Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Spatial Association Pattern
2.4. Pearson Correlation Analysis
3. Results and Discussion
3.1. Characteristics of Air Quality
3.1.1. Variations of NAQI
3.1.2. Features of Non-Attainment Days
3.1.3. Changes in Major Pollutants
3.2. Spatial Association Pattern
3.3. Relationships between Air Quality Index on Non-Attainment Days (NAQI) and Influencing Factors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.; Zhang, Y.; Zhao, H.; Lu, X.; Zhang, Y.; Zhu, W.; Nielsen, C.P.; Li, X.; Zhang, Q.; Bi, J. Trade-driven relocation of air pollution and health impacts in China. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kuerban, M.; Waili, Y.; Fan, F.; Liu, Y.; Qin, W.; Dore, A.J.; Peng, J.; Xu, W.; Zhang, F. Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environ. Pollut. 2019, 258, 113659. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.-Q.; Mao, J.; Lu, Z.-N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Hu, J.; Huang, L.; Chen, M.; He, G.; Zhang, H. Impacts of power generation on air quality in China—Part II: Future scenarios. Resour. Conserv. Recycl. 2017, 121, 115–127. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, J.; Guo, Y.; Wu, T.; Chen, T.; Zhong, Q.; Yuan, D.; Chen, P.; Ou, C. Spatiotemporal pattern of air quality index and its associated factors in 31 Chinese provincial capital cities. Air Qual. Atmos. Health 2017, 10, 601–609. [Google Scholar] [CrossRef]
- Sun, Z.; Zhan, D.; Jin, F. Spatio-temporal Characteristics and Geographical Determinants of Air Quality in Cities at the Prefecture Level and Above in China. Chin. Geogr. Sci. 2019, 29, 316–324. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China—A case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Mao, G.; Zuo, J.; Ma, J. Inter-regional and sectoral linkage analysis of air pollution in Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration of China. J. Clean. Prod. 2017, 165, 1436–1444. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Jiang, L.; Yang, D.-Y.; Liu, Y.-B. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: A case study of the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 232, 692–704. [Google Scholar] [CrossRef]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Wang, Q.g.; Li, H.; Yu, Y.; Lu, Y.; Qian, X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Sci. Total Environ. 2016, 569, 1545–1552. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Ou, C.-Q.; Zhou, Y.-X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Z.; Wu, F.; Xu, X.; Yang, J.; Liu, L. Mechanism of Spatiotemporal Air Quality Response to Meteorological Parameters: A National-Scale Analysis in China. Sustainability 2019, 11, 3957. [Google Scholar] [CrossRef] [Green Version]
- Padilla, C.M.; Kihal-Talantikite, W.; Vieira, V.M.; Rossello, P.; Le Nir, G.; Zmirou-Navier, D.; Deguen, S. Air quality and social deprivation in four French metropolitan areas-A localized spatio-temporal environmental inequality analysis. Environ. Res. 2014, 134, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Xu, J.; Yang, D.; Zhao, J. Spatio-temporal variation and influence factors of PM2.5 concentrations in China from 1998 to 2014. Atmos. Pollut. Res. 2017, 8, 1151–1159. [Google Scholar] [CrossRef]
- Chuai, X.; Fan, C.; Wang, M.; Wang, J.; Han, Y. A Study of the Socioeconomic Forces Driving Air Pollution Based on a DPSIR Model in Henan Province, China. Sustainability 2020, 12, 252. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Ge, X.; Hu, J.; Nie, D.; Tian, L.; Chen, M. Air pollution characteristics and health risks in Henan Province, China. Environ. Res. 2017, 156, 625–634. [Google Scholar] [CrossRef]
- Henan Bureau of Environmental Protection. Urban Air Quality Daily Report. Available online: http://www.hnep.gov.cn/hjzl/cskqzlzs/H600402index_1.htm (accessed on 11 February 2020).
- National Meteorological Information Center. China’s Surface Climate Data Daily Value Dataset (V3.0). Available online: http://data.cma.cn/ (accessed on 11 February 2020).
- Statistics Bureau of Henan Province. Statistical yearbooks of Henan Province for 2016 and 2017. Available online: http://www.ha.stats.gov.cn/sitesources/hntj/page_pc/index.html (accessed on 11 February 2020).
