Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Area
3.2. Construction of Index System
3.3. Normalization of Data
3.4. Allocation Method of Flood Drainage Rights
3.4.1. Initial Allocation Based on FAHP
Generation of Judgment Matrix
Establishing the Fuzzy Positive Reciprocal Matrix
Calculation of Fuzzy Weight
Calculation of Initial Allocation Weight
3.4.2. Adjustment of Initial Allocation According to Environmental Gini Coefficient
Environmental Gini Coefficient Model
Adjustment Process of Initial Allocation
- (1)
- Judgment of fairness of initial allocation
- (2)
- Constraints on adjustment of initial allocation
4. Results and Discussions
4.1. Index Normalization Results
4.2. Initial Allocation of Flood Drainage Rights
4.2.1. Determination of Index Weight
4.2.2. Results of Initial Allocation of Administrative Regions
4.3. Adjustment of Initial Allocation of Flood Drainage Rights
4.3.1. Environmental Gini Coefficient of Initial Allocation
4.3.2. Final Allocations of the Regions
4.3.3. Environmental Gini Coefficient of Final Allocation
4.4. Analysis of Allocation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bouwer, L.M.; Bubeck, P.; Aerts, J.C.J.H. Changes in future flood risk due to climate and development in a Dutch polder area. Glob. Environ. Chang. 2010, 20, 463–471. [Google Scholar] [CrossRef]
- Nash, L.L.; Gleick, P.H. The Sensitivity of Streamflow in the Colorado Basin to Climatic Changes. J. Hydrol. 1991, 125, 221–241. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hirabayashi, Y.; Kanae, S. River Floods in the Changing Climate—Observations and Projections. Water Resour. Manag. 2010, 24, 2633–2646. [Google Scholar] [CrossRef]
- Heberger, M.; Cooley, H.; Herrera, P.; Gleick, P.H.; Moore, E. Potential impacts of increased coastal flooding in California due to sea-level rise. Clim. Chang. 2011, 109, 229–249. [Google Scholar] [CrossRef]
- Nie, C.; Li, H.; Yang, L.; Wu, S.; Liu, Y.; Liao, Y. Spatial and temporal changes in flooding and the affecting factors in China. Nat. Hazards 2012, 61, 425–439. [Google Scholar] [CrossRef] [Green Version]
- Camarasa-Belmonte, A.M.; Soriano-García, J. Flood risk assessment and mapping in peri-urban Mediterranean environments using hydrogeomorphology. Application to ephemeral streams in the Valencia region (eastern Spain). Landsc. Urban Plan. 2012, 104, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Shen, H. On Establishing the Legal System for the Prevention and Control of Flood Disaster Hitting International Rivers in China and Its Neighboring Countries. Disaster Adv. 2013, 6, 272–281. [Google Scholar]
- Tunstall, S.M.; Mccarthy, S.; Faulkner, H.P. Flood risk management and planning policy in a time of policy transition: The case of the Wapshott Road Planning Inquiry, Surrey, England. J. Flood Risk Manag. 2010, 2, 159–169. [Google Scholar] [CrossRef]
- Hudson, P.F.; Middelkoop, H.; Stouthamer, E. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment. Geomorphology 2008, 101, 209–236. [Google Scholar] [CrossRef]
- Toonen, W.H.J.; Winkels, T.G.; Cohen, K.M.; Prins, M.A.; Middelkoop, H. Lower Rhine historical flood magnitudes of the last 450years reproduced from grain-size measurements of flood deposits using End Member Modelling. Catena 2015, 130, 69–81. [Google Scholar] [CrossRef]
