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Abstract: To evaluate the effectiveness of alternative policies and measures to reduce air pollution
effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic
emissions being a major source of emissions and exposure in European cities, it is necessary to account
for differentiated transport environments in population dynamics for exposure studies. In this study,
we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016.
The modeling system consists of an urban-scale chemistry transport model to account for ambient air
pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which
accounts for population dynamics in different environments as well as for infiltration of outdoor to
indoor air pollution. We integrated different modes of transport in the TMA approach to improve
population exposure assessments in transport environments. The newly developed approach reports
12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on
residential addresses. During the time people spend in different transport environments, the in-car
environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in
the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and
other environments (buses, subway, suburban, and regional trains) with less than 10% respectively.
The relative contribution of road traffic emissions to population exposure is highest in the in-car
environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed
exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment.
Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor
to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed
“dynamic transport approach” is integrated in a computationally efficient exposure model, which
is generally applicable in European urban areas. The presented methodology is promoted for use
in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their
combined effect on emissions, population activity and population exposure.

Keywords: transport emissions; nitrogen dioxides; particulate matter; urban air quality; chemistry
transport modeling; population exposure; microenvironments

1. Introduction

More than 60% of European citizens live in urban areas of over 10,000 inhabitants and even more
in smaller urban environments [1]. Daily urban life circles around the same spaces and uses established
mobility infrastructures to reach them. About 70% of transport-related air pollutants and 40% of road
transport-related carbon dioxide (CO2) emissions arise from urban mobility [1]. In Europe, about
8% of the urban population in the EU-28 was exposed to levels above the EU annual limit value of
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25 µg/m3 for fine particulate matter (PM2.5, particles smaller than 2.5 µm in aerodynamic diameter)
and approximately 77% were exposed to concentrations exceeding the WHO air quality guideline
(AQG) value of 10 µg/m3 for PM2.5 in 2017 [2]. Moreover, around 7% of the EU-28 urban population
was exposed to nitrogen dioxide (NO2) concentrations above the annual EU limit value of 40 µg/m3

(which is equal to the WHO AQG limit value) [2]. Although these values have been decreasing since
2006, air pollution is still the most important environmental risk to human health in Europe [3].

Many epidemiological studies report statistical associations indicating that exposure to air
pollution increases the risk of diseases such as lung cancer or chronic and acute respiratory and
cardiovascular diseases, and premature deaths [4–7]. Although the relationship between NO2 and
health effects is scientifically not as well founded as it is for PM2.5 [8–11], NO2 is often considered to be
an indicator for other pollutants and the evidence for health effects related to NO2 exposure is rising in
terms of physical [12–17] and psychological diseases [18].

Air pollution in urban areas is caused by different activities, such as power generation, industry,
road transport, agriculture, shipping, and households. Cities are affected by the short-range and
long-range transport of gaseous and particulate pollutants from the surrounding region; especially
pollution levels of PM2.5 which in the urban background were shown to be largely controlled by
atmospheric transport from up-wind regions [19]. In cities, road transport is one of the main contributors
to urban air pollution. In 2017, the road transport sector was the most significant contributor to total
nitrogen oxides (NOx) emissions (39%) and the second largest contributor of primary PM2.5 emissions
(11%) in European cities [2]. However, the contribution of the road transport sector to population
exposure to ambient concentrations in urban areas is considerably higher, because its emissions are
closer to the ground.

Different measurement studies have shown that urban citizens commuting in cars and buses had
the highest levels of air pollution exposure, followed by those commuting by a car with controlled
ventilation settings, cyclists, and pedestrians [20,21]. Thus, reducing road transport emissions bears
great potential to decrease negative impacts on health effects. Many cities’ regulatory bodies started to
promote and support alternative modes of transport, such as car sharing, cycling, or walking and try
to enhance public transport solutions. Moreover, several policies such as restricting vehicle access in
designated areas or roads, low emission zones or calming traffic have been applied in European urban
areas. To evaluate the impacts of other modes of transport and policies on urban citizens’ health effects,
it is necessary to perform assessments on population exposure to air pollutants on the urban-scale,
which can take into account different modes of transport.

Population exposure estimations are based on air concentration levels in the environments where
people spend their time, and the amount of time they spend within them [22]. Thus, it is important to
take into account both realistic pollution levels and population time–activity.

Traditional approaches to account for pollutant concentrations in urban areas are usually based
on data collected from fixed air quality monitoring stations and interpolation techniques to extend the
spatiotemporal resolution for a given area and period [23]. Modern approaches often apply complex
air quality models that take into account data on emissions, meteorology, and various physical and
chemical processes to predict ambient concentrations of many types of pollutants at different spatial
and temporal scales [21,24–26]. Although these models are connected with limitations such as model
biases and inaccuracies of emissions data, it is possible to adjust these when monitoring data are
available [27].

While modeling approaches to predict ambient air concentrations have been significantly improved,
spatiotemporal information about population activity is still a major limitation in population exposure
assessments [28]. Still, the most common approach in air quality exposure and health impact
assessment studies is to consider residential addresses as a proxy of population location [29–33]. This
approach tolerates differences between exposure at residential addresses and exposure that takes into
account diurnal mobility behavior of individuals or a population [34–38]. In general, information
regarding the diurnal spatial distribution of population is mostly derived from surveys, census data, or
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administrative records. Methods that are more recent apply GPS data [34,39–41], agent-based modeling
(ABM) approaches [42–44], or different time-microenvironment-activity (TMA) models [25,26,45,46] to
estimate mobility patterns. Nevertheless, each of these methods has its own shortcomings. Survey and
census data are based on a limited number of samples while GPS data are rarely accessible and are
connected with problems of data protection and privacy issues as well as with accessing the data [47].
Both methods provide individuals’ data that needs to be extrapolated to represent a population. This
also holds true for the application of ABM, which is additionally computationally expensive, and thus
mostly applicable to small areas and a limited set of individual activities, i.e., activity spaces and daily
mobility [43]. The advantage of TMA models is that they enable a fast screening of dynamic populations
in large areas, such as cities, regions, or countries. Moreover, TMA approaches for population exposure
estimates can be applied in areas, where data on population activity are scarce [46], while most other
approaches can only be transferred to other (urban) areas with considerable effort in data collection.

There is a need to develop innovative and operational approaches that combine ambient
concentrations of air pollutants with mobility patterns and have the potential to improve exposure
estimates for use in epidemiological studies. However, in urban areas where city-specific data on
population activity are limited or not available, the modeling of citizen’s mobility patterns is a
challenging task in estimates of population exposure. Our idea was to develop a TMA modeling
approach which allows for the explicit consideration of spatiotemporal dynamics in the analysis of
the collective exposures in different fine-granular modes of transport within large urban areas, with
relatively low requirements on the availability of city-specific data.

This study presents a novel approach to analyze different modes of transport in dynamic population
exposure studies based on a TMA model generically applicable to European urban areas. The new
developments are based on OpenStreetMap data and allow for intra-urban exposure analysis on
street-level resolution in European urban areas. The underlying data and assumptions are based
on publicly available datasets and thus allow for applications in urban areas where specific data
are missing.

The new methodology was tested in the city of Hamburg (Germany), evaluating the population
exposure to NO2 and PM2.5 during the year 2016 and comparing results with those calculated with a
static (residential addresses-based) and a less detailed dynamic approach. The aim was to improve the
analysis and evaluation of human exposure to urban air pollution risks by integrating different modes
of transport in TMA approaches. The presented methodology is promoted for use in urban mobility
planning, e.g., to investigate on policy driven changes in modal split and their combined effects on
emissions, population activity, and population exposure.

This study utilizes an urban-scale chemistry transport modeling system in combination with a
modified time-microenvironment-activity model to estimate population exposure to NO2 and PM2.5 in
different transport environments. After describing the approach, models, and new developments, a
case study is used to analyze air pollution and exposure. A limited sensitivity analysis is performed to
examine impacts of key parameters on the calculated exposure.

2. Materials and Methods

To evaluate the urban population exposure to NO2 and PM2.5, a combined air pollution,
dynamic population activity and exposure modelling approach was developed and applied (Figure 1).
This approach is mainly based on the city-scale CTM EPISODE-CityChem [48] and a generic
time-microenvironment-activity model to account for dynamic movements of the urban population
within time and space in exposure estimations [46,49]. To investigate the impact of modal splits on
exposure estimates, the generic TMA model was modified with new developments. The applied
models, their setup and necessary input data, as well as modifications are explained in the following.
The modeling approach was then applied to the Hamburg metropolitan area in the year 2016 to
calculate the total population exposure and population-weighted exposure (PWE) to NO2 and PM2.5.
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dispersion in proximity of point sources and lines sources. This approach allows for calculation of 
concentrations near pollution sources with high spatial resolution. Moreover, a simplified street 
canyon model (SSCM) is part of EPISODE-CityChem for better treatment of pollutant dispersion in 
street canyons in comparison with models without SSCM [48]. The SSCM module computes 
concentrations for the receptor points that are located in street canyons. The SSCM is based on the 
Open Street Pollution Model (OSPM) [50] but uses simplified street canyon geometry. Street canyons 
are approximated by three generic types for which average street canyon geometry properties are 
applied. A street canyon is identified for a line source if its geometric midpoint is located in a ground-
level grid cell classified as urban land use. The street canyon model assumes that whenever wind 
blows over a rooftop in a street canyon, an hourly averaged recirculation vortex is formed inside the 
canyon. The concentration contribution of a line source to the concentration at a receptor is calculated 
as the sum of the direct contribution from the traffic plume and the contribution from the 
recirculation of the traffic plume due to the vortex. 

