A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of PSG Data and Snore Sounds
2.2. Snore Database
2.3. Snore-Specific AHI
2.4. Feature Extraction
2.5. Statistical Analysis and Clustering
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999, 22, 667–689. [Google Scholar]
- Kario, K. Obstructive sleep apnea syndrome and hypertension: Ambulatory blood pressure. Hypertens. Res. 2009, 32, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Abeyratne, U.R.; Swarnkar, V.; Hukins, C. Snore Sound Analysis Can Detect the Presence of Obstructive Sleep Apnea Specific to NREM or REM Sleep. J. Clin. Sleep Med. 2018, 14, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Schlosshan, D.; Elliott, M.W. Sleep. 3: Clinical presentation and diagnosis of the obstructive sleep apnoea hypopnoea syndrome. Thorax 2004, 59, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.T.; Li, H.Y.; Lee, G.S.; Huang, Y.S.; Huang, C.G.; Chen, N.H.; Lee, L.A. Snoring sound energy as a potential biomarker for disease severity and surgical response in childhood obstructive sleep apnoea: A pilot study. Clin. Otolaryngol. 2018, 44, 47–52. [Google Scholar] [CrossRef]
- Pengo, M.F.; Ratneswaran, C.; Berry, M.; Kent, B.D.; Kohler, M.; Rossi, G.P.; Steier, J. Effect of Continuous Positive Airway Pressure on Blood Pressure Variability in Patients With Obstructive Sleep Apnea. J. Clin. Hypertens. 2016, 18, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Ramar, K.; Dort, L.C.; Katz, S.G.; Lettieri, C.J.; Harrod, C.G.; Thomas, S.M.; Chervin, R.D. Clinical Practice Guideline for the Treatment of Obstructive Sleep Apnea and Snoring with Oral Appliance Therapy: An Update for 2015. J. Clin. Sleep Med. 2015, 11, 773–827. [Google Scholar] [CrossRef] [Green Version]
- Aarab, G.; Lobbezoo, F.; Hamburger, H.L.; Naeije, M. Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: A randomized, placebo-controlled trial. Respiration 2011, 81, 411–419. [Google Scholar] [CrossRef]
- Ishiyama, H.; Hasebe, D.; Sato, K.; Sakamoto, Y.; Furuhashi, A.; Komori, E.; Yuasa, H. The Efficacy of Device Designs (Mono-block or Bi-block) in Oral Appliance Therapy for Obstructive Sleep Apnea Patients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3182. [Google Scholar] [CrossRef] [Green Version]
- Van de Water, A.T.; Holmes, A.; Hurley, D.A. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography--a systematic review. J. Sleep Res. 2011, 20, 183–200. [Google Scholar] [CrossRef]
- Hoffstein, V.; Mateika, S.; Anderson, D. Snoring: Is it in the ear of the beholder? Sleep 1994, 17, 522–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skatvedt, O. Localization of site of obstruction in snorers and patients with obstructive sleep apnea syndrome: A comparison of fiberoptic nasopharyngoscopy and pressure measurements. Acta Otolaryngol. 1993, 113, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Hoffstein, V. Snoring. Chest 1996, 109, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.S.; Van Hout, S. The American Academy of Sleep Medicine Inter-scorer Reliability program: Respiratory events. J. Clin. Sleep Med. 2014, 10, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Koo, S.K.; Kwon, S.B.; Kim, Y.J.; Moon, J.I.S.; Kim, Y.J.; Jung, S.H. Acoustic analysis of snoring sounds recorded with a smartphone according to obstruction site in OSAS patients. Eur. Arch. Otorhinolaryngol. 2017, 274, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, T.; Lee, D.; Kim, J.W.; Lee, K. Exploiting temporal and nonstationary features in breathing sound analysis for multiple obstructive sleep apnea severity classification. Biomed. Eng. Online 2017, 16, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.A.; Yu, J.F.; Lo, Y.L.; Chen, Y.S.; Wang, D.L.; Cho, C.M.; Ni, Y.L.; Chen, N.H.; Fang, T.J.; Huang, C.G.; et al. Energy types of snoring sounds in patients with obstructive sleep apnea syndrome: A preliminary observation. PLoS ONE 2012, 7, e53481. [Google Scholar] [CrossRef]