- Nabangchang, O.; Allaire, M.; Leangcharoen, P.; Jarungrattanapong, R.; Whittington, D. Economic costs incurred by households in the 2011 Greater Bangkok flood. Water Resour. Res. 2016, 51, 58–77. [Google Scholar] [CrossRef] [Green Version]
- Kampanartkosol, T. Thavalit Emergency response: An investigation on a possibility of establishing valuable flood protecting infrastructures in Bangkok. Int. J. Agil. Syst. Manag. 2013, 6, 175–202. [Google Scholar] [CrossRef]
- Saito, N. Norio Challenges for adapting Bangkok’s flood management systems to climate change. Urban Clim. 2014, 9, 89–100. [Google Scholar] [CrossRef]
- Hui, Q.; Zhou, J.; Lu, Y.; Li, Y.; Zhang, Y. Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation. Water Resour. Manag. 2010, 24, 2611–2632. [Google Scholar]
- Kim, H.J.; Lee, J.W.; Yoon, K.; Cho, Y. Numerical analysis of flood risk change due to obstruction. KSCE J. Civ. Eng. 2012, 16, 207–214. [Google Scholar] [CrossRef]
- Gaurav, K.; Sinha, R.; Panda, P.K. The Indus flood of 2010 in Pakistan: A perspective analysis using remote sensing data. Nat. Hazards 2011, 59, 1815–1826. [Google Scholar] [CrossRef]
- Griffiths, J.A.; Zhu, F.; Chan, F.K.S.; Higgitt, D.L. Modelling the impact of sea-level rise on urban flood probability in SE China. Geosci. Front. 2019, 10, 363–372. [Google Scholar] [CrossRef]
- Song, S.; Xu, Y.P.; Wu, Z.F.; Deng, X.J.; Wang, Q. The relative impact of urbanization and precipitation on long-term water level variations in the Yangtze River Delta. Sci. Total Environ. 2019, 648, 460–471. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Yuan, X. Preliminary study on the reasonable allocation of flood drainage right for midstream of Huaihe River. In Applied Mechanics and Materials; Trans. Tech. Publications Ltd.: Durnten-Zurich, Switzerland, 2013; pp. 2208–2212. [Google Scholar]
- Zhang, D.; Shen, J.; Sun, F.; Liu, B.; Wang, Z.; Zhang, K.; Li, L. Research on the Allocation of Flood Drainage Rights of the Sunan Canal Based on a Bi-level Multi-Objective Programming Model. Water 2019, 11, 1769. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Wang, Y.; Yuan, X.; Jiang, S. Preliminary study on concept and its basic characteristics of flood drainage right. J. Irrig. Drain. 2014, 33, 134–137. [Google Scholar]
- Dang, N.M.; Babel, M.S.; Luong, H.T. Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat. Hazards 2011, 56, 169–194. [Google Scholar] [CrossRef]
- Changnon, A.S. Research Agenda for Floods to Solve Policy Failure. J. Water Res. Plan. Manag. 1985, 11, 54–64. [Google Scholar] [CrossRef]
- Schultz, B. Irrigation, drainage and flood protection in a rapidly changing world. Irrig. Drain. 2001, 50, 261–277. [Google Scholar] [CrossRef]
- Karbowski, A. Optimal flood control in multireservoir cascade systems with deterministic inflow forecasts. Water Resour. Manag. 1993, 7, 207–223. [Google Scholar] [CrossRef]
- Malinowski, K. Hierarchical structure for real-time flood control in a multireservoir system. Lect. Notes Control Inf. Sci. 1970, 67, 592–599. [Google Scholar]
- Vermuyten, E.; Van Uytven, E.; Meert, P.; Wolfs, V.; Willems, P. Real-Time River Flood Control under Historical and Future Climatic Conditions: Flanders Case Study. J. Water Res. Plan. Manag. 2020, 146, 05019022. [Google Scholar] [CrossRef] [Green Version]
