High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Search Procedures
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Publication Bias
2.5. Risk of Bias
2.6. Data Synthesis and Analysis
3. Results
3.1. Cardiorespiratory Fitness (CRF) Meta-Analyses
3.2. Body Composition
3.3. Direct vs. Indirect
3.4. Low Cardiorespiratory Fitness (CRF) vs. High Cardiorespiratory Fitness (CRF)
3.5. Control Type
3.6. Moderator Analyses
4. Discussion
4.1. Direct versus Indirect Measures of
4.2. Effect of Control Group Type
4.3. Utility in High Fit and Low Fit Groups
4.4. Training Duration
5. Strengths and Limitations of This Review and Meta-Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2019, 4, 23–25. [Google Scholar] [PubMed]
- World Health Organisation. Global Recommendation on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Biddle, S.J.; Gorely, T.; Marshall, S.J.; Cameron, N. The prevalence of sedentary behavior and physical activity in leisure time: A study of Scottish adolescents using ecological momentary assessment. Prev. Med. 2009, 48, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Dumith, S.C.; Gigante, D.P.; Domingues, M.R.; Hallal, P.C.; Menezes, A.M.; Kohl, H.W., 3rd. A longitudinal evaluation of physical activity in Brazilian adolescents: Tracking, change and predictors. Pediatric Exerc. Sci. 2012, 24, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Telama, R.; Yang, X. Decline of physical activity from youth to young adulthood in Finland. Med. Sci. Sports Exerc. 2000, 32, 1617–1622. [Google Scholar] [PubMed]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Ridgers, N.D.; Welk, G. Correlates of children’s moderate and vigorous physical activity during weekdays and weekends. J. Phys. Act. Health 2012, 9, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Boyle, S.E.; Jones, G.L.; Walters, S.J. Physical activity among adolescents and barriers to delivering physical education in Cornwall and Lancashire, UK: A qualitative study of heads of PE and heads of schools. BMC Public Health 2008, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Love, R.; Adams, J.; van Sluijs, E.M.F. Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes. Rev. 2019, 20, 859–870. [Google Scholar] [CrossRef]
- Mura, G.; Rocha, N.B.; Helmich, I.; Budde, H.; Machado, S.; Wegner, M.; Nardi, A.E.; Arias-Carrion, O.; Vellante, M.; Baum, A.; et al. Physical activity interventions in schools for improving lifestyle in European countries. Clin. Pract. Epidemiol. Ment. Health CP EMH 2015, 11, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjostrom, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Matton, L.; Thomis, M.; Wijndaele, K.; Duvigneaud, N.; Beunen, G.; Claessens, A.L.; Vanreusel, B.; Philippaerts, R.; Lefevre, J. Tracking of physical fitness and physical activity from youth to adulthood in females. Med. Sci. Sports Exerc. 2006, 38, 1114–1120. [Google Scholar] [CrossRef]
- Adab, P.; Pallan, M.J.; Lancashire, E.R.; Hemming, K.; Frew, E.; Barrett, T.; Bhopal, R.; Cade, J.E.; Canaway, A.; Clarke, J.L.; et al. Effectiveness of a childhood obesity prevention programme delivered through schools, targeting 6 and 7 year olds: Cluster randomised controlled trial (WAVES study). Br. Med. J. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, E.L.; Howe, L.D.; Kipping, R.R.; Campbell, R.; Jago, R.; Noble, S.M.; Wells, S.; Chittleborough, C.; Peters, T.J.; Lawlor, D.A. Long-term effects of the Active for Life Year 5 (AFLY5) school-based cluster-randomised controlled trial. BMJ Open 2016, 6, e010957. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, B.; Henley, W.; Wilkin, T. Effectiveness of intervention on physical activity of children: Systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ 2012, 345, e5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgomaster, K.A.; Heigenhauser, G.J.; Gibala, M.J. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 2006, 100, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.J.; Gill, J.M.; Cathcart, A.J. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metab. Clin. Exp. 2010, 59, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Baquet, G.; Berthoin, S.; Gerbeaux, M.; Van Praagh, E. High-intensity aerobic training during a 10 week one-hour physical education cycle: Effects on physical fitness of adolescents aged 11 to 16. Int. J. Sports Med. 2001, 22, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. Bmc Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Thomas, N.E.; Malina, R.M.; Baker, J.S. The effects of time and intensity of exercise on novel and establihed markers of CVD in adolescent youth. Am. J. Hum. Biol. 2011, 23, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.S.; Young, J.D.; Simpson, A.D.; Thomas, N.E.; Cooper, S.M.; Baker, J.S. The effects of a novel high intensity exercise intervention on established markers of cardiovascular disease and health in Scottish adolescent youth. J. Public Health Res. 2012, 1, 155–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Floody, P.; Latorre-Roman, P.; Jerez-Mayorga, D.; Caamano-Navarrete, F.; Garcia-Pinillos, F. Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: A systematic review. J. Exerc. Sci. Fit. 2019, 17, 35–40. [Google Scholar] [CrossRef]
- Martin, R.; Buchan, D.S.; Baker, J.S.; Young, J.; Sculthorpe, N.; Grace, F.M. Sprint interval training (SIT) is an effective method to maintain cardiorespiratory fitness (CRF) and glucose homeostasis in Scottish adolescents. Biol. Sport 2015, 32, 307–313. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Buchan, D.S.; Baker, J.S.; Macdonald, M.J.; Sculthorpe, N.F.; Easton, C.; Knox, A.; Grace, F.M. Sprint Interval Training and the School Curriculum: Benefits Upon Cardiorespiratory Fitness, Physical Activity Profiles, and Cardiometabolic Risk Profiles of Healthy Adolescents. Pediatric Exerc. Sci. 2019, 31, 290–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Logan, G.R.M.; Harris, N.; Duncan, S.; Schofield, G. A Review of Adolescent High-Intensity Interval Training. Sports Med. 2014, 44, 1071–1085. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Br. Med. J. 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddy, L.M.; Stratton, G.; Hackett, A.F.; George, K.P. The effectiveness if a “short, sharp, shock” high intensity exercise intervention in 11-and 12 year old Liverpool school girls. Arch. Exerc. Health Dis. 2010, 1, 19–25. [Google Scholar]
- Boer, P.H.; Meeus, M.; Terblanche, E.; Rombaut, L.; Wandele, I.D.; Hermans, L.; Gysel, T.; Ruige, J.; Calders, P. The influence of sprint interval training on body composition, physical and metabolic fitness in adolescents and young adults with intellectual disability: A randomized controlled trial. Clin. Rehabil. 2014, 28, 221–231. [Google Scholar] [CrossRef]
