Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Collection of Farm Surveyed Data
2.3. Climate Change Projections
2.4. Crop Modeling
2.5. Economic Modeling
2.6. Climate Change Adaptation Package
3. Results and Discussion
3.1. Calibration and Evaluation of DSSAT and APSIM
3.2. Relative Yields of Crops
3.3. Climate Change Impact Assessment
3.4. Impact of Adaptation Package in RWCS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- You, L.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Pandey, R.; Bardsley, D.K. Social-ecological vulnerability to climate change in the Nepali Himalaya. Appl. Geogr. 2015, 64, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Dumenu, W.K.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Alam, G.M.; Alam, K.; Mushtaq, S. Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Clim. Risk Manag. 2017, 17, 52–63. [Google Scholar] [CrossRef]
- Hina, T.; Adil, S.A.; Ashfaq, M.; Ahmad, A. Economic Impact Assessment of Climatic Change Sensitivity in Rice-Wheat Cropping System of Pakistan. Indian J. Sci. Technol. 2019, 12, 37. [Google Scholar] [CrossRef]
- Barnett, J.; Adger, W.N. Climate change, human security and violent conflict. Political Geogr. 2007, 26, 639–655. [Google Scholar] [CrossRef]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C.; Hassol, S.J. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Iizumi, T.; Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Secur. 2015, 4, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I.; Netra Chhetri, N.C.; Garrett, K. Food Security and Food Production Systems; 1107058074; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Berry, P.M.; Rounsevell, M.D.A.; Harrison, P.A.; Audsley, E. Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environ. Sci. Policy 2006, 9, 189–204. [Google Scholar] [CrossRef]
- Cattiaux, J.; Yiou, P.; Vautard, R. Dynamics of future seasonal temperature trends and extremes in Europe: a multi-model analysis from CMIP3.(Report). Clim. Dyn. 2012, 38, 1949. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Masud, M.M.; Azam, M.N.; Mohiuddin, M.; Banna, H.; Akhtar, R.; Alam, A.S.A.F.; Begum, H. Adaptation barriers and strategies towards climate change: Challenges in the agricultural sector. J. Clean. Prod. 2017, 156, 698–706. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- FAO. IFAD, 2012: The State of Food Insecurity in the World: Economic Growth is Necessary but not Sufficient to Accelerate Reduction of Hunger and Malnutrition; Food Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Aggarwal, P.; Sivakumar, M.V. Global climate change and food security in South Asia: An adaptation and mitigation framework. In Climate Change and Food Security in South Asia; Springer: Dordrecht, The Netherlands, 2010; pp. 253–275. [Google Scholar]
- Weiss, J. The Economics of Climate Change in Southeast Asia: A Regional Review; Asian Development Bank: Manila, Philippines, 2009. [Google Scholar]
- Krishnamurthy, P.; Lewis, K.; Choularton, R. A methodological framework for rapidly assessing the impacts of climate risk on national-level food security through a vulnerability index. Glob. Environ. Chang. 2014, 25, 121–132. [Google Scholar] [CrossRef]
- Haile, B.; Signorelli, S.; Azzarri, C.; Johnson, T. Welfare effects of weather variability: Multi-country evidence from Africa south of the Sahara. PLoS ONE 2018, 13, e0206415. [Google Scholar] [CrossRef]
- GOP. Economic Survey of Pakistan; GOP, Ed.; Ministery of Finance: Islamabad, Pakistan, 2016.