- Masmoudi, M.; Habaieb, H. The performance of some real-time statistical flood forecasting models seen through multicriteria analysis. Water Resour. Manag. 1993, 7, 57–67. [Google Scholar] [CrossRef]
- Goniewicz, K.; Burkle, J.F.M. Analysis of the Potential of IT System Support in Early Warning Systems: Mitigating Flood Risk in Poland. Prehospital Disaster Med. 2019, 34, 563–565. [Google Scholar] [CrossRef]
- Verworn, H. Advances in urban-drainage management and flood protection. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2002, 360, 1451–1460. [Google Scholar] [CrossRef]
- Sayers, W.; Savi, D.; Kapelan, Z.; Kellagher, R. Artificial Intelligence Techniques for Flood Risk Management in Urban Environments. Procedia Eng. 2014, 70, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Vlotman, W.F.; Wong, T.; Schultz, E. Integration of Drainage, Water Quality and Flood Management in Rural, Urban and Lowland Areas. Irrig. Drain. 2007, 56, S161–S177. [Google Scholar] [CrossRef]
- Ting, D. Discusses on Non-engineering Flood-control Measure in Flood-stricken Area Application. Water Conserv. Sci. Technol. Econ. 2010, 16, 326–327. [Google Scholar]
- Andoh, R.; Declerck, C. A Cost Effective Approach to Storm water Management? Source Control and Distributed Storage. Water Sci. Technol. 1997, 36, 307–311. [Google Scholar] [CrossRef]
- Mascarenhas, F.C.B.; Miguez, M.G.; Magalhães, L.P.C.D.; Prodanoff, J.H.A.; Savic, D.A.; Bertoni, J.C.; Mariño, M.A.; Savenije, H.H.G. On-site stormwater detention as an alternative flood control measure in ultra-urban environments in developing countries. IAHS Aish Publ. 2005, 293, 196–202. [Google Scholar]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Xu, X. Spatial Allocation of Flood Drainage Right Based on the Compensation Mechanism of Detention Basin; Nanjing University: Nanjing, China, 2019. [Google Scholar]
- Meyer, V.; Priest, S.; Kuhlicke, C. Economic evaluation of structural and non-structural flood risk management measures: Examples from the Mulde River. Nat. Hazards 2012, 62, 301–324. [Google Scholar] [CrossRef]
- Hansson, K.; Danielson, M.; Ekenberg, L. A framework for evaluation of flood management strategies. J. Environ. Manag. 2008, 86, 465–480. [Google Scholar] [CrossRef]
- Posthumus, H.; Hewett, C.J.M.; Morris, J.; Quinn, P.F. Agricultural land use and flood risk management: Engaging with stakeholders in North Yorkshire. Agric. Water Manag. 2008, 95, 787–798. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Song, S.; Xu, G.; Xiang, J. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. J. Hydrol. 2018, 566, 846–859. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, Z.; Guan, X.; Liu, Y. Flood Risk Analysis of Different Climatic Phenomena during Flood Season Based on Copula-Based Bayesian Network Method: A Case Study of Taihu Basin, China. Water 2019, 11, 1534. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tabari, H.; Xu, Y.; Willems, P. Atmospheric and human-induced impacts on temporal variability of water level extremes in the Taihu Basin, China. J. Flood Risk Manag. 2019, 12, e12539. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wang, Y.; Yuan, J.; Wang, Q.; Xiang, J. Non-stationarity analysis of extreme water level in response to climate change and urbanization in the Taihu Basin, China. Stoch. Environ. Res. Risk Assess. 2019, 33, 891–904. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Wu, L. Changes in river networks and their storage and regulation capacities in the Rapidly Urbanized Taihu Basin, China. Hydrol. Process. 2018, 32, 3341–3351. [Google Scholar] [CrossRef]
