Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol
Abstract
:1. Introduction
Aims, Objectives and Hypotheses
- To test the hypothesis that the alpha-diversity measures of IM will differ in homes of U-5Cs with LRTIs compared to U-5Cs without LRTIs, our first objective is to investigate the alpha-diversity measures (richness, evenness, Shannon’s Diversity Index) of home IM among U-5Cs in Ibadan via community assessment and monitoring.
- We hypothesize that there are significant differences in the abundance of specific microbial taxa between cases and controls, hence our second objective is to investigate the differential abundance of specific taxa among cases and controls.
- To test the hypothesis that there are significant differences in the types of IM in homes of cases and controls between the wet and dry seasons, our third objective is to determine the variation in IM diversity and composition between the wet and dry seasons.
- To test the hypothesis that there are significant differences in the pattern of indoor environmental factors which may account for differences in LRTI incidence, occurrence, and outcome among U-5Cs, our forth objective is to describe the indoor environmental factors (such as age of homes, particulate matter (PM) concentrations, temperature, relative humidity, presence of pets, occupancy, seasonality, etc) that contribute to the variation in LRTI occurrence, incidence and outcome among U-5Cs.
2. Materials and Methods
2.1. Study Design
2.2. Study Site
2.2.1. Characteristics of the Three Participating Hospitals
2.2.2. Otunba Tunwase Children Emergency Clinic (OTChew)
2.2.3. Ade-Oyo Maternity Teaching Hospital
2.2.4. Oni Memorial Children’s Hospital (OMCH)
2.3. Selection of Cases and Controls
2.4. Caregiver Interviews
2.5. Clinical Assessment
2.6. Home Walkthrough Inspection
2.7. Indoor Environmental Monitoring
2.7.1. Temperature, Relative Humidity (RH) and Particulate Matter Monitoring
2.7.2. Active Airborne Microbiome Sampling
2.7.3. Passive Airborne Dust Sampling
2.8. Qualitative Detection of IM
2.8.1. Bacterial Nucleic Acid Extraction, Amplification and Sequencing
2.8.2. Fungal Nucleic Acid Extraction, Amplification and Sequencing
2.8.3. Viral Nucleic Acid Extraction and Sequencing
2.8.4. Quantification of DNA/RNA
2.9. Quantitative Analysis Using Real-Time Polymerase Chain Reaction (qPCR)
2.10. Statistical Analysis
2.11. Ethics Approval and Consent to Participate
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences. Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health and Buildings; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Cho, I.; Yamanishi, S.; Cox, L.; Methe, B.A.; Zavadil, J.; Li, K.; Gao, Z.; Mahana, D.; Raju, K.; Teitler, I.; et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012, 488, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Pflughoeft, K.J.; Versalovic, J. Human microbiome in health and disease. Annu. Rev. Pathol. 2012, 7, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Demoor, T.; Rauch, M.; Faruqi, A.A.; Jang, S.; Johnson, C.C.; Boushey, H.A.; Zoratti, E.; Ownby, D.; Lukacs, N.W.; et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. USA 2014, 111, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudan, I.; Boschi-Pinto, C.; Biloglav, Z.; Mulholland, K.; Campbell, H. Epidemiology and etiology of childhood pneumonia. Bull. World Health Organ. 2008, 86, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwane, M.K.; Edwards, K.M.; Szilagyi, P.G.; Walker, F.J.; Griffin, M.R.; Weinberg, G.A.; Coulen, C.; Poehling, K.A.; Shone, L.P.; Balter, S.; et al. Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. Pediatrics 2004, 113, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Frese, T.; Klauss, S.; Herrmann, K.; Sandholzer, H. Children and adolescents as patients in general practice—The reasons for encounter. J. Clin. Med. Res. 2011, 3, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, T.; You, D.; Hug, L.; Amouzou, A.; Newby, H. UNICEF Report: Enormous progress in child survival but greater focus on newborns urgently needed. Reprod. Health 2014, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Nair, H.; Simoes, E.A.F.; Rudan, I.; Gessner, B.D.; Azziz-Baumgartner, E.; Zhang, J.S.F.; Feikin, D.R.; Mackenzie, G.A.; Moisi, J.C.; Roca, A.; et al. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: A systematic analysis. Lancet 2013, 381, 1380–1390. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.D.; Ochola, R.; Sande, C.; Ngama, M.; Okiro, E.A.; Medley, G.F.; Nokes, D.J.; Cane, P.A. Comparison of strain-specific antibody responses during primary and secondary infections with respiratory syncytial virus. J. Med. Virol. 2007, 79, 1943–1950. [Google Scholar] [CrossRef]
- Calvo, C.; Garcia-Garcia, M.L.; Blanco, C.; Vazquez, M.C.; Frias, M.E.; Perez-Brena, P.; Casas, I. Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J. Clin. Virol. 2008, 42, 268–272. [Google Scholar] [CrossRef]
- Peng, D.; Zhao, D.C.; Liu, J.T.; Wang, X.; Yang, K.; Xicheng, H.; Li, Y.; Wang, F.B. Multipathogen infections in hospitalized children with acute respiratory infections. Virol. J. 2009, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byington, C.L.; Zerr, D.M.; Taggart, E.W.; Nguy, L.; Hillyard, D.R.; Carroll, K.C.; Corey, L. Human herpesvirus 6 infection in febrile infants ninety days of age and younger. Pediatr. Infect. Dis. J. 2002, 21, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Pitkaranta, M.; Meklin, T.; Hyvarinen, A.; Nevalainen, A.; Paulin, L.; Auvinen, P.; Lignell, U.; Rintala, H. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation—A comparison of culture-dependent and culture-independent methods. BMC Microbiol. 2011, 11, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonnenmann, M.W.; Coronado, G.; Thompson, B.; Griffith, W.C.; Hanson, J.D.; Vesper, S.; Faustman, E.M. Utilizing pyrosequencing and quantitative PCR to characterize fungal populations among house dust samples. J. Environ. Monit. JEM 2012, 14, 2038–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, A.; Kettleson, E.M.; Vesper, S.; Kumar, S.; Popham, D.L.; Schaffer, C.; Indugula, R.; Chatterjee, K.; Allam, K.K.; Grinshpun, S.A.; et al. Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci. Total Environ. 2014, 482–483, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Kettleson, E.M.; Adhikari, A.; Vesper, S.; Coombs, K.; Indugula, R.; Reponen, T. Key determinants of the fungal and bacterial microbiomes in homes. Environ. Res. 2015, 138, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.I.; Bhangar, S.; Pasut, W.; Arens, E.A.; Taylor, J.W.; Lindow, S.E.; Nazaroff, W.W.; Bruns, T.D. Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE 2015, 10, e0128022. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 2012, 22, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Akpalu, A.; Sarfo, F.S.; Ovbiagele, B.; Akinyemi, R.; Gebregziabher, M.; Obiako, R.; Owolabi, L.; Sagoe, K.; Jenkins, C.; Arulogun, O.; et al. Phenotyping Stroke in Sub-Saharan Africa: Stroke Investigative Research and Education Network (SIREN) Phenomics Protocol. Neuroepidemiology 2015, 45, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Olopade, F.E.; Lawoyin, T. Maternal Mortality in a Nigerian Maternity Hospital. Afr. J. Biomed. Res. 2008, 11, 267–273. [Google Scholar] [CrossRef]
- Mentz, G.; Robins, T.G.; Batterman, S.; Naidoo, R.N. Acute respiratory symptoms associated with short term fluctuations in ambient pollutants among schoolchildren in Durban, South Africa. Environ. Pollut. 2018, 233, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Jafta, N.; Barregard, L.; Jeena, P.M.; Naidoo, R.N. Indoor air quality of low and middle income urban households in Durban, South Africa. Environ. Res. 2017, 156, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ogunsola, O.; Oluwole, A.F.; Asubiojo, O.; Durosinmi, M.; Fatusi, A.; Ruck, W. Environmental impact of vehicular traffic in Nigeria: Health aspects. Sci. Total Environ. 1994, 146–147, 111–116. [Google Scholar] [CrossRef]
- USEPA. Particulate Matter (PM2.5) Speciation Guidance; USEPA: Washington, DC, USA, 1999.