- Hanif, U.; Syed, S.H.; Ahmad, R.; Malik, K.A.; Nasir, M. Economic Impact of Climate Change on the Agricultural Sector of Punjab [with Comments]. Pak. Dev. Rev. 2010, 49, 771–798. [Google Scholar] [CrossRef] [Green Version]
- Nomman, A.M.; Schmitz, M. Economic assessment of the impact of climate change on the agriculture of Pakistan. Bus. Econ. Horiz. 2011, 4, 1–12. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global climate risk index 2018. J Ger. Bonn 2017, 9, 36. [Google Scholar]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D. Multimodel ensembles of wheat growth: many models are better than one. Glob. Chang. Biol. 2015, 21, 911–925. [Google Scholar] [CrossRef] [PubMed]
- ur Rahman, M.H.; Ahmad, A.; Wang, X.; Wajid, A.; Nasim, W.; Hussain, M.; Ahmad, B.; Ahmad, I.; Ali, Z.; Ishaque, W. Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric. For. Meteorol. 2018, 253, 94–113. [Google Scholar] [CrossRef]
- Ahmed, I.; ur Rahman, M.H.; Ahmed, S.; Hussain, J.; Ullah, A.; Judge, J. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 28413–28430. [Google Scholar] [CrossRef] [PubMed]
- Bassu, S.; Brisson, N.; Durand, J.L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef]
- Ullah, A.; Ahmad, I.; Ahmad, A.; Khaliq, T.; Saeed, U.; Habib-ur-Rahman, M.; Hussain, J.; Ullah, S.; Hoogenboom, G. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model. Environ. Sci. Pollut. Res. 2019, 26, 6745–6757. [Google Scholar] [CrossRef]
- Vanli, Ö.; Ustundag, B.B.; Ahmad, I.; Hernandez-Ochoa, I.M.; Hoogenboom, G. Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey. Environ. Sci. Pollut. Res. 2019, 26, 29397–29408. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, S.; Zuo, A.; Bjornlund, H. Farmers’ climate change beliefs and adaptation strategies for a water scarce future in Australia. Glob. Environ. Chang. 2013, 23, 537–547. [Google Scholar] [CrossRef]
- Alam, M.; Toriman, M.; Siwar, C.; Molla, R.; Talib, B. The impacts of agricultural supports for climate change adaptation: farm level assessment study on paddy farmers. Am. J. Environ. Sci. 2011, 7, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Di Falco, S. Adaptation to climate change in sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. In Agricultural Adaptation to Climate Change in Africa; Routledge: Abington, UK, 2018; pp. 83–106. [Google Scholar]
- Sova, C.A.; Thornton, T.F.; Zougmore, R.; Helfgott, A.; Chaudhury, A.S. Power and influence mapping in Ghana’s agricultural adaptation policy regime. Clim. Dev. 2017, 9, 399–414. [Google Scholar] [CrossRef]
- Bagamba, F.; Bashaasha, B.; Claessens, I.; Antle, J. Assessing climate change impacts and adaptation strategies for smallholder agricultural systems in Uganda. Afr. Crop Sci. J. 2012, 20, 303–316. [Google Scholar]
- Trapp, N. The Economic Impacts of Climate Change and Options for Adaptation: A Study of the Farming Sector in the European Union; Universität Hamburg: Hamburg, Germany, 2014. [Google Scholar]
- Berrang-Ford, L.; Ford, J.D.; Paterson, J. Are we adapting to climate change? Glob. Environ. Chang. 2011, 21, 25–33. [Google Scholar] [CrossRef]
- Brulle, R.J.; Carmichael, J.; Jenkins, J.C. Shifting public opinion on climate change: an empirical assessment of factors influencing concern over climate change in the U.S., 2002–2010. Clim. Chang. 2012, 114, 169–188. [Google Scholar] [CrossRef]
- Fraser, E.D.; Dougill, A.J.; Hubacek, K.; Quinn, C.H.; Sendzimir, J.; Termansen, M. Assessing vulnerability to climate change in dryland livelihood systems: conceptual challenges and interdisciplinary solutions. Ecol. Soc. 2011, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Brugués, A.; Rose, A.; de La Parra, C.A.; García, R.; Martínez, F. Climate change and the economy in Baja California: Assessment of macroeconomic impacts of the State’s Climate Action Plan. Ecol. Econ. 2017, 131, 373–388. [Google Scholar] [CrossRef]