EPISODE-CityChem solves the photochemistry of multiple reactive pollutants on the 3-D 
Eulerian grid. In order to use comprehensive chemical schemes in the urban air pollution model in a 
computationally efficient way, the number of compounds and reactions have been reduced to a 
minimum, while maintaining the essential aspects of urban atmospheric chemistry. The chemistry 
mechanism EmChem09-mod was applied which contains 70 gaseous compounds, 67 thermal 
reactions, and 25 photolysis reactions. The EmChem09-mod includes a large number of chemical 
interactions involving nitrogen oxides (NOx = NO + NO2), ozone (O3), non-methane volatile organic 
compounds (NMVOC), sulfur dioxide (SO2), and other secondary pollutants that are important in the 
urban atmosphere. The chemistry scheme considers the oxidation of individual hydrocarbons by the 
hydroxyl radical (OH) and the nitrate radical (NO3). 

Only a small portion of NOx from motor vehicles and combustion sources are in the form of NO2, 
the main part being in the form of nitric oxide (NO). The largest fraction of ambient NO2 originates 
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Figure 1. Schematic representation of the combined air pollution, dynamic population and exposure
modelling approach.

2.1. Modeling of NO2 and PM2.5 Concentrations in Hamburg for 2016

2.1.1. Features of the EPISODE-CityChem Model

The urban-scale chemistry transport model EPISODE-CityChem [48] was applied to determine
the NO2 and PM2.5 concentrations in the Hamburg urban area in the year 2016. EPISODE-CityChem
combines a 3-D Eulerian grid model with sub-grid Gaussian dispersion models to resolve pollutant
dispersion in proximity of point sources and lines sources. This approach allows for calculation of
concentrations near pollution sources with high spatial resolution. Moreover, a simplified street canyon
model (SSCM) is part of EPISODE-CityChem for better treatment of pollutant dispersion in street
canyons in comparison with models without SSCM [48]. The SSCM module computes concentrations
for the receptor points that are located in street canyons. The SSCM is based on the Open Street Pollution
Model (OSPM) [50] but uses simplified street canyon geometry. Street canyons are approximated by
three generic types for which average street canyon geometry properties are applied. A street canyon
is identified for a line source if its geometric midpoint is located in a ground-level grid cell classified
as urban land use. The street canyon model assumes that whenever wind blows over a rooftop in a
street canyon, an hourly averaged recirculation vortex is formed inside the canyon. The concentration
contribution of a line source to the concentration at a receptor is calculated as the sum of the direct
contribution from the traffic plume and the contribution from the recirculation of the traffic plume due
to the vortex.

EPISODE-CityChem solves the photochemistry of multiple reactive pollutants on the 3-D Eulerian
grid. In order to use comprehensive chemical schemes in the urban air pollution model in a
computationally efficient way, the number of compounds and reactions have been reduced to a
minimum, while maintaining the essential aspects of urban atmospheric chemistry. The chemistry
mechanism EmChem09-mod was applied which contains 70 gaseous compounds, 67 thermal reactions,
and 25 photolysis reactions. The EmChem09-mod includes a large number of chemical interactions
involving nitrogen oxides (NOx = NO + NO2), ozone (O3), non-methane volatile organic compounds
(NMVOC), sulfur dioxide (SO2), and other secondary pollutants that are important in the urban
atmosphere. The chemistry scheme considers the oxidation of individual hydrocarbons by the
hydroxyl radical (OH) and the nitrate radical (NO3).

Only a small portion of NOx from motor vehicles and combustion sources are in the form of NO2,
the main part being in the form of nitric oxide (NO). The largest fraction of ambient NO2 originates from
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the subsequent chemical oxidation of NO. In the sub-grid Gaussian models, the photo-stationary state
(PSS) approximation for the reaction cycle of NO, NO2 and O3 is typically used. In EPISODE-CityChem,
the PSS approximation is replaced by the compact reaction scheme EP10-Plume, which includes the
formation of nitric acid (HNO3) and the photochemical degradation of formaldehyde (HCHO), an
important constituent of vehicle exhausts, in addition to the reactions of NO, NO2, and O3. It has been
shown that EP10-Plume gives very similar concentrations of NO, NO2, and O3 as the PSS close to
roads [48]. Currently, PM2.5 is treated as a chemically inert tracer with no secondary particle formation.
In the EPISODE-CityChem model, PM2.5 is removed from the atmosphere by dry deposition (diffusion,
impaction, interception, and gravitational settling) and by wet scavenging.

2.1.2. Model Configuration

EPISODE-CityChem reads meteorological fields to calculate dispersion parameters, vertical profile
functions in the surface layer, and eddy diffusivities. Moreover, EPISODE-CityChem has the option
to use the time-varying 3-D concentration field at the lateral and vertical as initial and boundary
concentrations for selected chemical species. Emissions in EPISODE-CityChem can be treated as area
sources (2-dimensional area of the size of a grid cell), line sources (line between two (x, y)-coordinates),
and point sources (industrial and power plant stacks).

EPISODE-CityChem predicts hourly concentrations of NO2 and PM2.5 on the 3-D Eulerian
grid with a horizontal resolution of 1000 m in different vertical layers (first layer with a depth of
17.5 m). At the surface level, a regular receptor grid intercepts concentrations at 100 m resolution. The
time-dependent surface concentrations of the pollutants at receptor points are calculated by summation
of the Eulerian grid concentration of the corresponding grid cell (i.e., the background concentration)
and the concentration contributions from the sub-grid models due to the near-source dispersion of line
source and point source emissions. The hourly output of the 100 × 100 m2 surface receptor grid is used
in this analysis to study impacts at ground level. In this study, an urban domain for Hamburg for a
30 km × 30 km area including most of the city was defined (Table 1).

Table 1 summarizes the model setup. The computational time for a 1-month simulation with
EPISODE–CityChem was 9.8 h on an Intel® Xeon ® Platinum 8160 processor ((Dell Inc., Round Rock,
TX, USA) at 2.1 GHz with 364 GB of RAM.

Table 1. Overview of EPISODE-CityChem setup.

CTM Setup with EPISODE-CityChem Setup for Hamburg 2016

Horizontal domain size (x × y) 30 × 30 km2

Horizontal domain resolution 1000 m

Model grid coordinate system WGS1984 Universal Transverse Mercator (UTM) Zone 32N

Vertical dimension
Lowest Layer height 17.5 m

16 vertical layers below 1000 m
Vertical top height 3750 m

Boundary Conditions Hourly Copernicus Atmospheric Monitoring Services
(CAMS) regional ensemble concentrations

Meteorology Hourly meteorological fields simulated with The Air
Pollution Model (TAPM), 1000 m horizontal grid resolution.

Point source emissions * 750 sources (federal emission reports, 11. BimSchV)

Line source emissions * 12625 road links (CAMS-REG-AP v3.1, OSM)

Area source emissions * 6430 sources, grid resolution 1000 m (CAMS-REG-AP v3.1)

* detailed description of emission inventories in Supplementary Material S4.
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2.1.3. Meteorological Setup of EPISODE-CityChem

In this study, prognostic meteorological fields from the meteorological component of the coupled
meteorological and chemistry transport model TAPM (The Air Pollution Model, [51]) were applied.
TAPM predicts three-dimensional meteorology based on an incompressible, non-hydrostatic, primitive
equation model. In the meteorological module of TAPM, an urban scheme with seven urban land
use classes [52] is used at the surface for better representation of urban parameters in the simulation
of wind fields, e.g., by taking into account different anthropogenic heat fluxes or roughness lengths.
In this study, three hourly synoptic scale ECMWF (European Centre for Medium-Range Weather
Forecasts) ERA5 (European Reanalysis 5th generation) reanalysis ensemble means for 2016 on a
longitude/latitude grid at 0.3 degree grid spacing have been used to drive the meteorological module
of TAPM. Additionally, wind speed and wind direction from eight different meteorological stations
(Supplement S2–T1) have been assimilated to nudge the TAPM simulations. Moreover, land cover
classes and elevation have been updated with Corine Land Cover 2018 (CLC2018) raster data [53] with
an original grid resolution of 100 m for better representation of the urban landscape. The meteorological
fields simulated with TAPM have a horizontal resolution of 1 km × 1 km and a vertical resolution of
30 layers with different heights, following the EPISODE-CityChem vertical layer structure.

2.1.4. Boundary Conditions

Background air concentrations are taken into account with hourly Copernicus Atmospheric
Monitoring Services (CAMS) ensemble forecasts for carbon monoxide (CO), ammonia (NH3), NMVOC,
NO, NO2, O3, peroxyl nitrates (PANS), particulate matter (PM10, PM2.5), and SO2. The CAMS regional
ensemble is based on an ensemble of seven state-of-the-art numerical air quality models developed in
Europe [54]. The output of the seven models is combined via an ensemble approach, in which the
median value of the individual model outputs is considered. The spatial resolution of the regional
forecast is 0.1 × 0.1 degrees for the whole of Europe, with nine vertical levels extending from the surface
up to 500 hPa, and time resolution is one hour. The CAMS forecast concentrations were downloaded
and interpolated to the horizontal and vertical resolution of the domain to be considered at the lateral
and vertical borders of the urban domain.