- Kilburg-Basnyat, B.; Metwali, N.; Thorne, P.S. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating, and electrostatic charge. J. Occup. Environ. Hyg. 2016, 13, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebers, V.; van Kampen, V.; Bünger, J.; Düser, M.; Stubel, H.; Brüning, T.; Raulf-Heimsoth, M. Assessment of airborne exposure to endotoxin and pyrogenic active dust using electrostatic dustfall collectors (EDCs). J. Toxicol. Environ. Health A 2012, 75, 501–507. [Google Scholar] [CrossRef]
- Dorado Garcia, A.; Lidwien, A.M.S.; Bossers, A.; Inge, M.W.; Schmitt, H.; Markus, J.E.; Depner, M.; Müller-Rompa, S.; Schmaußer-Hechfellner, E.; Michael, J.C.; et al. Indoor airborne microbiota composition associated with asthma and atopy in rural children. Eur. Respir. J. 2018, 52, PA5078. [Google Scholar] [CrossRef]
- Noss, I.; Wouters, I.M.; Visser, M.; Heederik, D.J.J.; Thorne, P.S.; Brunekreef, B.; Doekes, G. Evaluation of a Low-Cost Electrostatic Dust Fall Collector for Indoor Air Endotoxin Exposure Assessment. Appl. Environ. Microbiol. 2008, 74, 5621. [Google Scholar] [CrossRef] [Green Version]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Nielsen, J.; Madsen, A. Microbial Species and Biodiversity in Settling Dust within and between Pig Farms. Environ. Res. 2019, 171. [Google Scholar] [CrossRef]
- Caporaso, J.; Lauber, C.; Walters, W.; Berg-Lyons, D.; Lozupone, C.; Turnbaugh, P.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, C.; Keller, L.E.; Bradshaw, J.L.; Robinson, D.A.; Swiatlo, E.; McDaniel, L.S. Nonencapsulated Streptococcus pneumoniae as a cause of chronic adenoiditis. IDCases 2016, 4, 56–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, Y.-H.; Chen, P.-H.; Yu, P.-A.; Chen, C.-L.; Kuo, L.T.; Huang, K.-C. A multiplex PCR assay for detection of Vibrio vulnificus, Aeromonas hydrophila, methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus agalactiae from the isolates of patients with necrotizing fasciitis. Int. J. Infect. Dis. 2019, 81, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, H.; Wang, Y.; Zhang, L.; Xu, J.; Ye, C. Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus Faecalis and Staphylococcus Aureus. Front. Microbiol. 2017, 8, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maaroufi, Y.; De Bruyne, J.-M.; Heymans, C.; Crokaert, F. Real-time PCR for determining capsular serotypes of Haemophilus influenzae. J. Clin. Microbiol. 2007, 45, 2305–2308. [Google Scholar] [CrossRef] [Green Version]
- Hartman, L.J.; Selby, E.B.; Whitehouse, C.A.; Coyne, S.R.; Jaissle, J.G.; Twenhafel, N.A.; Burke, R.L.; Kulesh, D.A. Rapid real-time PCR assays for detection of Klebsiella pneumoniae with the rmpA or magA genes associated with the hypermucoviscosity phenotype: Screening of nonhuman primates. J. Mol. Diagn. 2009, 11, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Ren, H.; Zhou, H.; Qin, T.; Chen, Y. Simultaneous Detection of Nine Key Bacterial Respiratory Pathogens Using Luminex xTAG(®) Technology. Int. J. Environ. Res. Public Health 2017, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Rahn, S.; Schuck, A.; Kondakci, M.; Haas, R.; Neuhausen, N.; Pfeffer, K.; Henrich, B. A novel comprehensive set of fungal Real time PCR assays (fuPCR) for the detection of fungi in immunocompromised haematological patients—A pilot study. Int. J. Med. Microbiol. 2016, 306. [Google Scholar] [CrossRef]
- Zeng, Q.-Y.; Westermark, S.-O.; Rasmuson Lestander, A.; Wang, X.-R. Detection and quantification of Cladosporium in aerosols by real-time PCR. J. Environ. Monit. JEM 2006, 8, 153–160. [Google Scholar] [CrossRef]
