, I.M.; Skerrett, P.J. Physical activity and all-cause mortality: What is the dose-response relation? Med. Sci. Sports Exerc. 2001, 33, S459–S471. [Google Scholar] [CrossRef]
- McAuley, P.A.; Kokkinos, P.F.; Oliveira, R.B.; Emerson, B.T.; Myers, J.N. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin. Proc. 2010, 85, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Milne, N.; Simmonds, M.; Hing, W. A Cross-Sectional Pilot Study to Examine the Criterion Validity of the Modified Shuttle Test-Paeds as a Measure of Cardiorespiratory Fitness in Children. Int. J. Environ. Res. Public Health 2018, 15, 2290. [Google Scholar] [CrossRef] [Green Version]
- Milne, N.; Hing, W. Validating the Speed and Agility Motor Screen (SAMS) as a Motor Performance-related Fitness Measure for Children. J. Aust. Strength Cond. 2015, 23, 6–14. [Google Scholar]
- Haga, M. Physical fitness in children with high motor competence is different from that in children with low motor competence. Phys. Ther. 2009, 89, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.M.; Moher, D.; Rennie, D.; De Vet, H.C.; Lijmer, J.G. The STARD statement for reporting studies of diagnostic accuracy: Explanation and elaboration. Ann. Intern. Med. 2003, 138, W1–W12. [Google Scholar] [CrossRef] [PubMed]
- Bruininks, R.H.; Bruininks, B.D. BOT2: Bruininks-Oseretsky Test of Motor Proficiency; NCS Pearson: Minneapolis, MN, USA, 2005. [Google Scholar]
- Centers for Disease Control and Prevention. National Center for Health Statistics - Growth Charts. Available online: https://www.cdc.gov/growthcharts/index.htm (accessed on 26 April 2019).
- The Cooper Institute for Aerobic Research. The Physical Fitness Specialist Certification Manual. In Advanced Fitness Assessment and Exercise Prescription, 7th Edition, 3rd ed.; Heyward, V., Ed.; Human Kinetics: Dallas, TX, USA, 1998. [Google Scholar]
- Kraemer, H.C. Evaluating Medical Tests: Objective and Quantitative Guidelines; Sage Publications: Newbury Park, CA, USA, 1992; Volume 26. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne, J.C.; Coggins, T.E.; Olson, H.C.; Astley, S.J. Exploring the utility of narrative analysis in diagnostic decision making: Picture-bound reference, elaboration, and fetal alcohol spectrum disorders. J. Speech Lang. Hear. Res. 2007, 50, 459–474. [Google Scholar] [CrossRef]
- Mackinnon, A. A spreadsheet for the calculation of comprehensive statistics for the assessment of diagnostic tests and inter-rater agreement. Comput. Biol. Med. 2000, 30, 127–134. [Google Scholar] [CrossRef]
- AIHW, A.I.o.H.a.W. A Picture of Overweight and Obesity in Australia; AIHW: Canberra, Australia, 2017; Vol. Cat. no.PHE 216.
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The relationship between motor competence and physical fitness from early childhood to early adulthood: A meta-analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Kroes, M.; Vissers, Y.L.; Sleijpen, F.A.; Feron, F.J.; Kessels, A.G.; Bakker, E.; Kalff, A.C.; Hendriksen, J.G.; Troost, J.; Jolles, J. Reliability and validity of a qualitative and quantitative motor test for 5-to 6-year-old children. Eur. J. Paediatr. Neurol. 2004, 8, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, G.; Bergmann, M.; Moreira, R.; Pinheiro, E.; Marques, A.; Hallal, P.; Gaya, A. Proposals of cardiorespiratory fitness classification in children and adolescents: Literature review. Braz. J. Phys. Act. Health 2013, 18, 273. [Google Scholar] [CrossRef] [Green Version]
- Cairney, J.; Hay, J.A.; Faught, B.E.; Flouris, A.; Klentrou, P. Developmental coordination disorder and cardiorespiratory fitness in children. Pediatr. Exerc. Sci. 2007, 19, 20–28. [Google Scholar] [CrossRef]
- Haapala, E.A. Cardiorespiratory fitness and motor skills in relation to cognition and academic performance in children–a review. J. Hum. Kinet. 2013, 36, 55–68. [Google Scholar] [CrossRef] [Green Version]
Level of Evidence | Criteria |
---|---|
Random Accuracy | AUC < 0.5 |
Poorly Accurate | AUC = 0.5–0.7 |
Moderately Accurate | AUC = 0.7–0.9 |
Highly Accurate | AUC = 0.9–1.0 |