- Tompkins, E.L.; Adger, W.N.; Boyd, E.; Nicholson-Cole, S.; Weatherhead, K.; Arnell, N. Observed adaptation to climate change: UK evidence of transition to a well-adapting society.(Report). Glob. Environ. Chang. 2010, 20, 627. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kächele, H.; Müller, K. Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy Water Environ. 2017, 15, 249–261. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Morton, L.W.; Hobbs, J. Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: Evidence from Iowa. Clim. Chang. 2013, 118, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaduri, D.; Purakayastha, T.J. Long-term tillage, water and nutrient management in rice–wheat cropping system: Assessment and response of soil quality. Soil Tillage Res. 2014, 144, 83–95. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Ahmed, Z.U.; Timsina, J.; Shahjahan, M.; Kurishi, A.S.M.A.; Miah, A.A.; Rahman, B.M.S.; Gathala, M.K.; McDonald, A.J. Forgoing the fallow in Bangladesh’s stress-prone coastal deltaic environments: Effect of sowing date, nitrogen, and genotype on wheat yield in farmers’ fields. Field Crop. Res. 2015, 170, 7–20. [Google Scholar] [CrossRef]
- McCarthy, N.; Lipper, L.; Branca, G. Climate-Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaptation and Mitigation; Food and agriculture organization of the United Nations: Rome, Italy, 2011; pp. 1–37. [Google Scholar]
- Islam, M.T.; Nursey-Bray, M. Adaptation to climate change in agriculture in Bangladesh: The role of formal institutions. J. Environ. Manag. 2017, 200, 347–358. [Google Scholar] [CrossRef]
- Peterson, T.C.; Heim, R.R., Jr.; Hirsch, R.; Kaiser, D.P.; Brooks, H.; Diffenbaugh, N.S.; Dole, R.M.; Giovannettone, J.P.; Guirguis, K.; Karl, T.R.; et al. Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge. Bull. Am. Meteorol. Soc. 2013, 94, 821–834. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The Physical Science Basis: Summary for Policymakers. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Zhou, L.; Turvey, C.G. Climate change, adaptation and China’s grain production. China Econ. Rev. 2014, 28, 72–89. [Google Scholar] [CrossRef]
- Timsina, J.; Connor, D.J. Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crop. Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- GOP. Economic Survey of Pakistan; Ministy of Finance, Economic Division, Government of Pakistan: Islamabad, Pakistan, 2019.
- Naseer, M.A.u.R.; Ashfaq, M.; Razzaq, A.; Ali, Q. Comparison of water use efficiency, profitability and consumer preferences of different rice varieties in Punjab, Pakistan. Paddy Water Environ. 2019. [Google Scholar] [CrossRef]
- Naqvi, A.; Asif, S.; Ashfaq, M.; Ali Adil, S.; Ahmed, A. Current agricultural production system of Punjab is vulnerable to climate change: Impact assessment. J. Agric. Res. 2017, 55, 125–135. [Google Scholar]
- Khaliq, T.; Gaydon, D.S.; Cheema, M.; Gull, U. Analyzing crop yield gaps and their causes using cropping systems modelling–A case study of the Punjab rice-wheat system, Pakistan. Field Crop. Res. 2019, 232, 119–130. [Google Scholar] [CrossRef]
- Naseer, A.M.; Ashfaq, M.; Hassan, S.; Abbas, A.; Razzaq, A.; Mehdi, M.; Ariyawardana, A.; Anwar, M. Critical Issues at the Upstream Level in Sustainable Supply Chain Management of Agri-Food Industries: Evidence from Pakistan’s Citrus Industry. Sustainability 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. A Summary of the CMIP5 Experiment Design. 2009. Available online: http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_Cmip5_Des (accessed on 6 February 2020).