- Ma, Y.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Dai, W.; Yi, L. Spatio-temporal differences and driving forces of air quality in Chinese cities. J. Resour. Ecol. 2016, 7, 77–84. [Google Scholar] [CrossRef]
- Fu, W.; Jiang, P.; Zhou, G.; Zhao, K. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, L.; Fang, S.; Liu, S.; Hu, J.; Wang, L.; Liu, X.; Wu, Q. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China. Sci. Rep. 2016, 6, 23456. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Li, X.; Liu, J.; Xu, Y.; Li, X. Air pollution situation of Henan province and its controlling measures. Environ. Eng. 2015, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Xue, T.; Zhang, Q.; Geng, G.; Tong, D.; Li, X.; He, K. Air quality improvements and health benefits from China’s clean air action since 2013. Environ. Res. Lett. 2017, 12, 114020. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Sun, J.; Zhang, X.; Che, H.; Li, Y. Spatial and temporal variations of the concentrations of PM 10, PM 2.5 and PM1 in China. Atmos. Chem. Phys. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Silver, B.; Reddington, C.; Arnold, S.; Spracklen, D. Substantial changes in air pollution across China during 2015–2017. Environ. Res. Lett. 2018, 13, 114012. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, J.; Yu, D. Characterizing spatiotemporal patterns of air pollution in China: A multiscale landscape approach. Ecol. Indic. 2017, 76, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Tsona, N.T.; Jia, L.; Liu, S.; Xu, Y.; Du, L. Secondary organic aerosol formation from photooxidation of furan: Effects of NOx level and humidity. Atmos. Chem. Phys. Discuss 2018, 2018, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Ministry of environment protection of the People’s Republic of China. China Vehicle Environmental Management Annual Report; Ministry of Environment Protection of the People’s Republic of China: Beijing, China, 2017.
- Song, W.; He, K.; Lei, Y. Black carbon emissions from on-road vehicles in China, 1990–2030. Atmos. Environ. 2012, 51, 320–328. [Google Scholar] [CrossRef]
Cluster | City | Correlation Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MWS | MWD | SH | AAP | AT | ARH | P | AST | MST | ||
I | Xuchang | −0.17 ** | −0.19 ** | −0.38 ** | 0.33 ** | −0.43 ** | 0.26 ** | −0.06 | −0.44 ** | −0.45 ** |
Zhumadian | −0.17 ** | 0.06 | −0.35 ** | 0.28 ** | −0.37 ** | 0.30 ** | 0.02 | −0.39 ** | −0.42 ** | |
Pingdingshan | −0.18 ** | −0.05 | −0.36 ** | 0.25 ** | −0.34 ** | 0.20 ** | −0.06 | −0.36 ** | −0.35 ** | |
Nanyang | −0.15 ** | −0.05 | −0.30 ** | 0.33 ** | −0.42 ** | 0.17 ** | −0.08 | −0.43 ** | −0.41 ** | |
Shangqiu | −0.16 ** | 0.01 | −0.28 ** | 0.28 ** | −0.40 ** | 0.23 ** | −0.04 | −0.41 ** | −0.41 ** | |
Xinyang | −0.17 ** | 0.07 | −0.39 ** | 0.19 ** | −0.32 ** | 0.33 ** | 0.04 | −0.33 ** | −0.39 ** | |
II | Kaifeng | −0.21 ** | −0.22 ** | −0.43 ** | 0.30 ** | −0.42 ** | 0.36 ** | −0.04 | −0.44 ** | −0.47 ** |
Hebi | −0.39 ** | −0.07 | −0.45 ** | 0.30 ** | −0.42 ** | 0.36 ** | −0.06 | −0.44 ** | −0.48 ** | |
Zhoukou | −0.04 | −0.03 | −0.29 ** | 0.26 ** | −0.33 ** | 0.20 ** | 0.04 | −0.35 ** | −0.37 ** | |