- Meshram, S.G.; Alvandi, E.; Singh, V.P.; Meshram, C. Comparison of AHP and fuzzy AHP models for prioritization of watersheds. Soft Comput. 2019, 23, 13615–13625. [Google Scholar] [CrossRef]
- Sukcharoen, T.; Weng, J.; Charoenkalunyuta, T. GIS-Based Flood Risk Model Evaluated by Fuzzy Analytic Hierarchy Process (FAHP). In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, Bellingham, WA, USA, 25 October 2016. [Google Scholar]
- Tahri, M.; Maanan, M.; Maanan, M.; Bouksim, H.; Hakdaoui, M. Using Fuzzy Analytic Hierarchy Process multi-criteria and automatic computation to analyse coastal vulnerability. Prog. Phys. Geogr. Earth Environ. 2017, 41, 268–285. [Google Scholar] [CrossRef]
- Negahban, A. Optimizing consistency improvement of positive reciprocal matrices with implications for Monte Carlo Analytic Hierarchy Process. Comput. Ind. Eng. 2018, 124, 113–124. [Google Scholar] [CrossRef]
- Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resour. Res. 2014, 50, 4054–4078. [Google Scholar] [CrossRef]
- Xu, J. Study on Target Reductions Allocation Model of the River Based on the AHP and the Gini Coefficient Interactive Feedback; Huazhong University of Science and Technology: Wuhan, China, 2013. [Google Scholar]
- Xue, J.; Xu, M.; Yan, Z. Research on total pollutant load allocation model for river basin. Environ. Eng. 2014, 32, 126–130. [Google Scholar]
- Groves-Kirkby, C.J.; Denman, A.R.; Phillips, P.S. Lorenz Curve and Gini Coefficient: Novel tools for analysing seasonal variation of environmental radon gas. J. Environ. Manag. 2009, 90, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Malakar, K.; Mishra, T.; Patwardhan, A. Inequality in water supply in India: An assessment using the Gini and Theil indices. Environ. Dev. Sustain. 2018, 20, 841–864. [Google Scholar] [CrossRef]
- Sadras, V.; Bongiovanni, R. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crop. Res. 2004, 90, 303–310. [Google Scholar] [CrossRef]
- Shen, J.; Li, L.; Zhang, K.; Sun, F.; Zhang, D. Initial allocation of water discharge right based on chaos optimization-projection pursuit. Resour. Ind. 2019, 21, 39–47. [Google Scholar]
- Pakistan Floods: Preventing Future Catastrophic Flood Disasters. Available online: https://www.preventionweb.net/files/15697_01.10.101.pdf (accessed on 20 March 2020).
Target Layer | Criterion Layer | Index Layer |
---|---|---|
Distributable flood drainage rights (A) | Natural conditions (B1) | Water production coefficient (C1) |
Drainage density (C2) | ||
Land area (C3) | ||
Water resources per capita (C4) | ||
Social development level (B2) | Population density (C5) | |
Urbanization rate (C6) | ||
Natural growth rate of population (C7) | ||
Cultivated land density (C8) | ||
Economic development level (B3) | Per capita disposable income (C9) | |
Spatial distribution difference index (C10) | ||
Per capita GDP (C11) | ||
Proportion of output value of tertiary industry (C12) | ||
Industrial added value (C13) | ||
Technology and management (B4) | Water consumption per unit of GDP (C14) | |
