Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt
Abstract
:1. Introduction
2. Literature Review
3. Model and Data
3.1. Model for Measuring Biased Technical Change
3.2. Indicators and Data
4. Results and Discussion
4.1. The Descriptive Statistics of Variables
4.2. Industrial Green Productivity Change in Terms of Water Resources in YREB
4.3. Output-Biased Technical Change
4.4. Input-Biased Technical Change
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Acemoglu, D. Directed technical change. Rev. Econ. Stud. 2002, 69, 781–810. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.R. The Theory of Wage; Macmillan: London, UK, 1932. [Google Scholar] [CrossRef]
- Acemoglu, D. Labor- and capital-augmenting technical change. J. Eur. Econ. Assoc. 2003, 1, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Popp, D. Induced innovation and energy prices. Am. Econ. Rev. 2002, 92, 160–180. [Google Scholar] [CrossRef] [Green Version]
- Popp, D. ENTICE: Endogenous technological change in the DICE model of global warming. J. Environ. Econ. Manag. 2004, 48, 742–768. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Akcigit, U.; Hanley, D.; Kerr, W. Transition to clean technology. J. Polit. Econ. 2016, 124, 52–104. [Google Scholar] [CrossRef] [Green Version]
- Calel, R.; Dechezlepretre, A. Environmental policy and directed technological change: Evidence from the European Carbon market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Aghion, P.; Dechezleprêtre, A.; Hémous, D. Carbon taxes, path dependency, and directed technical change: Evidence from the Auto industry. J. Polit. Econ. 2016, 124, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sun, C.; Wang, S.; Zhang, Z.; Zou, W. Going green or going away? A spatial empirical examination of the relationship between environmental regulations, biased technological progress, and green total factor productivity. Int. J. Environ. Res. Public Health 2018, 15, 1917. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.Z.; Chen, X.L.; Valdmanis, V.; Baležentis, T. Evaluating economic and environmental performance of the Chinese industry sector. Sustainability 2019, 11, 6804. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.C.; Xiao, J.Z.; Wen, L.; Zhang, L. Energy industry investment influences total factor productivity of energy exploitation: A biased technical change analysis. J. Clean. Prod. 2019, 237, 1–16. [Google Scholar] [CrossRef]
- World Economic Forum. Global Risks 2013, 8th ed.; World Economic Forum: Geneva, Switzerland, 2014; Available online: http://reports.weforum.org/global-risks-2013/ (accessed on 20 October 2019).
- Wang, Y.; Bian, Y.; Xu, H. Water use efficiency and related pollutants’ abatement costs of regional industrial systems in China: A slacks-based measure approach. J. Clean. Prod. 2015, 101, 301–310. [Google Scholar] [CrossRef]
- Yao, X.; Feng, W.; Zhang, X.; Wang, W.; Zhang, C. Measurement and decomposition of industrial green total factor water efficiency in China. J. Clean. Prod. 2018, 198, 1144–1156. [Google Scholar] [CrossRef]
- Ali, M.K.; Klein, K.K. Water use efficiency and productivity of the irrigation districts in southern Alberta. Water Resour. Manag. 2014, 28, 2751–2766. [Google Scholar] [CrossRef]
- Cao, X.; Ren, J.; Wu, M. Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecol. Indic. 2018, 86, 58–66. [Google Scholar] [CrossRef]
- Byrnes, J.; Crase, L.; Dollery, B.; Villano, R. The relative economic efficiency of urban utilities in regional New South Wales and Victoria. Resour. Energy Econ. 2010, 32, 439–455. [Google Scholar] [CrossRef]
- Ananda, J. Evaluating the performance of urban water utilities: Robust nonparametric approach. J. Water Resour. Plan Manag. 2014, 140, 431–439. [Google Scholar] [CrossRef]
- Deng, G.; Li, L.; Song, Y. Provincial water use efficiency measurement and factor analysis in china: Based on SBM-DEA model. Ecol. Indic. 2016, 69, 12–18. [Google Scholar] [CrossRef]
- Li, M.; Long, K. Direct or spillover effect: The impact of pure technical and scale efficiencies of water use on water scarcity in China. Int. J. Environ. Res. Public Health 2019, 16, 3401. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction; OECD Publishing: Paris, France, 2012. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.; Yeh, F. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar] [CrossRef]