- Ruane, A.C.; Winter, J.M.; McDermid, S.P.; Hudson, N.I. AgMIP climate data and scenarios for integrated assessment. In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project; Imperial College Press: London, UK, 2015; pp. 45–78. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Riahi, K.; Krey, V.; Rao, S.; Chirkov, V.; Fischer, G.; Kolp, P.; Kindermann, G.; Nakicenovic, N.; Rafai, P. RCP-8.5: exploring the consequence of high emission trajectories. Clim. Chang. 2011, 10, 1007. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Ruane, A.C.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Hillel, D. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP); Integrated Crop and Economic Assessments—Joint Publication with American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (In 2 Parts); World Scientific: Singapore, 2015; Volume 3. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.; Meinke, H.; Hochman, Z. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.; Wilkens, P.; Porter, C.; Batchelor, W.; Hunt, L.A. Decision Support System for Agrotechnology Transfer Version 4.0; University of Hawaii: Honolulu, HI, USA, 2004. [Google Scholar]
- Ahmad, A.; Ashfaq, M.; Rasul, G.; Wajid, S.A.; Khaliq, T.; Rasul, F.; Saeed, U.; Rahman, M.H.u.; Hussain, J.; Ahmad Baig, I. Impact of climate change on the rice—wheat cropping system of Pakistan. In Handbook of Climate Change and Agroecosystems; The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 2; Imperial College Press: London, UK, 2015; pp. 219–258. [Google Scholar]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Antle, J.M.; Valdivia, R.O. Modelling the supply of ecosystem services from agriculture: A minimum-data approach. Aust. J. Agric. Resour. Econ. 2006, 50, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.M. Parsimonious multi-dimensional impact assessment. Am. J. Agric. Econ. 2011, 93, 1292–1311. [Google Scholar] [CrossRef]
- Antle, J.; Valdivia, R.J.B.S. Methods for assessing economic, environmental and social impacts of aquaculture technologies: Adoption of integrated agriculture-aquaculture in Malawi. In Better Science, Better Fish, Better Life; AquaFish CRSP: Corvallis, OR, USA, 2011; p. 200. [Google Scholar]
- Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O. New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckman, J.J.; Honore, B.E. The empirical content of the Roy model. Econom. J. Econom. Soc. 1990, 1121–1149. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.; Valdivia, R. Methods for Assessing Economic, Environmental and Social Impacts of Aquaculture Technologies: Adoption of Integrated Agriculture-Aquaculture in Malawi. In Proceedings of the 9th International Symposium on Tilapia in Aquaculture (ISTA 9), Shanghai, China, 22–25 April 2011; p. 200. [Google Scholar]
- Valdivia, R.O.; Antle, J.M.; Rosenzweig, C.; Ruane, A.C.; Vervoort, J.; Ashfaq, M.; Hathie, I.; Tui, S.H.-K.; Mulwa, R.; Nhemachena, C. Representative agricultural pathways and scenarios for regional integrated assessment of climate change impacts, vulnerability, and adaptation. In Handbook of Climate Change and Agroecosystems; The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 1; World Scientific: Singapore, 2015; pp. 101–145. [Google Scholar]