- Coute de Araujo, A.C.; Roschel, H.; Picanco, A.R.; do Prado, D.M.; Villares, S.M.; de Sa Pinto, A.L.; Gualano, B. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS ONE 2012, 7, e42747. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Castagna, C.; Reilly, T.; Sassi, A.; Iaia, F.M.; Rampinini, E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int. J. Sports Med. 2006, 27, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Koubaa, A.; Trabelsi, H.; Masmoudi, L.; Elloumi, M.; Sahnoun, Z.; Zeghal, K.M.; HaKim, A. The effects of intermittent and continuous training on body composition, cardiorespiratory fitness and lipid profile in obese adolescents. IOSR J. Pharm. 2013, 3, 31–37. [Google Scholar] [CrossRef]
- Murphy, A.; Kist, C.; Gier, A.J.; Edwards, N.M.; Gao, Z.; Siegel, R.M. The feasibility of high-intensity interval exercise in obese adolescents. Clin. Pediatrics 2015, 54, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef]
- Racil, G.; Coquart, J.B.; Elmontassar, W.; Haddad, M.; Goebel, R.; Chaouachi, A.; Amri, M.; Chamari, K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol. Sport 2016, 33, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, O.; Sandbakk, S.B.; Ettema, G.; Welde, B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J. Strength Cond. Res. 2013, 27, 1974–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperlich, B.; De Marees, M.; Koehler, K.; Linville, J.; Holmberg, H.C.; Mester, J. Effects of 5 weeks of high-intensity interval training vs. volume training in 14-year-old soccer players. J. Strength Cond. Res. 2011, 25, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Starkoff, B.E.; Eneli, I.U.; Bonny, A.E.; Hoffman, R.P.; Devor, S.T. Estimated Areobic Capacity Changes in Adolescents with Obesity Following High Intensity Interveal Exercise. Int. J. Kinesiol. Sports Sci. 2014, 2, 1–8. [Google Scholar]
- Tjonna, A.E.; Stolen, T.O.; Bye, A.; Volden, M.; Slordahl, S.A.; Odegard, R.; Skogvoll, E.; Wisloff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. 2009, 116, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum Associates (LEA): Mahwah, NJ, USA, 1988. [Google Scholar]
- Weston, K.S.; Wisloff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Olds, T.S. Secular changes in pediatric aerobic fitness test performance: The global picture. Med. Sport Sci. 2007, 50, 46–66. [Google Scholar]
- Bacon, A.P.; Carter, R.E.; Ogle, E.A.; Joyner, M.J. VO2max trainability and high intensity interval training in humans: A meta-analysis. PLoS ONE 2013, 8, e73182. [Google Scholar] [CrossRef]
- Costigan, S.A.; Ridgers, N.D.; Eather, N.; Plotnikoff, R.C.; Harris, N.; Lubans, D.R. Exploring the impact of high intensity interval training on adolescents’ objectively measured physical activity: Findings from a randomized controlled trial. J. Sports Sci. 2018, 36, 1087–1094. [Google Scholar] [CrossRef]
- Leahy, A.A.; Eather, N.; Smith, J.J.; Hillman, C.; Morgan, P.J.; Nilsson, M.; Lonsdale, C.; Plotnikoff, R.C.; Noetel, M.; Holliday, E.; et al. School-based physical activity intervention for older adolescents: Rationale and study protocol for the Burn 2 Learn cluster randomised controlled trial. BMJ Open 2019, 9, e026029. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.L.; Weston, M.; Batterham, A.M. Evaluating intervention fidelity: An example from a high-intensity interval training study. PLoS ONE 2015, 10, e0125166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | A | B | C | D | E | F | G | H | Risk of Bias Total | Quality Appraisal |
---|---|---|---|---|---|---|---|---|---|---|
Baquet et al., (2001) [22] | x | ✓ | NA | x | ✓ | ✓ | ✓ | x | 4 | 4 |