2.1.5. Urban Emissions

To account for all relevant emission sources in the study domain, emission data containing
sector-specific and geo-referenced yearly emission totals are pre-processed with the EPISODE-CityChem
interface for emission pre-processing, the Urban Emission Conversion Tool (UECT, [55]). UECT creates
hourly varying emission input for point sources, line sources, and area source categories using sector
specific temporal profiles and vertical profiles, based on annual totals of emissions. Temporal profiles
from the SMOKE-EU model [56] are applied in UECT. For the lines source emissions, different diurnal
profiles are applied for weekdays and weekends. The composition of the vehicle fleet assumes a fraction
of 10% heavy duty and commercial vehicles. An NO2-to-NOx ratio of 0.3 was applied to recalculate
NO2 emissions for this study because of the expected higher real-world NO2 emissions from diesel
vehicles. Total NMVOC emissions are distributed over individual VOCs of the chemical mechanism
using the VOC split of the EMEP (European Monitoring and Evaluation Program) model [57] for all
SNAP (Selected Nomenclature for sources of Air Pollution) sectors.

In this study, local annual emission totals of CO, NH3, NMVOC, NOx, PM10, PM2.5, SO2, and
methane (CH4) were applied for every sector with city-specific data or downscaled regional emission
data if city-specific data were not available. These were applied as annual point, line, and area emission
totals in UECT to produce hourly emissions for each emission category and afterwards applied in the
EPISODE-CityChem setup for Hamburg in year 2016.

For point sources, industrial and commercial stack emissions for the year 2016 have been used,
which have been reported to the environmental agency of Hamburg (Behörde für Umwelt und Energie)
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following the demands of the 11. BImSchV (Verordnung über Emissionserklärungen). Thus, there is
a profound availability of data for point emission sources, which cover annual emissions and stack
parameters, such as stack height, exit velocity and exit temperature.

For line and area emissions, the CAMS regional anthropogenic emission inventory
(CAMS-REG-AP) in version 3.1 for the year 2016 [58] was downscaled to the urban scale. The
CAMS-REG-AP emission inventory provides sectoral annual emission totals on a 0.1◦ × 0.05◦ (lon × lat)
for Europe. Sector specific proxies were applied to downscale the CAMS-REG-AP emission to a
resolution of 1000 m × 1000 m. The downscaling procedure is described in detail in Supplement S1.

2.1.6. Road Transport Emissions

CAMS-REG-AP provides area-gridded emissions from road transport based on national emission
reporting that take into account country-specific fleet compositions, fuel uses and state-of-the-art
emission factors for each technology [58,59]. Nevertheless, for urban-scale CTM simulations with
EPISODE-CityChem it is necessary to consider road traffic as line source to account for street canyon
effects. The transformation of area sources for road transport to line sources requires spatial information
on road networks as well as information on traffic density or annually averaged daily traffic volumes.
The latter information was not available for the Hamburg urban area. Moreover, Kuik et al. 2018 [60]
reported an averaged 50% underestimation of NOx traffic emissions in urban core areas when
downscaling regional emission inventories. Taking this into account, two more steps after downscaling
road transport emissions from the CAMS-REG-AP inventory were added. First, all road emissions were
multiplied with a factor of three in areas classified as urban an center following spatial information
from the Global Human Settlement Urban Centre Database [61]. This factor follows the work of
Kuik et al. 2018 [60] and remediates underestimations in regional emission inventories as well as other
possible sources of model biases.

Second, the modified road transport emissions were converted from gridded area sources into a
dataset of line sources by applying major road types of the OpenStreetMap (OSM) database. Therefore,
each 1 × 1 km2 grid cell of road traffic area emissions was separately intersected with downloaded OSM
road links, which are tagged as motorway, trunk, primary, and secondary roads. The intersecting OSM
road links’ lengths are used to calculate the total road length of all intersecting road links. The total road
link length is used to derive a first weighting factor for each intersecting road link. A second weighting
factor is derived based on the different road type of each road link intersecting the grid cell, to account
for generic traffic densities of different road types, following the work of Ibarra-Espinosa et al. [62].
The combination of both weighting factors allows for top-down distribution of the grid cell emission
value to all intersecting road lengths, taking into account length and road type. This is repeated
for all grid cells of the road traffic area emissions grid. Thereby, all road traffic area emissions were
distributed to OSM road links (line emission sources), which allows for consideration of SSCM in
EPISODE-CityChem simulations.

2.2. Dynamic Population Modeling

Several studies have compared population exposure estimates based on static populations with
spatially and temporally dynamic populations, emphasizing the need to account for population
dynamics to reduce bias in population exposure estimates [21,23–26,36–39,45,46,63–76]. Thus,
appropriate population exposure estimates in urban areas require the consideration of individual’s
activities, which have a large degree of spatial and temporal dynamics.

First, an overview of the application of a generic TMA methodology to account for dynamic
movements of the urban population within time and space in exposure estimations [46] is presented.
Second, newly developed modifications to the presented methodology that take into account the
exposure in different modes of transport are introduced. The new developments allow for the combined
and separate analysis of different modes of transport in urban-scale population exposure estimations
embedded in a modelling approach, which is generically applicable to European urban areas. Thus,
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with the newly developed modifications, it is possible to investigate the impact of modal splits in
urban-scale population exposure estimates.

Following the national survey on mobility in Germany [42], the average modal split for the
Hamburg urban area in 2017 was 27% by foot, 15% by bike, 36% by car (drivers and co-drivers) and 22%
by public transport. The public transport split is 36% by bus, 32% by subway, 25% by suburban trains,
6% by regional trains, and 1% by ferryboats [43]. These figures are applied in the newly developed
modifications to demonstrate the new implementations as well as to calculate the exposure in the
city of Hamburg. Because of the low contribution to the modal split, we neglect public transport
by ferryboats.

The TMA model and its modifications (UNDYNE: Urban Dynamic Exposure model) are written
in the interpreted programming language R [77] and open-source distributed via GitHub. The model
runs on different operating systems on single-core processors and needs a minimum of 8 Gigabyte
RAM. Depending on the extent of the model domain and its resolution as well as the number of time
steps, pollutants, and microenvironments calculated, the required computing time is about 1 h (1 year
of hourly values for one pollutant in one microenvironment with a resolution of 100 × 100 m2).

2.2.1. Microenvironment Mapping

A microenvironment is assumed to have homogeneous pollution concentrations patterns in time
and space, e.g., at home, work or in transport [64]. In the following, the terms microenvironment
and environment are used synonymously. Thus, human exposure will depend on the population
time–activity pattern and concentration levels in the visited environments. In this study, three different
approaches for the consideration of different environments were applied:

(1) Static approach: based on residential addresses and therefore consists of one microenvironment;
the home environment.

(2) Dynamic approach [46]: consists of four different microenvironments, which are the home, work,
other, and transport environment.

(3) Dynamic transport approach: newly developed modification of the dynamic approach to split the
transport environment into seven different modes of transport.

In the following, the implementation of three approaches to determine population exposure in
cities is briefly described.

The static approach is based on residential addresses, which are derived from the Urban Atlas
2012 dataset [78], given as land use and land cover classes (LULC) polygons that contain population
estimates. The LULC polygons were rasterized to a population raster with a horizontal grid resolution
of 100 m following the domain definition as applied in EPISODE-CityChem. This population raster is
classified as home environment, because it is based on population counts at residential addresses.

The dynamic approach is based on a TMA methodology which has successfully been applied to
the North European cities of Rostock, Riga, Gdansk, and Gdynia [46]. This methodology is based
on mapping different microenvironments to LULC of the Copernicus Urban Atlas 2012 (UA2012)
product [79]. This procedure allows for the definition of microenvironments in any European urban
area, for which Urban Atlas data are available. Moreover, it is possible to consider the infiltration of
outdoor air pollutant concentrations to indoor (micro-) environments in the exposure estimation. For
this study, four different microenvironments were defined with the dynamic approach (home, work,
other, and transport) and mapped to different LULC of the UA2012 (annex A1) for the Hamburg urban
domain following Ramacher et al. [46] (Figure 2). The transport environment in the dynamic approach
is based on LULC and is classified as “roads and associated land”, and therefore includes people
travelling in the streets, bicycle lanes, and sidewalks. Nevertheless, there is no explicit distribution of
modes of transport within the transport environment and railway transport modes are not included.
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Figure 2. (a) Shows the population totals based on rasterized Urban Atlas 2012 (UA2012) land use
and land cover classes (LULC) polygons and thus the spatial distribution of the home environment in
all approaches. (b) Shows the spatial distribution of work, other and environments in both dynamic
approaches and additionally the transport environment in the dynamic approach as mapped from the
UA2012. (c) Shows environments for different modes of transport as derived from OSM data and
applied in the dynamic transport approach.