- Claessens, L.; Stoorvogel, J.; Antle, J. Ex ante assessment of dual-purpose sweet potato in the crop–livestock system of western Kenya: A minimum-data approach. Agric. Syst. 2008, 99, 13–22. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 96. [Google Scholar]
- Baig, I.A.; Ashfaq, M.; Naqvi, S.A.A.; Ahmed, A.; Hoogenboom, G.; Antle, J.M.; Valdivia, R. Ex ante impact assessment of wheat crop in Punjab-Pakistan. J. Appl. Environ. Biol. Sci. 2014, 4, 358–363. [Google Scholar]
- Gul, F.; Jan, D.; Ashfaq, M. Assessing the socio-economic impact of climate change on wheat production in Khyber Pakhtunkhwa, Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 6576–6585. [Google Scholar] [CrossRef] [PubMed]
- Boote, K.J.; Jones, J.W.; White, J.W.; Asseng, S.; Lizaso, J.I. Putting mechanisms into crop production models. PlantCell Environ. 2013, 36, 1658–1672. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob. Chang. Biol. 2016, 22, 1890–1903. [Google Scholar] [CrossRef]
- Gul, F.; Jan, D.; Ashfaq, M. Assessing the Impact of Climate Change Adaptation Strategies on Poverty Rates of Wheat Farmers in Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2019, 35, 442–448. [Google Scholar] [CrossRef]
Parameter / Variable | Base Value (S-1) | Units | Crop Model (CM) | CM- ID | Describe Change | Value (S-2) |
---|---|---|---|---|---|---|
Improved fertilizer method | Broadcast | - | APSIM and DSSAT | AP002 | Applied with irrigation water | - |
Sowing density | 330 | No. per m2 | APSIM and DSSAT | Plpop | Increase in plant population by 10% | 363 |
Climate resilient cultivar | - | - | APSIM and DSSAT | - | Genetically modified cultivar | - |
Parameter / Variable | Base Value (S-1) | Units | Crop Model (CM) | CM- ID | Describe Change | Value (S-2) |
---|---|---|---|---|---|---|
Improved fertilizer method | Broadcast | - | APSIM and DSSAT | AP002 | Applied with irrigation water | - |
Sowing density | 25 | No. per hill | APSIM and DSSAT | Plpop | 10% increase in plant population | 28 |
Increase in nitrogen (recommended concentration) | 97 | kg/ha | APSIM and DSSAT | 156 | Recommended nitrogen dose is compulsory | - |
Rice | DSSAT | APSIM | ||||
---|---|---|---|---|---|---|
Parameters | Obs. | Sim. | % Error | Obs. | Sim. | % Error |
Days to anthesis (days) | 62 | 62 | 0.00 | 62 | 62 | 0.00 |
Days to maturity (days) | 98 | 98 | 0.00 | 98 | 98 | 1.02 |
Grain yield (kg ha-1) | 4828 | 4686 | 2.94 | 4828 | 4686 | 4.99 |
Biological yield (kg ha-1) | 11881 | 11690 | 1.61 | 11881 | 11690 | 9.74 |
Wheat | ||||||
Days to anthesis (days) | 110 | 109 | 0.91 | 110 | 110 | 0.00 |
Days to maturity (days) | 141 | 141 | 0.00 | 141 | 145 | –2.84 |
Grain yield (kg ha-1) | 4136 | 4366 | –5.56 | 4136 | 4774 | –15.43 |
Biological yield (kg ha-1) | 10343 | 10398 | –0.53 | 10343 | 11972 | –15.75 |
Rice | ||||||||
Parameters | Days to anthesis | Days to maturity | Grain yield | Biological yield | ||||
Models | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM | DSSAT | APSIM |
15 July | –3.22 | 6.45 | –4.04 | 0 | 4.45 | 0.007 | 1.07 | 0.62 |
30 July | 1.69 | 5.08 | –0.99 | 1.98 | 5.89 | 7.4 | 2.8 | 2.1 |