- Ogunsemowo, O.; Olaleye, D.O.; Odaibo, G.N. Genetic diversity of human respiratory syncytial virus circulating among children in Ibadan, Nigeria. PLoS ONE 2018, 13, e0191494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharaj, P.; Sullender, W.; Kabra, S.; Kalaivani, M.; Cherian, J.; Tyagi, V.; Chahar, H.; Kaushik, S.; Dar, L.; Broor, S. Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007. Virol. J. 2009, 6, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouscambert-Duchamp, M.; Lina, B.; Trompette, A.; Moret, H.; Motte, J.; Andréoletti, L. Detection of Human Metapneumovirus RNA Sequences in Nasopharyngeal Aspirates of Young French Children with Acute Bronchiolitis by Real-Time Reverse Transcriptase PCR and Phylogenetic Analysis. J. Clin. Microbiol. 2005, 43, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebregziabher, M.; Langholz, B. A semiparametric missing-data-induced intensity method for missing covariate data in individually matched case-control studies. Biometrics 2010, 66, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Oluwakemi Omolola, A. Indoor Airborne Microbial Load of Selected Offices in a Tertiary Institution in South-Western Nigeria. J. Health Environ. Res. 2018, 4, 113. [Google Scholar] [CrossRef] [Green Version]
- Setlhare, G.; Malebo, N.; Shale, K.; Lues, R. Identification of airborne microbiota in selected areas in a health-care setting in South Africa. BMC Microbiol. 2014, 14, 100. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 594. [Google Scholar] [CrossRef] [Green Version]
- Ana, G.R.; Fakunle, G.A.; Ogunjobi, A.A. Indoor airborne microbial burden and risk of acute respiratory infections among children under five in Ibadan, Nigeria. Indoor Built Environ. 2015, 24, 308–314. [Google Scholar] [CrossRef]
- Hayleeyesus, S.F.; Manaye, A.M. Microbiological quality of indoor air in university libraries. Asian Pac. J. Trop. Biomed. 2014, 4, S312–S317. [Google Scholar] [CrossRef] [Green Version]
- Sule, I.O.; Agbabiaka, I.O.; Saliu, T.O.; Zakariyah, M.B.; Mutiat, O.-O.; Ali, A.A. Analysis of Indoor Air Microflora of Some Daycare Centres in Ilorin South Local Government Area. Nigeria 2017, 4, 31–36. [Google Scholar]
- Normand, A.C.; Vacheyrou, M.; Sudre, B.; Heederik, D.J.; Piarroux, R. Assessment of dust sampling methods for the study of cultivable-microorganism exposure in stables. Appl. Environ. Microbiol. 2009, 75, 7617–7623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noss, I.; Wouters, I.M.; Bezemer, G.; Metwali, N.; Sander, I.; Raulf-Heimsoth, M.; Heederik, D.J.; Thorne, P.S.; Doekes, G. beta-(1,3)-Glucan exposure assessment by passive airborne dust sampling and new sensitive immunoassays. Appl. Environ. Microbiol. 2010, 76, 1158–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, M.; Timm, M.; Hansen, E.W.; Madsen, A.M. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 2012, 22, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, H.; Sigsgaard, T.; Valbjorn, O.; Doekes, G.; Meyer, H.W. The dustfall collector—A simple passive tool for long-term collection of airborne dust: A project under the Danish Mould in Buildings program (DAMIB). Indoor Air 2005, 15 (Suppl. 9), 33–40. [Google Scholar] [CrossRef]
- Jacobs, J.H.; Krop, E.J.; Borras-Santos, A.; Zock, J.P.; Taubel, M.; Hyvarinnen, A.; Pekkanen, J.; Doekes, G.; Heederik, D.J. Endotoxin levels in settled airborne dust in European schools: The HITEA school study. Indoor Air 2014, 24, 148–157. [Google Scholar] [CrossRef]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [Green Version]
- Emerson, J.B.; Keady, P.B.; Brewer, T.E.; Clements, N.; Morgan, E.E.; Awerbuch, J.; Miller, S.L.; Fierer, N. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood. Environ. Sci. Technol. 2015, 49, 2675–2684. [Google Scholar] [CrossRef]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Gunnarsen, L.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. JEM 2012, 14, 3230–3239. [Google Scholar] [CrossRef]