In the dynamic transport approach, the transport environment of the dynamic approach is split to
take into account different modes of transport. This was mainly done by utilizing and translating
OpenStreetMap (OSM) data (openstreetmap.org) to different transport environments, which represent
different modes of transport. OSM is a collaborative project and contains free geographic data of the
world, released with an open-content license. OSM databases are arranged by “keys” (categories of
information) and “values” (particular information) to structure queries for accessing OSM data e.g.,
with an application programming interface (API). In this study, different transport environments, where
people are moving through the city, i.e., in the routes of transportation, are of interest. In OSM, routes
are ordered lists of nodes, representing a polyline, i.e., linear features such as streets, train lines or rivers.
Based on seven different modes of transport, seven different queries to download OSM polylines with
the R package “osmdata” [80] were created. The seven modes of transport are walking, cycling, going
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by car, bus, subway trains, suburban trains, and regional trains. These modes of transport are then
represented by different transport environments respectively: walking, cycling, in-car, buses, subway
trains, suburban trains, and regional trains (Figure 2). In the following, the transport environment
definitions are used analogously for the modes transport. The walking environment mostly takes into
account accessible footpaths, while the biking environment is a combination of designated cycle paths
and roads that are accessible for bicycles. The in-car environment represents all modes of transport
in motorized vehicles (except for buses) people are using to commute. Thus, the in-car environment
is mainly consisted of the cities’ road network and highways, while the buses environment is only
defined by major roads and does not take into account highways. The subway, suburban, and regional
train environments are taking into account the corresponding rail networks. The “osmdata” queries
containing keys and values for each mode of transport are listed in annex B. The downloaded OSM
polyline features for each mode of transport are then rasterized using the “raster” package in R [81]
resulting in raster grids that indicate the spatial coverage of a mode of transport in each grid cell.

In summary, all approaches share the same spatial distribution of home environments and the
dynamic approaches additionally share the same spatial distribution of the environments work and
other. However, while the dynamic approach only consists of one transport environment, the dynamic
transport approach allows for detailed analysis of different modes of transport. Nevertheless, both
dynamic approaches are offering the opportunity to introduce spatially and temporally dynamic
populations in exposure assessments with general applicability to define microenvironments with high
spatial resolution in European urban areas.

2.2.2. Population Data and Diurnal Activities

While the definition and mapping of microenvironments provides the basis for spatial dynamics,
application of population statistics and generic diurnal activity patterns provide the basis for
temporal dynamics. In general, the principle idea is to calculate a total population figure for each
microenvironment and hour of the day, which can then be spatially distributed to the corresponding
microenvironment. In this study, population estimates for the year 2012 contained in the UA2012
dataset [78] were applied. The UA2012 LULC polygons were rasterized to a population raster with a
horizontal grid resolution of 100 m following the domain definition as applied in EPISODE-CityChem.
Moreover, the total population was increased by 4.3% to account for 2016 conditions, following reported
population trends between 2012 and 2016 [82].

Due to the lack of more localized data of the population activity in Hamburg, the generic European
diurnal activity profiles [46] were adopted. These profiles consist of different diurnal weekday and
weekend patterns (Supplementary Material S3–1), which provide hourly varying percentages of the
total population in the four different microenvironments home, work, road transport, and other. These
diurnal activity patterns are reflecting a literature-based average of different European diurnal activity
profiles [25,26,45,67,74,76] and have been applied as generic profiles in urban exposure estimations
where activity patterns derived from surveys or GPS measurements have not been available [46].

Additionally, the average sum of 223,000 daily commuters during workdays in Hamburg [83] has
been added to the total population and assigned to transport environments during rush hours and to
the work environment during the day.

Following this approach, it is possible to calculate the total microenvironment-specific population
for every hour of a diurnal cycle and spatially distribute it to each microenvironment. Thus, in
combination with the mapping of microenvironments (Section 2.2.1) the presented methodology
describes a dynamic TMA model.

2.3. Population Exposure Modeling

The principle idea of exposure is the combination of pollutant concentration values in the
environments where people spend their time, and the amount of time they spend within them [4]. Thus,
the introduced approaches to model urban-scale ambient pollutant concentrations and generic TMA
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models need to be combined to calculate meaningful exposure metrics [84], such as total population
exposure or population-weighted population exposure (PWE).

In this study, only exposure to outdoor air pollution is considered; the effects of indoor air
pollution sources are outside the scope of this study. Nevertheless, infiltration of ambient pollutant
concentrations into indoor environments, such as the home, work, and the different transport
environments, is considered. This is done by the application of microenvironment specific infiltration
factors (Fin f ) for different pollutant species, which can be defined as [26,67]:

FIn f =
Cai
Ca

(1)

where Cai is the indoor air concentration of a species originating from ambient air, and Ca is the outdoor
air concentration of species a. We gathered and aggregated Fin f from the scientific literature for the
different microenvironments and available seasons. While there is a lot of literature on experimental and
modeling studies [85] to derive infiltration of PM2.5 outdoor to indoor concentrations [63,67,71,86–91],
there are only a few studies on NO2 infiltration [45,87,92–97], especially when it comes to transport
environments. Despite these limitations, it can be expected that the application of specific Fin f for
different modes of transport in combination with more differentiated transport environments as
introduced in this study will provide valuable information.

Table 2 shows an overview of the applied Fin f in this study, while Supplement S4 provides a full
list of all reviewed Fin f .

Table 2. Infiltration factors for PM2.5 and NO2 applied in this study. Values are derived from literature
values as listed in the Tables S4-1 and S4-2.

Microenvironment
PM2.5 NO2 References

Winter Summer Winter Summer

Residential 0.5 0.6 0.7 0.8 [26,45,67,71,92,93,96–98]
Work 0.5 0.6 0.75 0.85 [26,45,67,71,92,93,96–98]
Other 0.8 1 0.8 1 [26,46]

Transport 1 1 1 1 [25,71]
Walking, Cycling 1 1 1 1 -

In-car 0.7 0.8 0.9 0.9 [85–87,99]
Buses 0.9 0.9 0.9 0.9 [89]

Subway trains 0.7 0.7 0.6 0.6 [88–90]
Suburban trains 0.7 0.7 0.7 0.7 [88–90]
Regional trains 0.6 0.6 0.6 0.6 [88–90]

The infiltration factors FIn f can then be considered specific for each microenvironment in the
calculation of population exposure metrics. In general, exposure can be written as

E = C× P× F (2)

where E is the exposure, P is the population which is exposed to the ambient pollutant concentration C,
both averaged over the same time, and F is the infiltration factor taking into account the outdoor to
indoor infiltration, in case the population is indoors. This formula can be extended to calculate the
time-averaged population exposure at a given location (or a grid cell) and for a given time period [24,26]:

Ei =

jmax∑
j=1

Fin f , j

tmax∑
t=1

Ci,t × Pi, j,t (3)

where Ei is the total exposure in all microenvironments of area i (e.g., a grid cell), Fin f , j is the infiltration
factor for microenvironment j, Ci,t is the pollutant concentration in area i at time t, and Pi, j,t is the
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number of people in area i attributed to microenvironment j at time t. Equation (3) can be defined
for hourly, daily, or annual averages and allows for the modelling of exposure in one or various
microenvironments, including peoples’ movements and the evaluation of outdoor pollution in indoor
air. The total exposure value intends to assess general exposure levels since it does not take into
account individual exposure patterns or an accumulated dose.

Another useful exposure metric is the population-weighted exposure, defined as average
concentration of pollutants to which the population is exposed to in different environments:

PWEi =

∑ jmax
j=1 Fin f , j

∑tmax
t=1 Ci,t × Pi, j,t∑ jmax

j=1
∑tmax

t=1 Pi, j,t

(4)

where the denominator is the cumulative amount of the population within location i during a given
period of time. PWEi can be calculated for single or multiple microenvironments per grid cell or as an
average value for the total domain.

In this study, we set numerical results on the population exposure, population-weighted exposure
values as annual averages, as well as maps with a spatial resolution of 100 × 100 m2 of total exposure
for the different approaches (static, dynamic, dynamic transport), and difference maps are presented.

3. Results

3.1. Evaluation of Simulated NO2 and PM2.5 Concentrations

Simulated hourly results for NO2 and daily results for PM2.5 were compared to air quality data
from the local air quality network at 16 monitoring stations measuring NO2 (hourly mean), and
five monitoring stations measuring PM2.5 (daily mean). For the sake of brevity, diurnal, daily, and
monthly variation and scatter plots of the modeled NO2 and PM2.5 concentrations are presented in
Supplement S5. The diurnal profiles of modeled concentrations show bimodal distributions with
two broad maxima due to increased urban traffic in the morning. The analysis was done with the R
package “openair” [100].

Based on the evaluation, a modified set of road transport emissions was created to reduce the
normalized mean bias (NMB) in modeled NO2 and PM2.5 pollutant concentrations for exposure
calculation. Therefore, the annual totals of road transport emissions were multiplied with factors
derived from the averaged maximum NMB of available traffic stations for NO2 (×1.3) and PM2.5

(×1.2). This modified set of road transport emissions was applied to the chemistry transport modeling
system and the resulting pollutant concentrations are used as “reference” concentration in the
exposure estimates.

In the statistical analysis of the model performance, the mean bias (MB), NMB, root mean
square error (RMSE), Pearson correlation coefficient (r), index of agreement (IOA) and the fraction of
predictions within a factor of two of observations (FAC2) to evaluate hourly NO2 (Table 3) and daily
PM2.5 (Table 4) modeled versus measured concentration values (n) were evaluated. Definitions of
statistical parameters can be found in annex C.

All groups of stations for both pollutants and all measured vs. modeled values show FAC2 values
of 0.57–0.8 for hourly NO2 and 0.78–0.88 for daily PM2.5, which satisfies the FAIRMODE acceptance
criteria of FAC2 ≥ 0.3 for urban dispersion model evaluation [101,102].