Variable | Participant Numbers | Mean ± SD |
---|---|---|
MSTP (No.) | 57 | 21.83 ± 2.93 |
MSTP Predicted VO2peak (mL/kg/min) | 57 | 43.63 ± 9.16 |
VO2peak (mL/kg/min) | 24 | 44.12 ± 11.02 |
VO2peak (mL/min) | 24 | 2294.85 ± 828.85 |
Total Motor Percentile Rank (BOT2) | 57 | 61.42 ± 30.46 |
SAMS (s) | 57 | 4.68 ± 1.40 |
BMI raw score (kg/m2) | 25 | 20.96 ± 8.75 |
BMI percentile | 25 | 51.84 ± 33.94 |
BMI Z score | 25 | 0.11 ± 1.40 |
Model | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
BMI (kg/m2) | BOT2 Total Motor (Raw Score) | BOT2 Total Gross Motor (Raw Score) | VO2peak (mL/kg/min) | ||
Coefficients of Determination (R2) (p value) | |||||
Model 1 KidFit (MSTP and SAMS) | 0.770 (<0.001) | 0.494 (<0.001) | 0.612 (<0.001) | 0.754 (<0.001) | |
Standardised Beta Coefficients—Model 1 (p-value) | |||||
SAMS | 0.681 | −0.106 | −0.221 | −0.101 | |
(<0.001) | (0.366) | (0.035) | (0.552) | ||
MSTP | −0.245 | 0.638 | 0.637 | 0.789 | |
(0.130) | (<0.001) | (<0.001) | (<0.001) | ||
Model 2 KidFit (MSTP, SAMS, Age and Gender) | 0.871 (<0.001) | 0.543 (<0.001) | 0.644 (<0.001) | 0.813 (<0.001) | |
Standardised Beta Coefficients—0Model 2 (p-value) | |||||
SAMS | 0.595 | −0.078 | −0.201 | −0.186 | |
(<0.000) | (0.509) | (0.057) | (0.277) | ||
MSTP | −0.321 | 0.674 | 0.663 | 0.719 | |
(0.026) | (<0.000) | (<0.001) | (<0.001) | ||
Age | 0.333 | 0.169 | 0.140 | −0.224 | |
(0.002) | (0.097) | (0.118) | (0.067) | ||
Gender | −0.056 | −0.214 | −0.165 | 0.273 | |
(0.579) | (0.042) | (0.075) | (0.038) |
Health or Performance-Related Fitness Measures | Cell Counts | Diagnostic Accuracy Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FN | FP | TN | Sensitivity (SE) | Specificity (SE) | PPV (SE) | NPV (SE) | LR+ (95% CI) | LR− (95% CI) | OR (95% CI) | ER | Fisher’s Exact Test p Value | |
BMI (≥85th Percentile) Overweight or Obese) (n = 25) | 6 | 0 | 4 | 15 | 100% (0.00) | 78.95% (0.093) | 60% (0.153) | 100% (0.00) | 4.75 (1.99–11.35) | 0.00 (-) | 44.78 (2.10–956.84) | 0.84 | <0.001 |
Total Motor Proficiency (1st Motor Quartile) (n = 57) | 9 | 1 | 12 | 35 | 90% (0.095) | 74.47% (0.064) | 43% (0.108) | 97% (0.027) | 3.53 (2.07–5.99) | 0.13 (0.02–0.87) | 26.25 (3.00 –229.34) | 0.77 | <0.001 |
Poor VO2peak (mL/kg/min) (n = 24) | 7 | 0 | 3 | 14 | 100% (0.00) | 82.35% (0.093) | 70% (0.145) | 100% (0.00) | 5.67 (2.03–15.82) | 0.00 (-) | 62.14 (2.82–1367.82) | 0.88 | <0.001 |
State Variable | AUC | SE | CI | p Value |
---|---|---|---|---|
BMI (Percentile) Overweight/Obesity | 0.895 ** | 0.063 | 0.771, 1.00 | 0.004 |
Total Motor Proficiency (BOT2 Percentile) (1st Quartile) | 0.822 ** | 0.069 | 0.688, 0.957 | 0.001 |
Poor CRF (VO2peak) | 0.912 ** | 0.060 | 0.794, 1.00 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milne, N.; M Leong, G.; Hing, W. Exploring the Diagnostic Accuracy of the KidFit Screening Tool for Identifying Children with Health and Motor Performance-Related Fitness Impairments: A Feasibility Study. Int. J. Environ. Res. Public Health 2020, 17, 995. https://doi.org/10.3390/ijerph17030995
Milne N, M Leong G, Hing W. Exploring the Diagnostic Accuracy of the KidFit Screening Tool for Identifying Children with Health and Motor Performance-Related Fitness Impairments: A Feasibility Study. International Journal of Environmental Research and Public Health. 2020; 17(3):995. https://doi.org/10.3390/ijerph17030995
Chicago/Turabian StyleMilne, Nikki, Gary M Leong, and Wayne Hing. 2020. "Exploring the Diagnostic Accuracy of the KidFit Screening Tool for Identifying Children with Health and Motor Performance-Related Fitness Impairments: A Feasibility Study" International Journal of Environmental Research and Public Health 17, no. 3: 995. https://doi.org/10.3390/ijerph17030995
APA StyleMilne, N., M Leong, G., & Hing, W. (2020). Exploring the Diagnostic Accuracy of the KidFit Screening Tool for Identifying Children with Health and Motor Performance-Related Fitness Impairments: A Feasibility Study. International Journal of Environmental Research and Public Health, 17(3), 995. https://doi.org/10.3390/ijerph17030995