- Normand, A.-C.; Ranque, S.; Cassagne, C.; Gaudart, J.; Sallah, K.; Charpin, D.-A.; Piarroux, R. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings. Ann. Work Expo. Health 2015, 60, 161–175. [Google Scholar] [CrossRef]
- Prussin, A.J., 2nd; Vikram, A.; Bibby, K.J.; Marr, L.C. Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children’s Daycare Center. PLoS ONE 2016, 11, e0151004. [Google Scholar] [CrossRef] [Green Version]
- Prussin, A.J., 2nd; Garcia, E.B.; Marr, L.C. Total Virus and Bacteria Concentrations in Indoor and Outdoor Air. Environ. Sci. Technol. Lett. 2015, 2, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Lednicky, J.A.; Loeb, J.C. Detection and Isolation of Airborne Influenza a H3N2 Virus Using a Sioutas Personal Cascade Impactor Sampler. Influenza Res. Treat. 2013, 2013, 656825. [Google Scholar] [CrossRef] [PubMed]
- Environment and Development. The World Bank. In The Changing Wealth of Nations: Measureing Sustainable Development if the New Millenium; Environment and Development: Wahinton, DC, USA, 2011. [Google Scholar] [CrossRef]
S/N | Organism | Name of Primer | Sequence | Size | Source |
---|---|---|---|---|---|
1 | Streptococcus pneumoniae | CpsA-F | GCAGTACAGCAGTTTGTTGGACTGACC | 160 | [35] |
CpsA-R | GAATATTTTCATTATCAGTCCCAGTC | ||||
2 | Streptococcus pyogenes | DnaseB-F | TGATTCCAAGAGCTGTCGTG | 140 | [36] |
DnaseB-R | TGGTGTAGCCATTAGCTGTGTT | ||||
3 | Staphylococus aureus | THERM-F | ATGCAAAGAAAATTGAAGTCGA | 233 | [37] |
THERM-R | GCGTTGTCTTCGCTCCAAAT | ||||
4 | Haemophillus influenza | Hia-F | GCAACCATCTTACAACTTAGCGAATAC | 83 | [38] |
Hia-R | GGTCTGCGGTGTCCTGTGTT | ||||
5 | Klebsiella pneumoniae | Khe-F | GATGAAACGACCTGATTGCATTC | 77 | [39] |
Khe-R | CCGGGCTGTCGGGATAAG | ||||
6 | Moraxella catarrhalis | 16SRNA-F | TTGGCTTGTGCTAAAATATC | 140 | [40] |
16SRNA-R | GTCATCGCTATCATTCACCT | ||||
7 | Aspergillus/Peniclilium spp | AspPenF1 | GTCCGAGCGTCATTTCTG | 228 | [41] |
AspPenF2 | TCCGAGCGTCATTGCTG | ||||
8 | Fusarium spp | Fus1 | TCCATWGCGTAGTAGTAAAACCC | 132 | [41] |
Fus2 | TCCATYGCGTAGTAGCTAACACC | ||||
9 | Cladosporium spp | Clado-SYBRG-PF | TACTCCAATG GTTCTAATATTTTCCTCTC | 87 | [42] |
Clado-SYBRG-PR | GGGTACCTAGACAGTATTTCTAGCCT | ||||
10 | RSV n gene | RSVF | GGCAAAT ATGGAAACATACGTGAA | 84 | [43] |
RSVR | TCTTTTTCTAGGACATTGTAYTGAACAG | ||||
11 | Para influenza 1 ngene | PIV1NF | TCTGGCGGAGGAGCAATTATACCTGG | 84 | [44] |
PIV1NR | ATCTGCATCATCTGTCACACTCGGGC | ||||
12 | Parainfluenza 2 | PIV2NF | GATGACACTCCAGTACCTCTTG | 197 | [44] |
PIV2NR | GATTACTCATAGCTGCAGAAGG | ||||
13 | Human metapneumovirus | HMPVNF | GTGATGCACTCAAGAGATACCC | 199 | [45] |
HMPVNR | CATTGTTTGACCGGCCCCATAA | ||||
14 | Influenza a matrix | INFAF | AGGYWCTYATGGARTGGCTAAAG | 105 | [44] |
INFAR | GCAGTCCYCGCTCASTGGGC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakunle, A.G.; Olusola, B.; Jafta, N.; Faneye, A.; Heederik, D.; Smit, L.A.M.; Naidoo, R.N. Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol. Int. J. Environ. Res. Public Health 2020, 17, 1857. https://doi.org/10.3390/ijerph17061857
Fakunle AG, Olusola B, Jafta N, Faneye A, Heederik D, Smit LAM, Naidoo RN. Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol. International Journal of Environmental Research and Public Health. 2020; 17(6):1857. https://doi.org/10.3390/ijerph17061857
Chicago/Turabian StyleFakunle, Adekunle G., Babatunde Olusola, Nkosana Jafta, Adedayo Faneye, Dick Heederik, Lidwien A.M. Smit, and Rajen N. Naidoo. 2020. "Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol" International Journal of Environmental Research and Public Health 17, no. 6: 1857. https://doi.org/10.3390/ijerph17061857
APA StyleFakunle, A. G., Olusola, B., Jafta, N., Faneye, A., Heederik, D., Smit, L. A. M., & Naidoo, R. N. (2020). Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol. International Journal of Environmental Research and Public Health, 17(6), 1857. https://doi.org/10.3390/ijerph17061857