The evaluation of statistical values for daily PM2.5 concentrations exhibits model performance
with an average Pearson correlation coefficients of r = 0.5. The model tends to underestimate PM2.5

concentrations at urban stations (13ST, 20VE, 61WB) with an annual NMB of −15%. At the two traffic
stations (64KS, 68HB), the model underestimates the measured concentrations with an annual NMB
of −16%.
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When it comes to NO2, the model performs at urban and background stations with correlation
coefficients of r = 0.35 to 0.58. The NO2 concentrations are underestimated at most urban and
background stations, and in particular at the traffic stations.

The comparison of measured vs. modeled hourly NO2 concentrations and daily PM2.5

concentrations by type of station, did not reveal a stronger underestimation of modeled values at urban
stations compared to background (only for NO2) stations. Thus, the general underestimation of modeled
concentrations is probably a problem of underestimated emissions and/or boundary concentrations.

Table 3. Statistical performance of modeled versus measured hourly NO2 concentrations.

Site n FAC2 MB NMB RMSE r IOA

13ST 8687 0.69 −5.44 −0.20 16.11 0.49 0.52
17SM 8717 0.65 −18.26 −0.36 27.73 0.51 0.41
20VE 8680 0.77 −2.62 −0.07 19.28 0.44 0.47
21BI 8542 0.71 0.75 0.03 18.70 0.38 0.47
24FL 8599 0.68 −3.53 −0.16 15.00 0.50 0.54
51BF 8725 0.62 −4.68 −0.27 12.73 0.48 0.55
52NG 8684 0.60 −3.27 −0.22 12.48 0.42 0.52
54BL 8692 0.57 −6.32 −0.38 12.54 0.51 0.55
61WB 8682 0.71 3.22 0.12 18.71 0.35 0.42
64KS 8651 0.76 −9.66 −0.21 22.38 0.55 0.51
68HB 8675 0.63 −10.98 −0.18 37.41 0.46 0.50
70MB 8711 0.64 −19.96 −0.35 31.94 0.41 0.37
72FI 8721 0.66 2.45 0.12 16.57 0.42 0.48

73FW 8688 0.58 −0.57 −0.03 15.76 0.38 0.52
74BT 442 0.80 −3.91 −0.12 17.97 0.58 0.51
80KT 8686 0.79 2.47 0.08 17.65 0.44 0.50

Table 4. Statistical performance of modeled versus measured daily PM2.5 concentrations.

Site n FAC2 MB NMB RMSE r IOA

13ST 352 0.81 −3.03 −0.23 8.39 0.51 0.60
20VE 364 0.81 −1.62 −0.12 7.67 0.48 0.61
61WB 364 0.78 −1.18 −0.09 9.26 0.29 0.53
64KS 347 0.82 −2.49 −0.17 7.91 0.51 0.60
68HB 363 0.88 −2.27 −0.14 8.29 0.52 0.62

3.2. Simulated NO2 and PM2.5 Concentrations and the Impact of Road Transport

Simulations with and without road traffic sources were performed to investigate the urban
air quality in general and the contribution of road traffic in specific. The road traffic contribution
to the modeled pollutant concentration was determined by performing zero-out simulations with
EPISODE-CityChem, considering all emissions sources except road traffic emissions. The difference
of simulations including all emission sources and simulations without road traffic emissions is the
calculated contribution of road traffic emissions to pollutant concentrations.

Annually averaged concentrations as an average of the entire urban domain are 15.4 µg/m3 NO2

and 9.7 µg/m3 PM2.5, with relative road traffic contributions of 33% and 5% respectively. Figure 3
shows the range of modeled concentrations of annually averaged NO2 and PM2.5, as well as relative
contributions of road traffic as a scatter plot and a map.
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In terms of annually averaged PM2.5 values, the annual EU limit value of 25 µg/m³ show less modeled 
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Figure 3. Modeled concentrations of annually averaged NO2 (a) and PM2.5 (b) plotted against relative
contributions of road traffic. The range and color scale in the maps follows the colors of the scatter
plot, which is the legend for the value maps’ value ranges. Darker red colored areas indicate higher
concentrations with higher traffic contributions. Darker blue areas indicate higher concentrations and
no traffic contributions. Concentrations increase with color intensity.

For annually averaged NO2 concentrations, most exceedances of the EU limit value of 40 µg/m3

are connected to high contributions of road transport and thus are near roads. This correlates well
with annually averaged NO2 concentrations measured at four traffic stations, because at all traffic
stations the annual limit is exceeded too. There are only a few annual mean concentrations for NO2

above 40 µg/m3 predicted by the model for grid cells, which are not connected to high road transport
contributions. Such exceedances occur mostly in the port area in which there is a lot of ship traffic and
industry as well as close to the airport north of the city.

In terms of annually averaged PM2.5 values, the annual EU limit value of 25 µg/m3 show
less modeled exceedances and there are only a few areas in which road traffic contributes to
exceedances. Again, the industrial and port areas show elevated concentrations, with a few point
sources (refineries, power plants) that are constantly emitting huge amounts of PM2.5 leading to high
annually averaged concentrations.

3.3. Simulated Total Exposure to NO2 and PM2.5 Concentrations

Population exposure to ambient NO2 and PM2.5 concentrations was simulated by applying the
static approach, the dynamic approach, and the dynamic transport approach. Thus, in the following, the
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results of each approach in terms of total exposure in different microenvironments and locations are
presented and compared. Moreover, the PWE and contributions of road transport in all approaches
and studied microenvironments are analyzed. This is followed by a discussion of uncertainties.

3.3.1. Total Exposure in Different Approaches

The total population exposure to NO2 and PM2.5 in the Hamburg urban domain was computed
for the year 2016, taking into account 8784 hourly values of concentration and population, as given in
Equation (2). From now on, we will refer to that indicator as total exposure. The calculated sums of
total exposure to NO2 and PM2.5 (Figure 4, Table S6-1) differ substantially, with the dynamic approaches
giving a 13% higher total exposure for NO2 and 21% for PM2.5 than the static approach. The relative
difference in total exposure between the two dynamic approaches is marginal for both pollutants (1%
for NO2 and 2% for PM2.5). This is mostly due to the high contributions of the environments home,
work, and other in the dynamic approaches (Figure 4). The population sojourning in the transport
environment(s) in both dynamic approaches is affected by 10% of total NO2 and PM2.5 exposure.
Thus, the total exposure is marginally affected by the OSM-based disaggregation of the transport
environments and the consideration of a specific modal split in Hamburg in the dynamic transport
approach. The similar total exposures calculated in the two dynamic approaches can be explained by
the high relative contribution of in-vehicle exposure, compared to other modes of transport.

Int. J. Environ. Res. Public Health 2020, 17, x 15 of 35 

 

presented and compared. Moreover, the PWE and contributions of road transport in all approaches 
and studied microenvironments are analyzed. This is followed by a discussion of uncertainties. 

3.3.1. Total Exposure in Different Approaches 

The total population exposure to NO2 and PM2.5 in the Hamburg urban domain was computed for 
the year 2016, taking into account 8784 hourly values of concentration and population, as given in 
Equation (2). From now on, we will refer to that indicator as total exposure. The calculated sums of total 
exposure to NO2 and PM2.5 (Figure 4, Table S6-1) differ substantially, with the dynamic approaches 
giving a 13% higher total exposure for NO2 and 21% for PM2.5 than the static approach. The relative 
difference in total exposure between the two dynamic approaches is marginal for both pollutants (1% 
for NO2 and 2% for PM2.5). This is mostly due to the high contributions of the environments home, work, 
and other in the dynamic approaches (Figure 4). The population sojourning in the transport 
environment(s) in both dynamic approaches is affected by 10% of total NO2 and PM2.5 exposure. Thus, 
the total exposure is marginally affected by the OSM-based disaggregation of the transport 
environments and the consideration of a specific modal split in Hamburg in the dynamic transport 
approach. The similar total exposures calculated in the two dynamic approaches can be explained by the 
high relative contribution of in-vehicle exposure, compared to other modes of transport. 

On the other hand, the modifications in the dynamic transport approach allow for evaluation of 
different transport modes. In terms of contributions of different modes of transport to the annual sum 
of exposure to NO2 in the transport environment of the dynamic transport approach, the in-car 
environment contributes with 40%, the walking environment with 26%, the cycling environment with 
15%, and all other environments with less than 10% of the exposure in the transport environment, 
respectively. For PM2.5, the shares within the transport environment are similar, with 33% for the in-
car environment, 30% for the walking environment, 17% for the cycling environment, and 
contributions of less than 10% for the other modes of transport. 

 
(a) (b) 

Figure 4. Annual total NO2 and PM2.5 exposure in Hamburg 2016 (a) and relative contributions of all 
environments to total exposures (b), calculated with three different approaches static, dynamic, 
dynamic transport. 

Figure 4. Annual total NO2 and PM2.5 exposure in Hamburg 2016 (a) and relative contributions of all
environments to total exposures (b), calculated with three different approaches static, dynamic, dynamic
transport.