Length of drainage pipe in built-up area (C15) | ||
Green coverage rate of built-up area (C16) | ||
Sewage treatment capacity (C17) | ||
Sewage treatment rate (C18) |
Importance Scale Value | Meaning |
---|---|
1 | Both elements are of equal importance |
3 | One element is slightly more important than the other |
5 | One element is more important than the other |
7 | One element is extremely important than the other |
9 | One element is absolutely important than the other |
2,4,6,8 | Represents the middle value of the above judgment |
Linguistic Variable | Triangular Fuzzy Number |
---|---|
Equally important | (1,1,1) |
Between equally important and slightly important | (1,2,3) |
Slightly important | (1,3,5) |
Between slightly important and important | (3,4,5) |
Important | (3,5,7) |
Between important and extremely important | (5,6,7) |
Extremely important | (5,7,9) |
Between extremely important and absolutely important | (7,8,9) |
Absolutely important | (7,9,9) |
Factors | Natural Conditions (B1) | Social Development Level (B2) | Economic Development Level (B3) | Technology and Management (B4) |
---|---|---|---|---|
Natural Conditions (B1) | 1 | 1/5 | 1/3 | 1/7 |
Social Development Level (B2) | 5 | 1 | 3 | 1/5 |
Economic Development Level (B3) | 3 | 1/3 | 1 | 1/3 |
Technology and Management (B4) | 7 | 5 | 3 | 1 |
Surname | Title | Work Unit | Expertise |
---|---|---|---|
Nie | Senior Engineer | Ministry of Water Resources, PRC | Technology Economics and Management in Water Resources |
Zhang | Senior Engineer | Jiangsu Water Resources Department | Flood disaster prevention and control |
Zhu | Senior Engineer | Jiangsu Water Resources Department | Flood disaster prevention and control |
Tang | Vice Professor | Hohai University | Technology Economics and Management in Water Resources |
Xu | Vice Professor | Hohai University | Technology Economics and Management in Water Resources |
Shen | Lecturer | Hohai University | Environmental Science and Engineering |
Liu | Lecturer | Nanjing Normal University | Technology Economics and Management in Water Resources |
Judgment Matrix | Single Weight Values of the Index |
---|---|
(0.219, 0.365, 0.182, 0.234) | |
(0.244, 0.291, 0.181, 0.284) | |
(0.299, 0.233, 0.166, 0.302) | |
(0.213, 0.062, 0.372, 0.158, 0.194) | |
(0.251, 0.277, 0.124, 0.205, 0.142) | |
(0.053, 0.064, 0.040, 0.062, 0.109, 0.085, 0.060, 0.110, 0.039, 0.011, 0.068, 0.029, 0.035, 0.059, 0.065, 0.029, 0.048, 0.033) |
Index | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | Total Weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.053 | 0.064 | 0.040 | 0.062 | 0.109 | 0.085 | 0.060 | 0.110 | 0.039 | 0.011 | 0.068 | 0.029 | 0.035 | 0.059 | 0.065 | 0.029 | 0.048 | 0.033 | 1.000 |
Wuxi | 0.118 | 0.124 | 0.085 | 0.068 | 0.134 | 0.130 | 0.076 | 0.105 | 0.128 | 0.125 | 0.156 | 0.121 | 0.141 | 0.129 | 0.184 | 0.131 | 0.085 | 0.129 | 0.121 |
Changzhou | 0.118 | 0.124 | 0.080 | 0.093 | 0.102 | 0.123 | 0.014 | 0.146 | 0.116 | 0.125 | 0.137 | 0.120 | 0.087 | 0.122 | 0.083 | 0.132 | 0.065 | 0.128 | 0.107 |
Suzhou | 0.096 | 0.124 | 0.159 | 0.057 | 0.117 | 0.130 | 0.171 | 0.078 | 0.140 | 0.124 | 0.158 | 0.121 | 0.235 | 0.128 | 0.146 | 0.126 | 0.161 | 0.125 | 0.127 |