RMSE | 1.58 day | 3.54 day | 2.91 day | 1.41 day | 237 kg ha-1 | 202 kg ha-1 | 247 kg ha-1 | 230 kg ha-1 |
Wheat | ||||||||
0 N kg ha-1 | 0 | 0.94 | 0.71 | 1.42 | 3 | –26.4 | 2.3 | 29.91 |
55 N kg ha-1 | 0 | 0.94 | 0 | 0.7 | 6.9 | –13.2 | –1.7 | 18.25 |
120 N kg ha-1 | –0.93 | 0 | –0.7 | 0 | –0.9 | –7.2 | –1.4 | 3.71 |
RMSE | 0.58 day | 0.41 day | 0.82 day | 0.61 day | 176 kg ha-1 | 293 kg ha-1 | 278 kg ha-1 | 868 kg ha-1 |
Crops | RCPs | Global Circulation Models (GCMs) | ||||
---|---|---|---|---|---|---|
Cool Wet | Cool Dry | Middle | Hot Dry | Hot Wet | ||
Rice | APSIM_4.5 | 0.75 | 0.74 | 0.71 | 0.67 | 0.68 |
APSIM_8.5 | 0.70 | 0.71 | 0.66 | 0.64 | 0.65 | |
DSSAT_4.5 | 0.83 | 0.79 | 0.76 | 0.72 | 0.71 | |
DSSAT_8.5 | 0.81 | 0.77 | 0.74 | 0.70 | 0.69 | |
Wheat | APSIM_4.5 | 0.97 | 0.98 | 0.97 | 0.96 | 0.96 |
APSIM_8.5 | 0.96 | 0.94 | 0.94 | 0.92 | 0.93 | |
DSSAT_4.5 | 0.98 | 0.99 | 0.97 | 0.98 | 0.97 | |
DSSAT_8.5 | 0.97 | 0.95 | 0.96 | 0.94 | 0.94 |
CM | GCM | Vulnerable Farm Household (%) | NR with CC | PCI with CC |
---|---|---|---|---|
APSIM | Cool Wet | 74.2 | 535,793 | 84,398 |
Cool Dry | 76.4 | 524,683 | 82,759 | |
Middle | 78.5 | 513,107 | 80,933 | |
Hot Dry | 82.4 | 489,585 | 77,378 | |
Hot Wet | 80.5 | 502,071 | 79,132 | |
DSSAT | Cool Wet | 70.2 | 555,207 | 87,467 |
Cool Dry | 73.4 | 539,799 | 84,967 | |
Middle | 75.8 | 528,406 | 83,249 | |
Hot Dry | 80.3 | 503,435 | 79,358 | |
Hot Wet | 80.3 | 503,041 | 79,289 |
CM | GCM | Vulnerable Farm Household (%) | NR with CC | PCI with CC |
---|---|---|---|---|
APSIM | Cool Wet | 80.3 | 500,871 | 79,027 |
Cool Dry | 79.0 | 509,203 | 80,391 | |
Middle | 82.4 | 488,209 | 77,193 | |
Hot Dry | 84.4 | 475,905 | 75,297 | |
Hot Wet | 83.1 | 486,057 | 76,672 | |
DSSAT | Cool Wet | 72.9 | 542,314 | 85,435 |
Cool Dry | 74.9 | 532,241 | 83,771 | |
Middle | 77.8 | 517,433 | 81,584 | |
Hot Dry | 81.9 | 493,642 | 78,038 | |
Hot Wet | 82.4 | 490,489 | 77,453 |
Crop Models | Adoption Rate (%) | Net Returns (RS/Farm/Annum) | Per Capita Income (RS) | Poverty (%) |
---|---|---|---|---|
DSSAT | 77.99 | 837,267 | 129,445 | 6.31 |
APSIM | 68.34 | 775,011 | 121,191 | 6.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anser, M.K.; Hina, T.; Hameed, S.; Nasir, M.H.; Ahmad, I.; Naseer, M.A.u.R. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 2522. https://doi.org/10.3390/ijerph17072522
Anser MK, Hina T, Hameed S, Nasir MH, Ahmad I, Naseer MAuR. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. International Journal of Environmental Research and Public Health. 2020; 17(7):2522. https://doi.org/10.3390/ijerph17072522
Chicago/Turabian StyleAnser, Muhammad Khalid, Tayyaba Hina, Shahzad Hameed, Muhammad Hamid Nasir, Ishfaq Ahmad, and Muhammad Asad ur Rehman Naseer. 2020. "Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan" International Journal of Environmental Research and Public Health 17, no. 7: 2522. https://doi.org/10.3390/ijerph17072522
APA StyleAnser, M. K., Hina, T., Hameed, S., Nasir, M. H., Ahmad, I., & Naseer, M. A. u. R. (2020). Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. International Journal of Environmental Research and Public Health, 17(7), 2522. https://doi.org/10.3390/ijerph17072522