On the other hand, the modifications in the dynamic transport approach allow for evaluation of
different transport modes. In terms of contributions of different modes of transport to the annual
sum of exposure to NO2 in the transport environment of the dynamic transport approach, the in-car
environment contributes with 40%, the walking environment with 26%, the cycling environment with
15%, and all other environments with less than 10% of the exposure in the transport environment,
respectively. For PM2.5, the shares within the transport environment are similar, with 33% for the in-car
environment, 30% for the walking environment, 17% for the cycling environment, and contributions of
less than 10% for the other modes of transport.
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3.3.2. Differences in Spatial Distribution of Total Exposure

Figure 5 shows maps of total exposure to NO2 and PM2.5 for different approaches, while Figure 6
shows differences in total NO2 exposure for the dynamic transport approach compared to the dynamic
approach and the static approach.
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approach and the static approach (a,c), and the dynamic transport approach and the dynamic approach (b,d).
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Comparing the different approaches in terms of spatial distribution, the high contribution of
the home environment to total exposure is evident for all approaches. Moreover, the calculation of
both, total exposure to NO2 and PM2.5, are strongly dependent on the number and location of people,
thus the results in spatial distribution are similar for NO2 and PM2.5 total exposure. While in the
static approach total exposure is only calculated for the home environment, its spatial pattern and the
absolute high values of up to 2 × 107 µg/m3

× pop total NO2 exposure (1 × 107 µg/m3
× pop for PM2.5)

are also visible in both dynamic approaches. Notably, the introduction of a dynamic population in the
dynamic approach and the dynamic transport approach covers wider regions of the urban domain and
considers them in the total exposure calculation. Due to the high exposure shares of the home, work,
and other environments, the introduced spatiotemporal variability does not reveal changes in total
exposure by integrating more transport environments in the dynamic transport approach, compared to
the dynamic approach (Figure 5).

Thus, the differences of the static approach and the dynamic approach with the dynamic transport
approach for NO2 were calculated and mapped in Figure 6. The differences for PM2.5 show similar spatial
patterns and can be found in annex D. The comparison of the dynamic transport approach with the static
approach, shows that there are substantial reductions of up to 5 × 106 µg/m3

× pop total NO2 exposure in
residential areas. On the other hand, total exposure increases in other areas of the urban domain such
as the city center, industrial areas, the port area, highways and busy roads, or green urban areas. This
demonstrates the impact of people “leaving their homes” to move to other environments. To isolate
the effect of integrating more and different transport modes, the difference of the dynamic transport
approach and the dynamic approach is analyzed. The difference shows mostly moderate reductions in
areas surrounding the urban core whereas stronger reductions are found close to major roads. The
finding reflects the different levels of detail in the applied land use classifications in both dynamic
approaches, which are applied to the same number of people in the transport environment. While the
number of people in the transport environment remains the same, their spatial distribution is changing.
The transport environment in the dynamic approach is based on UA2012 LULC that solely take into
account road networks and associated land, while the dynamic transport approach takes into account
polylines that describe networks of possible routes through the city without associated land. Therefore,
major reductions are mostly due to the differences in land use classifications. The associated land
for road networks in the UA2012 LULC category consists mostly of non-accessible areas, while the
applied OSM features are based on routes, which are accessible. Thus, the application of the dynamic
transport approach leads to huge differences in areas that are highly affected by road traffic-related air
pollution. The minor reductions in the surrounding area are again an effect of the UA2012 LULC for
roads, which considers every road in the urban domain. The dynamic transport approach focuses on the
most frequented road types (Table A1), not including every road in the urban domain. Thus, the minor
reductions (Figure 6d) are due to a better representation of busy road networks and other modes of
transport in the dynamic transport approach.

The increases in exposure by integrating different transport environments are mostly visible
in densely populated areas in the center and south of the city (Figure 6). Moreover, the regional,
suburban and subway train routes markedly contribute to total exposure in the dynamic transport
approach. Besides the consideration of transport modes by rail which are distributed in the entire
domain, the spatial pattern of changes through the introduction of new transport environments is
generally showing an increase in total exposure in the city center and a reduction in the outskirts. Due
to the fact that we are not taking into account densities of population activity in the domain but are
equally distributing the same total population to each transport environment, we consider the increase
of total exposure in areas close to the city center as an improvement to calculated total exposure.

The analysis by mode of transport (Figure 7, Figure S6-2) shows major impacts of population
exposure in the in-car environment, which are similar for NO2 and PM2.5 in terms of spatial distributions.
Besides the high share of people in Hamburg traveling by car (36%), high concentrations close to
major roads due to road traffic is the main reason for the high contribution of the in-car environment
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to NO2 exposure (40%) and PM2.5 exposure (33%) in the transport environment. Overall, the in-car
environment impacts total NO2 exposure by 4% and total PM2.5 exposure by 3%. Exposure hotspots in
the walking environment are close to the port area at the northern side of the river Elbe close to the city
center. In this area, pedestrians are exposed to high pollutant concentrations from road traffic, ships,
and industry at the same time. Moreover, this area is a designated area for recreational and touristic
activities, which might increase the total exposure in the walking environment when taking into
account additional population by tourism. The total population exposure in the cycling environment
is highest in the city center. The population exposure in the buses environment strongly depends on
the routes and roads that buses are taking. In this study, we do not explicitly take into account bus
routes as defined by the public transport operators, which will lead to uncertainty. However, the major
road networks in the city and thus, most of the public transport operation network has been covered.
The distribution of total exposure in transport modes by different train types is apparent in the dynamic
transport approach with higher exposures in the subway trains environment compared to the suburban
trains and regional trains environment. Nevertheless, the exposure to ambient concentrations inside
train cars is strongly dependent on the infiltration factor. The same holds true for the in-car and buses
environments. For this reason, sensitivities towards Finf are discussed in Section 3.4.Int. J. Environ. Res. Public Health 2020, 17, x 19 of 35 
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3.3.3. Impact of Road Traffic in Different Modes of Transport

The impact of road transport emissions to total exposure in different modes of transport of the
dynamic transport approach (Figure 8) was calculated. For both NO2 and PM2.5 total exposure, the relative
contribution is highest in the in-car environment with 58% for NO2 and 15% PM2.5, respectively. In the
buses environment, the impact is only slightly lower. The total exposure in the transport environment
subway trains is influenced by 54% NO2 and 13% PM2.5 of road traffic emissions. The relative high
contribution of NO2 in a transport mode, which is supposed to drive underground, is mostly due
to the applied infiltration factors for the subway trains environment, which are discussed in detail
in Section 3.4. Note that in Hamburg the subway lines are often not underground and follow dense
traffic lanes, especially in the city center. For other railway modes of transport, the contributions
to NO2 are 47% in suburban trains and 48% in regional trains, and for PM2.5 they are 10% and 11%
respectively. The outdoor-only transport modes of walking and cycling are affected by road traffic
emissions with 48% and 50% for total NO2 exposure, while the respective contributions to total PM2.5

exposure are 9% and 10%. Thus, there are substantial contributions to NO2 exposure by road traffic
emissions in all transport environments, while the contribution to PM2.5 is much lower. However, the
impact of road traffic as well as the total exposure to PM2.5 might be underestimated, as it mostly
derives from regional contributions of PM2.5 to the urban background concentrations. In addition,
there is no explicit consideration of particulate tire wear and road abrasion emissions in the road traffic
emissions inventory, and no consideration of secondary particle formation in the applied chemical
transport model (CTM).
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contribution of 40% road traffic to total NO2 exposure in the home environment and up to 58% in the
in-car environment was calculated. This fits well with the introduced 39% contribution by road traffic
emissions as reported for European cities [2] and the hypothesis of higher road traffic contributions in
environments where people are moving close to traffic emissions at the ground. The same qualitative
result holds true for the reported 11% road traffic contribution to PM2.5 concentrations in European
cities [2]; road traffic contributions of 8% in the indoor environment home and up to 15% in the in-car
environment were calculated. Thus, the introduced approach introduces reasonable spatial variabilities
in exposure estimations on the urban-scale.

3.4. Sensitivity of Ambient Concentration and Infiltration Factors in the Dynamic Transport Approach

Exposure estimates based on modeled pollutant concentrations and a TMA-modeled population
are sensitive to a variety of parameters. Major uncertainties arise from applied emission inventories
in chemistry transport modeling, specific infiltration factors for different indoor environments, as
well as city-specific spatiotemporal distribution of populations in different microenvironments [46].
In the following, uncertainties connected to emissions as well as the infiltration of outdoor pollutant
concentrations to indoor environments will be discussed.

In atmospheric chemistry transport model simulations, emission data are a key driver and a
major source of uncertainty [103,104]. Modelling of emissions depends on the amount, temporal
distribution, and spatial distribution of emissions and in some cases on meteorological conditions,
all of which are connected with uncertainties. In this study, annual emission totals from a regional
emission inventory for the year 2016 were spatially distributed to road-links and generic temporal
profiles for road traffic activity following a top-down approach (Section 2.1.6). At the time of the study,
the underlying emissions inventory CAMS-REG-APv3.1 only had the year 2016 as the most recent year
available. Thus, the modeling system is dependent on more recent emission data, when applied to
more recent years. Nevertheless, the emission inventory data by CAMS are planned to be updated for
years that are more recent. Moreover, the modeled traffic emissions are not taking into account the
variability due to changing traffic density, slowing down and idling of traffic, nor the effects of traffic
congestion, which potentially increase emissions in streets, especially during rush hours [40].