Boddy et al., (2010) [34] | x | ✓ | ✓ | ✓ | ✓ | ✓ | x | x | 3 | 5 |
Boer et al., (2014) [35] | x | ✓ | NA | ✓ | ✓ | ✓ | ✓ | x | 3 | 5 |
Buchan et al., (2011) [24] | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Buchan et al., (2012) [25] | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Buchan et al., (2013) [23] | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Coute de Araujo et al., (2012) [36] | ✓ | ✓ | x | x | ✓ | ✓ | ✓ | x | 3 | 5 |
Impellizzeri (2006) [37] | ✓ | ✓ | NA | ✓ | ✓ | ✓ | ✓ | ✓ | 1 | 7 |
Koubaa et al., (2013) [38] | x | ✓ | ✓ | x | ✓ | ✓ | x | x | 4 | 4 |
Martin et al., (2015) [27] | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Martin-Smith et al., (2018) [28] | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Murphy et al., (2015) [39] | x | ✓ | ✓ | NA | ✓ | ✓ | x | ✓ | 3 | 5 |
Racil et al., (2013) [40] | ✓ | ✓ | NA | ✓ | ✓ | ✓ | ✓ | ✓ | 1 | 7 |
Racil et al., (2016) [41] | ✓ | ✓ | NA | ✓ | ✓ | ✓ | ✓ | ✓ | 1 | 7 |
Sandbakk (2013) [42] | x | ✓ | NA | ✓ | ✓ | ✓ | x | x | 4 | 4 |
Sperlich (2011) [43] | x | ✓ | NA | ✓ | ✓ | ✓ | ✓ | ✓ | 2 | 6 |
Starkoff et al., (2015) [44] | ✓ | ✓ | x | ✓ | ✓ | ✓ | x | x | 3 | 5 |
Tjonna et al., (2009) [45] | ✓ | ✓ | NA | x | ✓ | ✓ | ✓ | x | 3 | 5 |
Author (Year) | Study Design (CT = Control Trial; RCT = Randomised control trial | Subjects Numbers (n)/Intervention Duration (weeks) | Weight Status (H = Healthy; O = Overweight; OB = Obese) | Mode | Percentile of CRF | Assessment of CRF (Direct = D; Indirect = I) | Protocol | HIT/SIT Sessions Week−1 | Duration of HIT/SIT Intervals | Total Intervention Duration Including Rest | Number of HIT/SIT Intervals Per Session | Duration of Rest Intervals | Intensity of HIT/SIT Intervals |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baquet et al., (2001) [22] | CT | 551 school adolescents Males (M) and Females (F) (12–15 years) HI = 503 (12.7 ± 1.1 years) CON = 48 (13 ± 1 years) 10 weeks | H | Running sprints | 25th Percentile | I | HI= 3 × (10 s/10 s) @ 100–120% MAS) 3 min recovery C = 3 h of PE per week | 1 | 10 s | 60 min | 3 | 3–5 min | 100–120% MAS |
Boddy et al., (2010) [34] | RCT | 16 F (11.8 ± 0.3 years) INT = 8 CON = 8 5 weeks | H | Dance class | 75th percentile | I | INT= 6 × 30 s of high intensity activities @ >80 mean % HRmax with 45 s recovery CON = no information provided | 4 | 30 s | 3 h | 6 | 45 s | >80% HRmax |
Boer et al., (2014) [35] | RCT | 46 M & F adolescents (17 ± 3) SIT = 17 CAT = 15 CON = 14 15 weeks | H | Cycling | 15th percentile | I | SIT = 10 × 15 s @ 110% VT with 45 s rest CAT 30 min CAT @ 100% VT CON = normal routine | 2 | 15 s | 5 h | 10 | 45 s | 110% VT |
Buchan et al., (2011) [24] | CT | 47 M & F adolescent scholars (16.4 ± 0.7 years) HIIT = 17 (16.7 ± 0.1 years) MOD= 16 (16.2 ± 0.1years) CONT= 24 (16.3 ± 0.5 years) 7 weeks | H | Running sprints | 85th percentile | I | HIIT= 4–6 × 30/30 s running sprints at maximal effort ET= 20 min continuous running at 70% VO2max CONT = normal daily routine | 3 | 30 s | 63 | 4 to 6 | 30 s | 86.7% HRmax |
Buchan et al., (2012) [25] | CT | 41 M & F adolescent scholars (15–17 years) HIIT = 17 CONT = 24 7 weeks | H | Running sprints | 85th percentile | I | HIIT = 4–6 × (30/30s) running sprints at maximal effort CONT = normal daily routine | 3 | 30 s | 63 min | 4 to 6 | 30 s | 86.8% HRmax |