- Bian, Y.; Liang, N.; Xu, H. Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. J. Clean. Prod. 2015, 87, 348–356. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar] [CrossRef]
- Moro, M.A.; McKnight, U.S.; Smets, B.F.; Ming, Y.; Andersen, M.M. The industrial dynamics of water innovation: A comparison between China and Europe. Int. J. Innov. Stud. 2018, 2, 14–32. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.; Liu, S.; Zhang, H. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 1–69. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, J.; Zhang, J. Total-factor ecological efficiency and productivity in Yangtze River Economic Belt, China: A non-parametric distance function approach. J. Clean. Prod. 2018, 200, 844–857. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Wei, G.; Elahi, E. Temporal and spatial differentiations in environmental governance. Int. J. Environ. Res. Public Health 2018, 15, 2242. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, L. Does factor endowment allocation improve technological innovation performance? An empirical study on the Yangtze River Delta region. Sci. Total Environ. 2020, 716, 137107. [Google Scholar] [CrossRef]
- Berndt, E. Reconciling alternative estimates of the elasticity of substitution. Rev. Econ. Stat. 1976, 58, 59–68. [Google Scholar] [CrossRef]
- Färe, R.; Greifell-Tatje, E.; Grosskopf, S.; Lovell, C.A.K. Biased technical change and the Malmquist productivity index. Scand. J. Econ. 1997, 99, 119–127. [Google Scholar] [CrossRef]
- Weber, W.L.; Domazlicky, B.R. Total factor productivity growth in manufacturing: A regional approach using linear programming. Reg. Sci. Urban Econ. 1999, 29, 105–122. [Google Scholar] [CrossRef]
- Briec, W.; Peypoch, N. Biased technical change and parallel neutrality. J. Econ. 2007, 88, 281–292. [Google Scholar] [CrossRef]
- Barros, C.P.; Weber, W.L. Productivity growth and biased technological change in UK airports. Transp. Res. Part E 2009, 45, 642–653. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lee, W.F. Productivity and technical change: The case of Taiwan. Appl. Econ. 2001, 33, 1191–1925. [Google Scholar] [CrossRef]
- Chou, Y.; Shao, B. Total factor productivity growth in information technology services industries: A multi-theoretical perspective. Decis. Support Syst. 2014, 62, 106–118. [Google Scholar] [CrossRef]
- Luo, Q.; Miao, C.; Sun, L.; Meng, X.; Duan, M. Efficiency evaluation of green technology innovation of China’s strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. J. Clean. Prod. 2019, 238, 117782. [Google Scholar] [CrossRef]
- Rodríguez, X.A.; Regueiro, R.M.; Doldan, X.R. Analysis of productivity in the Spanish wind industry. Renew. Sustain. Energy Rev. 2020, 118, 109573. [Google Scholar] [CrossRef]
- Li, J.; See, K.F.; Jin, C. Water resources and water pollution emissions in China’s industrial sector: A green-biased technological progress analysis. J. Clean. Prod. 2019, 229, 1412–1426. [Google Scholar] [CrossRef]
- Shephard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Färe, R.; Primont, D. Multi-Output Production and Duality: Theory and Applications; Kluwer Academic Publishers: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- Ali, A.I.; Seiford, L.M. Translation invariance in data envelopment analysis. Oper. Res. Lett. 1990, 9, 403–405. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Goldsmith, R.W. A Perpetual Inventory of National Wealth. In Studies in Income and Wealth; NBER: Cambridge, MA, USA, 1951. [Google Scholar]
- Shan, H.J.; Shi, F. The return to capital in China’s industry: 1978-Industrial. Econ. Res. 2008, 37, 1–9. (In Chinese) [Google Scholar]
- Yang, X.; Qin, K. Has the importance of capital accumulation for China’s economic growth changed? Res. Econ. Manag. 2015, 36, 3–9. (In Chinese) [Google Scholar]
- Dai, T.; Xu, X. The direction of technical change in China. J. World Econ. 2010, 11, 54–70. (In Chinese) [Google Scholar]
Index | >1 | <1 | =1 |
---|---|---|---|
OBTC | Output-biased technical progress | Output-biased technical regress | No output-biased technical change |
IBTC | Input-biased technical progress | Input-biased technical regress | No input-biased technical change |
MATC | Neutral technical progress | Neutral technical regress | No neutral technical change |