III | Zhengzhou | −0.28 ** | −0.12 ** | −0.37 ** | 0.33 ** | −0.47 ** | 0.35 ** | −0.06 | −0.47 ** | −0.46 ** |
Xinxiang | −0.29 ** | −0.04 | −0.45 ** | 0.35 ** | −0.48 ** | 0.34 ** | −0.01 | −0.50 ** | −0.52 ** | |
Puyang | −0.37 ** | −0.10 | −0.37 ** | 0.34 ** | −0.43 ** | 0.28 ** | −0.05 | −0.44 ** | −0.46 ** | |
Luohe | −0.09 * | −0.09 * | −0.34 ** | 0.31 ** | −0.42 ** | 0.17 ** | −0.08 | −0.42 ** | −0.41 ** | |
Anyang | −0.34 ** | −0.10 * | −0.43 ** | 0.38 ** | −0.50 ** | 0.32 ** | −0.04 | −0.51 ** | −0.54 ** | |
IV | Luoyang | −0.06 | −0.16 * | −0.37 ** | 0.34 ** | −0.46 ** | 0.17 ** | −0.07 | −0.45 ** | −0.44 ** |
Sanmenxia | −0.04 | 0.07 | −0.36 ** | 0.39 ** | −0.48 ** | 0.08 | −0.07 | −0.49 ** | −0.49 ** | |
Jiaozuo | −0.27 ** | −0.06 | −0.44 ** | 0.34 ** | −0.48 ** | 0.38 ** | −0.08 | −0.48 ** | −0.50 ** | |
Jiyuan | −0.04 | −0.22 ** | −0.33 ** | 0.24 ** | −0.37 ** | 0.19 ** | −0.08 | −0.36 ** | −0.36 ** |
Factor | Variable | Correlation Coefficient | ||||
---|---|---|---|---|---|---|
I | II | III | IV | Total | ||
Economic structure | PGDP | 0.66 | 0.97 | 0.01 | −0.43 | 0.43 * |
PPI | −0.70 | −0.86 | −0.06 | −0.16 | −0.60 ** | |
PSI | 0.70 | 0.49 | −0.78 | −0.19 | 0.38 | |
PTI | −0.31 | −0.11 | 0.58 | 0.26 | 0.08 | |
PVAI | 0.70 | 0.79 | −0.31 | −0.29 | 0.42 * | |
PVAC | 0.02 | 0.71 | 0.33 | −0.57 | 0.35 | |
Possession of civil vehicle | PCV | 0.79 * | 0.91 | −0.03 | 0.85 | 0.40 |
PPV | 0.80 * | 0.95 | −0.01 | 0.83 | 0.39 | |
PLPV | 0.60 | 0.94 | −0.02 | 0.96 * | 0.34 | |
PS | 0.78 * | 0.93 | −0.01 | 0.78 | 0.39 | |
PT | 0.67 | -0.94 | −0.35 | 0.95 * | 0.43 * | |
PHT | 0.61 | -0.88 | −0.39 | 0.89 | 0.51 * | |
POT | 0.68 | -0.92 | −0.39 | 0.89 | 0.30 | |
Energy consumption of industrial enterprises above a designated size | PTEC | 0.87 * | 0.93 | 0.72 | 0.11 | 0.60 ** |
PCL | 0.67 | 0.74 | 0.39 | 0.24 | 0.39 | |
PCK | 0.30 | 0.32 | 0.88 * | −0.40 | 0.32 | |
0.79 * | 1 * | −0.43 | −0.81 | 0.13 | ||
PH | 0.64 | 0.61 | −0.59 | 0.76 | 0.41 * | |
PE | 0.78 * | 0.96 | 0.39 | 0.67 | 0.64 ** | |
Floor space of buildings | PFSCI | 0.89 ** | 1 ** | 0.02 | 0.94 * | 0.38 |
PFSCII | 0.23 | −0.03 | −0.16 | 1 ** | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Wang, S.; Guo, L.; Xu, J. Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province. Int. J. Environ. Res. Public Health 2020, 17, 1598. https://doi.org/10.3390/ijerph17051598
Qin J, Wang S, Guo L, Xu J. Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province. International Journal of Environmental Research and Public Health. 2020; 17(5):1598. https://doi.org/10.3390/ijerph17051598
Chicago/Turabian StyleQin, Jianhui, Suxian Wang, Linghui Guo, and Jun Xu. 2020. "Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province" International Journal of Environmental Research and Public Health 17, no. 5: 1598. https://doi.org/10.3390/ijerph17051598
APA StyleQin, J., Wang, S., Guo, L., & Xu, J. (2020). Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province. International Journal of Environmental Research and Public Health, 17(5), 1598. https://doi.org/10.3390/ijerph17051598