Buchan et al., (2013) [23] | CT | 89 M & F Adolescent scholars HIIT = 42 (16.8 ± 0.5 years) CONT = 47 (16.6 ± 0.6 years) 7 weeks | H | running sprints | 85th percentile | I | HIIT= 4–6 × (30/30 s) running sprints at maximal effort CONT = normal daily routine | 3 | 30 s | 63 min | 4 to 6 | 30 s | 86.7% HRmax |
Coute de Araujo et al., (2012) [36] | RCT | 39 M & F Obese children (8–12 years) HIIT = 20 (10.7 ± 0.7years) ET = 19 (10.4 ± 0.9 years) 12 weeks | OB | Treadmill sprints | 10th percentile | I | INT = 4 × 60 s at 100% MAV 3 min at 50% of MAV (12 weeks) ET = 30–60 min of continuous running at 80% HRmax | 2 | 60 s | 60 min | 3 to 6 | 3 min | 100% MAS |
Impellizzeri et al., (2006) [37] | CT | 29 M & F Adolescents STG= 14 GTG= 15 Age: 17.8 ± 0.6years 8 weeks | H | Running sprints | 95th percentile | D | STG = 4 × 4 min @ 90–95% HRmax GTC = normal training | 2 | 4 | 128 min | 4 | 3 min | 95% HRmax |
Koubaa et al., (2013) [38] | CT | 29 M & F obese adolescents (13 ± 0.8 years) HIIT = 14 C = 15 12 weeks | OB | Running sprints | 25th percentile | D | HIIT = 2 min work @80–100% VO2max (reps not stated) C = continuous running (30 min at 60–70% VO2max) | 3 | 2 min | - | - | 60 s | 100% VO2max |
Martin et al., (2015) [27] | CT | 49 M & F adolescent scholars SIT = 26 (16.8 ± 0.3 years) SPE =23 (17.0 ± 0.2 years) 7 weeks | H | Running sprints | 85th percentile | I | SIT= 4–6 × (30/30 s) @ 86.5% HRmax) SPE= standard 3 h of PE per week | 3 | 30 s | 63 min | 4 to 6 | 30 s | 86.5% HRmax |
Martin-Smith et al., (2018) [28] | CT | 56 M & F adolescents INT = 24 (17 ± 0.3 years) CON = 32 (16.8 ± 0.5 years 4 weeks | H | Running sprints | 85th percentile | I | INT= 5–6 × (30/30s) @ 92.2% HRmax CON= standard 3 h of PE per week | 3 | 30 s | 66 min | 5–6 | 30 s | 92.2% HRmax |
Murphy et al., (2015) [39] | CT | 13 M & F adolescents (14.4 years) HIIE = 7 (13.7 ± 2.0 years) AE = 6 (14.3 ± 2.0 years) 12 weeks | O | HIIE = Cycling SAE-continuous aerobic exercise | 25th percentile | D | HIIE = 10 × 1 min @ 80–90% HRmax interspersed with 2 min @ 60% HRmax AE-continuous aerobic exercise | 3 | 60 s | 90 min | 10 | 2 min | 80–90% HRmax |
Racil et al., (2013) [40] | RCT | 34 obese F adolescents (15.9 ± 0.3 years) HIIT = 11 MIIT = 11 CG = 12 12 weeks | OB | Running sprints | 25th percentile | I | HIIT = 2 × (6–8 × 30s/30s) @ 100–110% MAS MIIT = 2 × (6–8 × 30/30s) @ 70–80% MAS CG = normal daily activities | 3 | 30 s | up to 4 h 24 min | 6 to 8 | 30 s and 4 min | 100% MAS |
Racil et al., (2016) [41] | RCT | 47 F (14.2 ± 1.2 years) HIIT = 17 MIIT = 16 CON = 14 12 weeks | OB | Running sprints | 25th percentile | I | HIIT = 15 s/15 s @100% MAS/50% MAS MIIT = 15 s/15 s @800% MAS/50% MAS CON = no exercise | 3 | 15 s | 8 h | 8 to 16 | 15 s | 100% MAS |
Sandbakk et al., (2011) [42] | CT | 15 M & F adolescents CG = 8 IG = 7 Age: 17.4 ± 0.5 years 8 weeks | H | Cross country skiing | 95th percentile | I | INT1 = 1.5–3 h @60–74% HRmax INT2 = 1–2 h continuous work @78–84% HRmax INT3 5–10 min interval at 85–92% HRmax | - | - | - | - | - | 92% HRmax |
Sperlich et al., (2011) [43] | CT | 19 M & F adolescents HIIT = 9 HVT = 10 age:13.5 ± 0.4 years 5 weeks | H | Running sprints | 95th percentile | D | HIIT = Variation of intervals at 90–95% HRmax HVT = various fartlek sessions at 50–70% HRmax lasting 45–60 min | 3 to 4 | 30 s–4 min | 166 min | 4 to 12 | 30 s–4 min | 95% HRmax |
Starkoff et al., (2014) [44] | RCT | 27 M and F adolescents (14.7 ± 1.5 years) HIIE = 14 (14.9 ± 1.6 years) MOD = 13 (14.5 ± 1.4 years) 6 weeks | OB | Cycling | 25th percentile | D | HIIE = 10 × 2 min @95–100% APMHR interspersed with 1 min @55% APMHR MOD = 65–75% APMHR | 3 | 2 min | 5 h | 10 | 1 min | 95–100% APMHR |