To investigate uncertainties stemming from the simulated pollutant concentrations, simulated
NO2 and PM2.5 concentrations were compared with measurements (Section 3.1). The results show
the highest underestimations at measurement stations close to roads with an NMB of up to −35% for
NO2 and −20% for PM2.5. To quantify the impact of this underestimation on uncertainty in exposure
estimates, the reference emission scenario as defined in Section 3.1 was compared with the original
lower traffic emissions inventory (minimum scenario). Additionally, a maximum emissions scenario
was created by scaling the reference scenario with a factor derived from maximum calculated annual
NMB, using scaling factors of 1.4 for NO2 and 1.3 for PM2.5 to the total road traffic emissions inventory.
The minimum and maximum scenarios were applied in our modeling chain to identify minimum and
maximum exposure compared to the reference exposure to NO2 and PM2.5 in all microenvironments.
The results of the maximum and minimum emissions sensitivity runs (Figure S7-1) reveal relative
changes in total exposure to NO2 of −9% and +6% for all approaches, and of −1% and +1% for PM2.5,
respectively. In the transport environments of the dynamic transport approach there are uncertainties of
−12% to +7% for NO2 and −2% to +1% for PM2.5. Thus, the calculated exposure values show in general
a higher sensitivity to changing local NO2 emissions from road transport, while PM2.5 exposure is
less sensitive.

A second major uncertainty in population exposure estimates is the impact of outdoor pollutant
concentrations infiltrating indoor environments and the consideration of this by infiltration factors.
Besides the fact that only ambient air pollutant concentrations are addressed and indoor sources
and sinks of pollution such as tobacco smoking, cooking, heating, or cleaning are neglected, the
application of Finf is connected with a variety of assumptions that are influencing the total exposure
estimates. In this study, infiltration factors were applied, which are specific for microenvironments of
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an area and are presuming a well-mixed and uniform distribution of pollutant concentrations in these
microenvironments. Although these factors are based on indoor and outdoor measurements in specific
microenvironments and areas of interest, they represent an average infiltration of, for example, the
various buildings or car-cabins in the area. The variability of the infiltration factor is controlled by (i) the
specific indoor infiltration of pollutants, depending on, for example, building structure, building stock,
ventilation parameters, and behavior; and (ii) by the meteorological conditions, e.g., wind pressure
and buoyancy effects. In our study, we applied an average Finf, which represents the infiltration of
pollution as an average of the encountered variability in different environments. More sophisticated
methods for modelling the infiltration of pollutants from outdoor to indoor environments [105,106]
have become available recently that are able to represent such variability. Such approaches can take
into account complex building structures, ventilation parameters and behavior, wind pressures, and
buoyancy effects, surpassing the need to assume well-mixed pollutant concentrations. However, these
approaches come with high computational costs as well as additional data needs in terms of building
structure and ventilation parameters.

In terms of transport environments and specifically for different modes of transport, the availability
of Finf derived from experimental studies in car cabins and inside busses or trains is scarce for both
PM2.5 and NO2. Thus, the applied Finf for different transport environments in this study are critical
parameters because they are based on only a small number of experimental studies, which might
not reflect the conditions of our study area. While the in-car environment is highly sensitive to the
infiltration of ambient concentrations into the vehicle-cabin, the transport modes of walking and cycling
are not. Thus, depending on the ventilation behavior, the exposure might increase or decrease for the
in-car environment. The same holds true for buses, subway trains, suburban trains, and regional train
environments. Therefore, a sensitivity analysis was conducted taking into account a minimum and a
maximum range of outdoor to indoor infiltration factors. The sensitivity of other indoor environments,
such as home and work was investigated [46] and showed a linear relationship of infiltration factors
and exposure estimates when keeping concentration levels constant. The same linear relationship is
expected for transport environments in dynamic transport approach, due to the similar procedure of
calculation. Nevertheless, a set of minimum and maximum Finf for each transport environment was
applied to estimate the range of uncertainty in terms of total exposure to NO2 and PM2.5 in comparison
to the applied reference values (Table S7-1).

The calculated impact of minimum and maximum Finf in different environments showed linear
decreases and increases in calculated exposure values (Figure S7-2). In terms of the impact on total
exposure in the dynamic transport approach, the impact is +/− 1%. However, when analyzing each mode
of transport separately, exposure results are highly sensitive towards Finf. The impact on exposure
averaged over all modes of transport ranges between −14% and +8% for NO2 and between −14%
and +13% for PM2.5. Moreover, the upper limit of the uncertainty range in the dynamic transport
approach environments in-car and buses is exceeding the annual WHO AQG limit value of 10 µg/m3 for
PM2.5. When analyzing the total exposure of all environments, the impact of Finf for different modes
of transport is low due to the relatively high contribution of other microenvironments on the total
exposure. Nevertheless, in future studies it is desirable to apply more representative Finf values for
indoor and transport environments that are specific for different building infrastructures and different
air-intake or ventilation techniques in buildings, car cabins or inside buses and trains.

The separate sensitivity analysis of emissions and Finf on exposure values showed a higher
sensitivity for infiltration factors. To estimate the combined effect of both parameters, runs with the
minimum emissions and the minimum Finf scenario, as well as the maximum emissions and the
maximum Finf scenario were performed. Figure 9 shows the results of the combined simulation for
both NO2 and PM2.5 in all transport environments of the dynamic transport approach.
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There are higher uncertainties for exposure to NO2, with the highest ranges in the in-car, buses,
and all train environments. In total, the transport environment in the dynamic transport approach shows
an uncertainty range of −24% to +15%, while for PM2.5 the range is −16% to +14% (Table 5).

Table 5. Calculated sensitivities due to emissions and Finf on total exposure and PWE to NO2 and
PM2.5 calculations in the dynamic transport approach.

Transport Environment NO2 Sensitivity PM2.5 Sensitivity
Min Max Min Max

walking −10% 6% −2% 1%
cycling −11% 6% −2% 1%
in-car −32% 19% −29% 28%
buses −31% 19% −24% 12%

subway trains −41% 42% −30% 30%
suburban trains −36% 36% −30% 30%
regional trains −40% 41% −35% 35%

transport −24% 15% −16% +14%
total −11% 6% −3% +2%

A third major uncertainty is the distribution of the total population to the specific
microenvironments. The spatiotemporal distribution of population in this study is based on
microenvironment definitions, which represent common urban environments in Europe, as well
as diurnal activity patterns, which represent a European average activity profile based on available
literature. To quantify and handle uncertainties that arise from spatiotemporal population
distribution, city-specific data, e.g., based on surveys, mobile phone or GPS data, would be necessary.
An investigation of those uncertainties is beyond the scope of the present study, as the base premise of
the applied TMA modeling approach is the general applicability to any European urban area.

Taking into account the analyzed uncertainties, we advocate for more transport-related experiments
or modeling approaches on the infiltration of outdoor to indoor infiltration of air pollutants for
exposure estimates.
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3.5. Population-Weighted Exposure in Different Modes of Transport

The population-weighted exposure (Equation (4)) shows the averaged pollutant concentrations
representative for a specific microenvironment and thus the concentrations people are exposed to when
visiting an environment. Therefore, the PWE can be used to analyze vulnerable microenvironments
and areas where the population is exposed to critical concentrations of pollutants. With the newly
developed dynamic transport approach, it is possible to calculate the population-weighted exposure for
each environment separately (Figure 8).

While the domain-wide averaged PWE to NO2 is showing lower concentrations of 14–15 µg/m3

for all non-transport-related environments in all approaches (Supplement S8), the transport-related
microenvironments consist of values from 14–23 µg/m3 NO2 PWE (Figure 9). The dynamic transport
approach reveals the highest PWE to NO2 in the in-car and buses environments (23 µ/m3). The walking
and cycling environments are on average connected to NO2 PWE of 20–21 µg/m3, which is about 30%
higher than staying at home. For PM2.5, the patterns are similar but with generally lower PWE. Indoor
environments and total PWE in all approaches show modeled PWE to PM2.5 with 6–8 µg/m3, while
it is highest for the cycling environment (10.17 µg/m3). Thus, moving by bike in the urban area is
in average slightly exceeding the WHO AQG limit value for PM2.5. The second highest PWE in all
transport modes is in the walking environment (9.94 µg/m3), followed by the environments buses
(9.77 µg/m3) and in-car (8.16 µg/m3). These transport modes have a high chance to exceed the WHO
AQG limit value for PM2.5 in modeled PWE values, due to their high sensitivity to different input
parameters (Section 3.5), and the linear relationship of total exposure and PWE.

A comparison of the calculated PWEs with a review on the impact of different transport modes
from measurements [20], shows the same trends for PWE to NO2. The in-car environment is followed
by the transport environments buses, cycling, and walking. For PM2.5, we calculated a different order
of importance, with the cycling and walking environment as environments with the highest average
concentrations. However, different measurement studies on different pollutants showed different
importance for transport environments in terms of PWE [89,107,108]. For the transport environment
cycling and walking it has to be taken into account that these are representing active modes of transport
and therefore inhaled doses will be higher. Nevertheless, consensus exists that despite the increased
health risks associated with the higher inhaled dose of pollutants among active commuters rather than
among commuters using motorized transport, the benefits of physical activity from active commuting
are higher [20].

A comparison with reported PWEs for PM2.5 in urban areas in Germany for the year 2016 [109,110]
shows higher reported values of 12.7 or 12 µg/m3 PM2.5 compared to the simulated values. This is
probably due to underestimations in PM2.5 concentrations coming from the regional background as
identified in the evaluation of simulated pollutant concentrations (Section 3.1). Nevertheless, the
reported value holds to be valid for urban areas in Germany, while the simulated values with the
dynamic transport approach are explicitly for Hamburg in the year 2016 and offer the opportunity to
analyze PWE and total exposure in different microenvironments or for each 100 × 100 m2 grid cell of
the study domain.