- Jane, R.; Fiz, J.A.; Sola-Soler, J.; Mesquita, J.; Morera, J. Snoring analysis for the screening of Sleep Apnea Hypopnea Syndrome with a single-channel device developed using polysomnographic and snoring databases. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 8331–8333. [Google Scholar]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Cho, H.J.; Eisenberger, N.I.; Olmstead, R.; Breen, E.C.; Irwin, M.R. Preexisting mild sleep disturbance as a vulnerability factor for inflammation-induced depressed mood: A human experimental study. Transl. Psychiatry 2016, 6, e750. [Google Scholar] [CrossRef] [Green Version]
- Dafna, E.; Tarasiuk, A.; Zigel, Y. Automatic detection of whole night snoring events using non-contact microphone. PLoS ONE 2013, 8, e84139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeyratne, U.R.; De Silva, S.; Hukins, C.; Duce, B. Obstructive sleep apnea screening by integrating snore feature classes. Physiol. Meas. 2013, 34, 99–121. [Google Scholar] [CrossRef] [PubMed]
SW | one snore episode waveform |
LW | one waveform including the last 10 seconds |
RMS | root mean square |
VI1 | the maximum RMS value in the every frame RMS value of each SW |
VI2 | the RMS value in every frame of each SW |
VI3 | the average of frame RMS values of the SW |
VI4 | the dispersion of frame RMS values of the SW |
VI5 | the RMS value in every frame of each the LW |
VI6 | the average of frame RMS values of the LW |
VI7 | the dispersion of frame RMS values of the LW |
Sex (M/F) | 11/11 |
---|---|
Age (yr) | 64.4 ± 12.0 |
BMI (kg/m2) | 26.7 ± 5.7 |
AHI (events/hour) | 38.4 ± 23.4 |
mfcc_1 | 0.3309 |
mfcc_2 | −0.09966 |
mfcc_3 | −0.14657 |
mfcc_4 | 0.186239 |
mfcc_5 | −0.1558 |
mfcc_6 | 0.008772 |
mfcc_7 | 0.014088 |
mfcc_8 | 0.011975 |
mfcc_9 | −0.14602 |
mfcc_10 | −0.01543 |
mfcc_11 | −0.18824 |
mfcc_12 | −0.09601 |
mfcc_13 | −0.15889 |
volinfo_1 | 0.249201 |
volinfo_2 | 0.273147 |
volinfo_3 | 0.283421 |
volinfo_4 | 0.057741 |
volinfo_5 | 0.238167 |
volinfo_6 | 0.00525 |
volinfo_7 | 0.254416 |
1st formant | 0.154177 |
2nd formant | 0.079543 |
3rd formant | 0.087834 |
Cluster 1 | Cluster 2 | |
---|---|---|
mild snore sound episodes (5 ≤ ssAHI < 15) | 1334 | 586 |
severe snore sound episodes (30 ≤ ssAHI) | 1911 | 3193 |
snore sound episodes from mild OSA patients (5 ≤ AHI < 15) | 1091 | 191 |
snore sound episodes from severe OSA patients (30 ≤ AHI) | 2313 | 3777 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, S.; Tamaoka, M.; Tateishi, T.; Murota, Y.; Handa, I.; Miyazaki, Y. A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2951. https://doi.org/10.3390/ijerph17082951
Hayashi S, Tamaoka M, Tateishi T, Murota Y, Handa I, Miyazaki Y. A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis. International Journal of Environmental Research and Public Health. 2020; 17(8):2951. https://doi.org/10.3390/ijerph17082951
Chicago/Turabian StyleHayashi, Shota, Meiyo Tamaoka, Tomoya Tateishi, Yuki Murota, Ibuki Handa, and Yasunari Miyazaki. 2020. "A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis" International Journal of Environmental Research and Public Health 17, no. 8: 2951. https://doi.org/10.3390/ijerph17082951
APA StyleHayashi, S., Tamaoka, M., Tateishi, T., Murota, Y., Handa, I., & Miyazaki, Y. (2020). A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis. International Journal of Environmental Research and Public Health, 17(8), 2951. https://doi.org/10.3390/ijerph17082951