Output-Biased Technical Change | Input-Biased Technical Change | ||||
---|---|---|---|---|---|
Output Mix | Input Mix | ||||
y1-producing | y2-producing | x1-using, or x2-saving | x2-using, or x1-saving | ||
y2-producing | y1-producing | x2-using, or x1-saving | x1-using, or x2-saving |
Stage | Variable | National | YREB a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Max | Min | N | Mean | Std. Dev. | Max | Min | N | ||
Input | Water (B Ton) | 4.604 | 4.501 | 23.900 | 0.240 | 330 | 7.561 | 4.986 | 23.900 | 1.838 | 121 |
Capital (B CNY) | 552.562 | 496.809 | 3042.125 | 29.729 | 330 | 588.161 | 512.524 | 3042.125 | 110.012 | 121 | |
Labor (M People) | 2.955 | 3.226 | 15.680 | 0.116 | 330 | 3.324 | 2.867 | 11.539 | 0.666 | 121 | |
Output | Industrial GDP (B CNY) | 569.279 | 609.286 | 3195.246 | 15.250 | 330 | 594.690 | 552.280 | 2916.019 | 58.585 | 121 |
COD Clean Index | 11528 | 2205 | 14341 | 100 | 330 | 11546 | 1714 | 14167 | 7312 | 121 |
Year | DEA | MI | EC | TC | OBTC | IBTC | MATC |
---|---|---|---|---|---|---|---|
2006–2010 | 0.741 | 1.064 | 0.978 | 1.087 | 1.013 | 1.017 | 1.055 |
2011–2015 | 0.699 | 1.019 | 0.985 | 1.034 | 1.015 | 1.009 | 1.010 |
2006–2015 | 0.720 | 1.041 | 0.982 | 1.060 | 1.014 | 1.013 | 1.032 |
2006–2007 | OBTECH > 1 | 45 (y1-producing) | 0 (y2-producing) | 2012–2013 | OBTECH>1 | 73 (y1-producing) | 0 (y2-producing) |
OBTECH < 1 | 28 (y2-producing) | 0 (y1-producing) | OBTECH < 1 | 0 (y2-producing) | 0 (y1-producing) | ||
Neutral | 27 | Neutral | 27 | ||||
2008–2009 | OBTECH > 1 | 36 (y1-producing) | 0 (y2-producing) | 2014–2015 | OBTECH > 1 | 36 (y1-producing) | 14 (y2-producing) |
OBTECH < 1 | 36 (y2-producing) | 0 (y1-producing) | OBTECH < 1 | 0 (y2-producing) | 18 (y1-producing) | ||
Neutral | 28 | Neutral | 32 | ||||
2010–2011 | OBTECH > 1 | 23 (y1-producing) | 9 (y2-producing) | 2006–2015 | y1-producing | 46 | |
OBTECH < 1 | 50 (y2-producing) | 0 (y1-producing) | y2-producing | 28 | |||
Neutral | 18 | Neutral | 26 |
2006–2007 | IBTECH > 1 | 9 (x1-using) | 18 (x2-using) | 14(x1-using) | 14 (x3-using) | 27 (x2-using) | 0 (x3-using) |
IBTECH < 1 | 14 (x2-using) | 23 (x1-using) | 5 (x3-using) | 32 (x1-using) | 18 (x3-using) | 19 (x2-using) | |
Neutral | 36 | 35 | 36 | ||||
2008–2009 | IBTECH > 1 | 5 (x1-using) | 41(x2-using) | 9 (x1-using) | 36 (x3-using) | 32 (x2-using) | 14 (x3-using) |
IBTECH < 1 | 9 (x2-using) | 23 (x1-using) | 5 (x3-using) | 27 (x1-using) | 18 (x3-using) | 14 (x2-using) | |
Neutral | 22 | 23 | 22 | ||||
2010–2011 | IBTECH > 1 | 14(x1-using) | 32 (x2-using) | 18 (x1-using) | 27(x3-using) | 27 (x2-using) | 27 (x3-using) |
IBTECH < 1 | 18 (x2-using) | 32 (x1-using) | 18 (x3-using) | 32 (x1-using) | 27 (x3-using) | 14 (x2-using) | |
Neutral | 4 | 5 | 5 | ||||
2012–2013 | IBTECH > 1 | 5 (x1-using) | 36 (x2-using) | 9 (x1-using) | 32 (x3-using) | 41 (x2-using) | 14 (x3-using) |
IBTECH < 1 | 5(x2-using) | 54 (x1-using) | 14 (x3-using) | 45 (x1-using) | 36 (x3-using) | 9(x3-using) | |
Neutral | 0 | 0 | 0 | ||||
2014–2015 | IBTECH > 1 | 9 (x1-using) | 59 (x2-using) | 23 (x1-using) | 45 (x3-using) | 55 (x2-using) | 14 (x3-using) |
IBTECH < 1 | 0 (x2-using) | 23 (x1-using) | 5 (x3-using) | 18 (x1-using) | 23(x3-using) | 0 (x3-using) | |
Neutral | 9 | 9 | 8 | ||||
2006–2015 | x1-using | 39 | x1-using | 45 | x2-using | 47 | |
x2-using | 46 | x3-using | 40 | x3-using | 38 | ||
Neutral | 15 | Neutral | 15 | Neutral | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, F.; Wang, H.; Qu, Y. Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2020, 17, 2789. https://doi.org/10.3390/ijerph17082789
Zhang X, Sun F, Wang H, Qu Y. Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt. International Journal of Environmental Research and Public Health. 2020; 17(8):2789. https://doi.org/10.3390/ijerph17082789
Chicago/Turabian StyleZhang, Xiyue, Fangcheng Sun, Huaizu Wang, and Yi Qu. 2020. "Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt" International Journal of Environmental Research and Public Health 17, no. 8: 2789. https://doi.org/10.3390/ijerph17082789
APA StyleZhang, X., Sun, F., Wang, H., & Qu, Y. (2020). Green Biased Technical Change in Terms of Industrial Water Resources in China’s Yangtze River Economic Belt. International Journal of Environmental Research and Public Health, 17(8), 2789. https://doi.org/10.3390/ijerph17082789