Zhenjiang | 0.129 | 0.124 | 0.070 | 0.140 | 0.079 | 0.120 | 0.036 | 0.172 | 0.103 | 0.124 | 0.122 | 0.111 | 0.056 | 0.133 | 0.028 | 0.131 | 0.031 | 0.125 | 0.104 |
Hangzhou | 0.152 | 0.124 | 0.305 | 0.285 | 0.054 | 0.131 | 0.263 | 0.054 | 0.138 | 0.126 | 0.131 | 0.148 | 0.123 | 0.129 | 0.120 | 0.112 | 0.112 | 0.125 | 0.137 |
Jiaxing | 0.139 | 0.135 | 0.078 | 0.108 | 0.104 | 0.110 | 0.210 | 0.207 | 0.111 | 0.127 | 0.092 | 0.104 | 0.065 | 0.120 | 0.061 | 0.117 | 0.036 | 0.118 | 0.119 |
Huzhou | 0.129 | 0.124 | 0.107 | 0.224 | 0.049 | 0.106 | 0.131 | 0.111 | 0.103 | 0.127 | 0.081 | 0.112 | 0.033 | 0.110 | 0.031 | 0.130 | 0.017 | 0.127 | 0.100 |
Shanghai | 0.120 | 0.122 | 0.116 | 0.026 | 0.361 | 0.150 | 0.099 | 0.128 | 0.163 | 0.122 | 0.123 | 0.163 | 0.260 | 0.130 | 0.346 | 0.119 | 0.492 | 0.124 | 0.184 |
Administrative Region | Land Area (10,000 km2) | Allocation Weight of Flood Drainage Rights | Flood Drainage Rights Per Unit Land Area | Percentage (%) | Cumulative Percentage (%) | ||
---|---|---|---|---|---|---|---|
Land Area | Flood Drainage Rights | Land Area | Flood Drainage Rights | ||||
Hangzhou | 1.660 | 0.137 | 0.083 | 30.463 | 13.712 | 30.463 | 13.712 |
Suzhou | 0.866 | 0.127 | 0.147 | 15.891 | 12.734 | 46.354 | 26.447 |
Huzhou | 0.582 | 0.100 | 0.172 | 10.683 | 10.001 | 57.037 | 36.448 |
Changzhou | 0.437 | 0.107 | 0.245 | 8.029 | 10.719 | 65.066 | 47.167 |
Wuxi | 0.463 | 0.121 | 0.261 | 8.494 | 12.089 | 73.560 | 59.257 |
Zhenjiang | 0.384 | 0.104 | 0.271 | 7.049 | 10.416 | 80.609 | 69.672 |
Jiaxing | 0.422 | 0.119 | 0.283 | 7.752 | 11.935 | 88.361 | 81.607 |
Shanghai | 0.634 | 0.184 | 0.290 | 11.639 | 18.393 | 100.000 | 100.000 |
Region | Initial Allocation Weight | Final Allocation Weight | Adjustment Amount | Adjusted Proportion (%) |
---|---|---|---|---|
Wuxi | 0.121 | 0.107 | −0.014 | −11.657 |
Changzhou | 0.107 | 0.082 | −0.025 | −23.603 |
Suzhou | 0.127 | 0.144 | 0.017 | 13.461 |
Zhenjiang | 0.104 | 0.089 | −0.016 | −14.910 |
Hangzhou | 0.137 | 0.128 | −0.009 | −6.620 |
Jiaxing | 0.119 | 0.097 | −0.022 | −18.332 |
Huzhou | 0.100 | 0.097 | −0.003 | −2.878 |
Shanghai | 0.184 | 0.256 | 0.072 | 38.936 |
Environmental Gini Coefficient | |||||
---|---|---|---|---|---|
Initial environmental Gini coefficient | 0.250 | 0.286 | 0.315 | 0.439 | 1.290 |
Optimized environment Gini coefficient | 0.281 | 0.183 | 0.206 | 0.336 | 1.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Shen, J.; Liu, P.; Zhang, Q.; Sun, F. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights. Int. J. Environ. Res. Public Health 2020, 17, 2063. https://doi.org/10.3390/ijerph17062063
Zhang D, Shen J, Liu P, Zhang Q, Sun F. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights. International Journal of Environmental Research and Public Health. 2020; 17(6):2063. https://doi.org/10.3390/ijerph17062063
Chicago/Turabian StyleZhang, Dandan, Juqin Shen, Pengfei Liu, Qian Zhang, and Fuhua Sun. 2020. "Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights" International Journal of Environmental Research and Public Health 17, no. 6: 2063. https://doi.org/10.3390/ijerph17062063
APA StyleZhang, D., Shen, J., Liu, P., Zhang, Q., & Sun, F. (2020). Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights. International Journal of Environmental Research and Public Health, 17(6), 2063. https://doi.org/10.3390/ijerph17062063