4. Conclusions

Air pollution is one of the greatest challenges facing cities today. In order to evaluate the
effectiveness of policies and measures to reduce air pollution impacts on the urban-scale, in-depth
population exposure assessments are needed. Due to road traffic emissions as the biggest source of
NO2 exposure and second biggest source to PM2.5 exposure, it is even more important to account for a
detailed transport environment in which people are moving through the city.
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In this study, a methodology to estimate population dynamics based on generic activity
profiles and publicly available land use data for microenvironment definitions was presented. This
improves population exposure assessments in the transport environment. An approach for dynamic
time-microenvironment activity including detailed transport environments is proposed in contrast to a
dynamic approach disregarding detailed transport environment information as well as a traditional
static approach.

The methodology proposed is applied to the city of Hamburg (Germany) for the year 2016 to
evaluate population exposure to NO2 and PM2.5. Results show that, for spatially aggregated analysis
at city level, the conventional static methodology calculates substantially lower total exposures to
NO2 and PM2.5 when compared to applied dynamic approaches. The comparison of both dynamic
approaches shows slightly lower total exposure values in the newly developed dynamic transport
approach due to a better representation of people moving in different transport environments.

Additionally the possibility and importance of explicit accounting for different modes of transport
in urban population exposure estimates was demonstrated. In Hamburg, the in-car environment is the
biggest contributor to total NO2 and PM2.5 exposure of all modes of transport, followed by walking
and cycling. For both NO2 and PM2.5 total exposure, the relative contribution of road traffic emissions
to population exposure is highest in the in-car and buses environments.

Results of population-weighted exposure revealed exposure to PM2.5 concentrations above the
WHO AQG limit value in the cycling environment. The results of the calculated PWE show good
qualitative agreements, with measurement studies on exposure in transport environments.

The performed sensitivity analysis showed high sensitivities to infiltration factors for in-cabin
transport environments such as in-car, buses, and trains. The analysis of uncertainties revealed a
high risk for exceeding the WHO AQG limit value for the transport environments walking, in-car,
and buses.

The presented newly developed dynamic transport approach is integrated in a computationally
efficient exposure model to calculate exposure estimates for different modes of transport and can
easily be combined with transport mode specific inhalation rates to calculate health effects from air
pollution in future studies. Taking into account the identified high exposure and PWE in the active
transport modes walking and cycling, which are connected to higher inhalation rates, the detailed
consideration of different modes of transport in urban exposure studies is a crucial foundation for
reasonable health-effect studies.

The developed dynamic transport approach is a novel method for urban planners to predict
exposure hotspots and the impact of changing mobility patterns and mobility shifts on exposures
to air pollutants, e.g., in the planning of new bicycle lanes in city centers in combination with the
promotion of alternative modes of transport or policies on restricted access of motorized vehicles.
A major advantage of this approach is the general applicability in European cities, without the need to
obtain much city-specific data on population dynamics.

The study revealed current data gaps with respect to specific infiltration rates of pollutant
concentrations from outdoor to indoor environments, especially in different transport environments
such as in-car and train cabin environments. Moreover, we plan future studies to evaluate the results
of the presented modeling approach, which is based on generic data for spatiotemporal population
distribution, in conjunction with (individual) exposure measurement campaigns, agent-based modeling,
and data on population dynamics that are more city-specific.
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Appendix A. Microenvironment Mapping in the Dynamic Approach

Table A1. Mapping of Urban Atlas 2012 LULC code with microenvironments.

Code UA2012 Classification Microenvironment

11100 Continuous Urban Fabric Work (30%), Other (30%)
12100 Industrial, commercial, public, military, private Work
13100 Mineral extraction and dump sites Work
13300 Construction Sites Work
12300 Port areas Work
12210 Fast transit roads and associated land Transport
12220 Other roads and associated land Transport
14100 Green urban areas Other
14200 Sports and leisure facilities Other
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Appendix B. Microenvironment Mapping in the Dynamic Transport Approach

Table A2. Modes of transport and OpenStreetMap (OSM) queries for transport
microenvironments definition.

Mode of Transport OSM Key(s) OSM Value(s) Description

walking “highway” “footway”
For designated footpaths;
i.e., mainly/exclusively for

pedestrians.

Cycling (combination of
three queries to cover all
possible paths to ride a

bike)

“highway” “cycleway” For designated cycle ways.

“highway”
“bicycle”

-
“yes”

For roads which can be used
by bikers.

“cycleway” - Cycleway tagged on the
main roadway or lane.

in-car “highway”

“motorway”,
“motorway_link",

“trunk”, “trunk_link”,
“primary”,

“primary_link”,
“secondary”,

“secondary_link”,
“tertiary”, “tertiary_link”

Restricted access, two lanes,
freeways, Autobahn, most

important roads that are not
motorways, major, minor,

residential roads.
Additionally filtered by

tunnels.

buses "highway"

“primary”,
“primary_link”,

“secondary”,
“secondary_link”,

“tertiary”, “tertiary_link”

Major and minor urban road
network.

subway trains “railway” “subway” City passenger rail service,
mostly underground.

suburban trains “railway” “light_rail” higher-standard tram
system.

regional trains “railway”
“usage”

“rail”
“main”

passenger trains in the
standard with heavy traffic.

Appendix C. Statistical Indicators and Model Performance Indicators

In the statistical analysis of the model performance, the following statistical indicators are used:
normalized mean bias (NMB), standard deviation (STD), root mean square error (RMSE), correlation
coefficient (Corr), index of agreement (IOA), and the fraction of predictions within a factor of two
of observations (FAC2). The overall bias captures the average deviations between the model and
observed data and the NMB is given by:

NMB =
M−O

O
(A1)

where M and O stand for the averaged model and observation results, respectively. The RMSE
combines the magnitudes of the errors in predictions for various times into a single measure and is
defined as

RMSE =

√√√
1
N
∗

N∑
i=1

(Mi −Oi)
2 (A2)

where subscript i indicates the time step and N the number of observations. RMSE is a measure
of accuracy, to compare prediction errors of different models for a particular data and not between
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datasets, as it is scale-dependent. The correlation coefficient (Pearson r) for the temporal correlation is
defined as:

r =

∑n
i=1

(
Oi −O

)
·

(
Mi −M

)
√∑n

i=1

(
Oi −O

)2
·
∑n

i=1

(
M−M

)2
(A3)

The index of agreement is defined as:

IOA = 1−

∑N
i=1 (Oi −Mi)

2∑N
i=1

(∣∣∣Mi −M
∣∣∣+ ∣∣∣Oi −O

∣∣∣)2 (A4)

An IOA value close to 1 indicates agreement between modeled and observed data. The fraction
of modeled values within a factor of two (FAC2) of the observed values are the fraction of model
predictions that satisfy is defined as:

0.5 ≤
Mi
Oi
≤ 2.0 (A5)

For evaluation of modeled values in rural areas, the acceptance criteria is FAC2 ≥ 0.5, while in
urban areas it is FAC2 ≥ 0.3 [101].

Appendix D. PM2.5 Exposure Maps
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Figure A1. Differences in total exposure calculations for PM2.5 (a,b) in the total domain and zoomed 
(c,d) to the region of Hamburg-Altona (black frame in a and b) for the dynamic transport approach and 
the static approach (a,c) and the dynamic transport approach and the dynamic approach (b,d). 

Figure A1. Differences in total exposure calculations for PM2.5 (a,b) in the total domain and zoomed
(c,d) to the region of Hamburg-Altona (black frame in a and b) for the dynamic transport approach and
the static approach (a,c) and the dynamic transport approach and the dynamic approach (b,d).
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Appendix E. List of Abbreviations

ABM Agent-based modeling
API Application programming interface
AQG Air Quality Guideline
CAMS Copernicus Atmospheric Monitoring Services
CH4 Methane
CLC2018 Corine Land Cover 2018
CO2 Carbon dioxide
CTM Chemistry transport model
ECMWF European Centre for Medium-Range Weather Forecasts
EMEP European Monitoring and Evaluation Program
ERA5 European Reanalysis 5th generation
EU European Union
Finf Infiltration factor
GPS Global positioning system
HCHO Formaldehyde
HNO3 Nitric acid
IOA Index of Agreement
LULC Land use and land cover classes
MB Mean bias
NMB Normalized mean bias
NMVOC non-methane volatile organic compounds
NO Nitric oxide
NO2 Nitrogen dioxide
NO3 Nitrate radical
NOx Nitrogen oxides
O3 Ozone
OH Hydroxyl radical
OSM OpenStreetMap
OSPM Open Street Pollution Model
PANS Peroxyl nitrates
PM2.5 particles smaller than 2.5 µm in aerodynamic diameter
PSS Photo-stationary state
PWE Population-weighted exposure
RMSE Root mean square error
SMOKE-EU Sparse Matrix Operator Kernel Emissions for Europe
SNAP Selected Nomenclature for sources of Air Pollution
SO2 Sulfur dioxide
SSCM Simplified street canyon model
TAPM The Air Pollution Model
TMA Time-microenvironment-activity
UA2012 Urban Atlas 2012
UECT Urban Emission Conversion Tool
UNDYNE Urban Dynamic Exposure Model
VOC Volatile organic compound
WHO World Health Organization
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