Tjonna et al., (2009) [45] | RCT | 54 overweight/obese adolescents (14 ± 0.3years) AIT = 28 MTG = 26 12 weeks | O/OB | Treadmill running sprints | 10th percentile | D | AIT = 4 × 4 min @ 90–95% HRmax with 3 min recovery @ 70% HRmax MTG = Activity sessions 3 times in 12 months and educational conversation groups | 2 | 4 min | 6 h 20 min | 4 | 3 min | 95% HRmax |
Author (Year) | CRF HIIT(PRE) mL kg−1 min−1 | CRF HIIT (POST) mL kg−1 min−1 | CRF CON (PRE) mL kg−1 min−1 | CRF CON (POST) mL kg−1 min−1 | Improvement in CRF in HIIT Group (%) | Effect Size (g) | p Value |
---|---|---|---|---|---|---|---|
Baquet et al., (2001) [22] | 37.7 ± 2.1 | 40.02 ± 2.7 | 38.34 ± 3.2 | 38.49±2.3 | 3.9 | 0.61 | <0.001 |
Boddy et al., (2010) [34] | 41.26 ± 4.67 | 42.59 ± 7.51 | 43.61 ± 9.01 | 45.71 ± 7.09 | 3.1 | 0.42 | >0.05 |
Boer et al., (2014) [35] | 31.5 ± 5.2 | 31.4 ± 4.8 | 28.7 ± 5.7 | 27.4 ± 4.6 | 0.3 | 0.84 | <0.01 |
Buchan et al., (2011) [24] | 47.1 ± 6.4 | 52.6 ± 6.76 | 49.9 ± 7.1 | 48.8 ± 7. 6 | 7.60 | 0.53 | <0.001 |
Buchan et al., (2012) [25] | 47.1 ± 6.4 | 52.6 ± 6.7 | 49.9 ± 7.1 | 48.8 ± 7.64.2 | 7.70 | 0.53 | <0.001 |
Buchan et al., (2013) [23] | 46.28 ± 6.9 | 53.1 ± 7.2 | 47.72 ± 7.2 | 43.67 ± 6.2 | 6 | 0.78 | <0.001 |
Coute de Araujo et al., (2012) [36] | 26.5 ± 3.9 | 30.1 ± 4.2 | 26.9 ± 3.6 | 31.1 ± 4.2 | 13.40 | 0.25 | 0.004 |
Impellizzeri (2006) [37] | 57.7 ± 7.1 | 61.4 ± 4.6 | 55.6 ± 3.4 | 59.7 ± 4.1 | 7 | 0.48 | > 0.05 |
Koubaa et al., (2013) [38] | 38.7 ± 1.2 | 42.9 ± 1.7 | 37.5 ± 1.6 | 39.2 ± 3.2 | 9.80 | 1.43 | <0.001 |
Martin et al., (2015) [27] | 48.28 ± 6.84 | 51.81 ± 6.37 | 50.46 ± 5.96 | 46.77 ± 5.68 | 6.8 | 0.95 | <0.05 |
Martin-Smith et al., (2018) [28] | 47.13 ± 6.31 | 49.13 ± 6.22 | 46.10 ± 7.32 | 42.88 ± 7.14 | 4 | 0.93 | <0.05 |
Murphy et al., (2015) [39] | 29.1 ± 3.5 | 32.7 ± 4.0 | 26.8 ± 4.9 | 30.2 ± 2.6 | 11 | 0.95 | > 0.05 |
Racil et al., (2013) [40] | 29.8 ± 2.7 | 30.5 ± 2.9 | 30.5 ± 2.5 | 31.1 ± 2.7 | 2.2 | 0.2 | <0.05 |
Racil et al., (2016) [41] | 36.9 ± 1.8 | 39.7 ± 1.8 | 38.1 ± 1.5 | 38.6 ± 1.4 | 12.60 | 1.25 | <0.05 |
Sandbakk (2013) [42] | 67.5 ± 6.5 | 70.2 ± 6.8 | 69.3 ± 7.2 | 70.3 ± 7.3 | 3.8 | 0.01 | > 0.05 |
Sperlich (2011) [43] | 55.1 ± 4.9 | 58.9 ± 4.7 | 55.3 ± 4.3 | 56.43 ± 3.7 | 7 | 0.59 | <0.001 |
Starkoff et al., (2015) [44] | 20.0 ± 5.7 | 22.7 ± 6.5 | 19.5 ± 6.6 | 19.6 ± 7.6 | 11.9 | 0.4 | <0.05 |
Tjonna et al., (2009) [45] | 32.3 ± 5.8 | 35.3 ± 0.8 | 32.3 ± 4.8 | 32.3 ± 0.8 | 8.5 | 0.68 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. https://doi.org/10.3390/ijerph17082955
Martin-Smith R, Cox A, Buchan DS, Baker JS, Grace F, Sculthorpe N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. International Journal of Environmental Research and Public Health. 2020; 17(8):2955. https://doi.org/10.3390/ijerph17082955
Chicago/Turabian StyleMartin-Smith, Rhona, Ashley Cox, Duncan S. Buchan, Julien S. Baker, Fergal Grace, and Nicholas Sculthorpe. 2020. "High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies" International Journal of Environmental Research and Public Health 17, no. 8: 2955. https://doi.org/10.3390/ijerph17082955
APA StyleMartin-Smith, R., Cox, A., Buchan, D. S., Baker, J. S., Grace, F., & Sculthorpe, N. (2020). High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. International Journal of Environmental Research and Public Health, 17(8), 2955. https://doi.org/10.3390/ijerph17082955