Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Quality Determination
2.2. Human Health Risk Assessment
2.3. Household Questionnaire Survey
2.4. Prediction Model of Metal Concentration in Water
3. Results and Discussions
3.1. Metal Concentrations in Drinking Water Supply Chain
3.2. Prediction Model of Metal Concentrations in Drinking Water Supply Chain
3.3. Prediction Model of Metal Concentrations in Drinking Water Supply Chain
4. Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Water Quality Parameter | Sum of Squares | Mean Square | |||||
---|---|---|---|---|---|---|---|
N | Between Groups | Within Groups | Total | Between Groups | Within Groups | F | |
Cd | 138 | 14.6 | 23.6 | 38.1 | 489 | 0.2 | 27.6 * (p = 5.99 × 10−14) |
Cr | 138 | 1.5 | 5.1 | 6.6 | 0.5 | 0.04 | 13.1 * (p = 1.56 × 10−7) |
Dependent Variable | (I) Drinking Water Supply Stages | (J) Drinking Water Supply Stages | Mean Difference (I-J) | Standard Error | Significance (p) | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Cd (mg/L) | River | Water treatment plant (WTP) | 0.80 * | 0.12 | 4.3 × 10−9 | 0.49 | 1.12 |
Household tap | 0.80 * | 0.11 | 3.5 × 10−11 | 0.53 | 1.08 | ||
Household water filtration system | 0.91 * | 0.11 | 6 × 10−13 | 0.64 | 1.19 | ||
Water treatment plant (WTP) | River | −0.80 * | 0.12 | 4.3 × 10−9 | −1.12 | −0.49 | |
Household tap | 0.003 | 0.11 | 1 | −0.28 | 0.27 | ||
Household water filtration system | 0.11 | 0.11 | 0.73 | −0.17 | 0.39 | ||
Household tap | River | −0.80 * | 0.11 | 3.5 × 10−11 | −1.08 | −0.53 | |
water treatment plant (WTP) | 0.003 | 0.11 | 1 | −0.27 | 0.28 | ||
Household water filtration system | 0.11 | 0.09 | 0.58 | −0.12 | 0.34 | ||
Household water filtration system | River | −0.91 * | 0.11 | 6 × 10−13 | −1.19 | −0.64 | |
water treatment plant (WTP) | −0.11 | 0.11 | 0.73 | −0.39 | 0.17 | ||
Household tap | −0.11 | 0.09 | 0.58 | −0.34 | 0.12 | ||
Cr (mg/L) | River | Water treatment plant (WTP) | 0.25 * | 0.06 | 9 × 10−5 | 0.11 | 0.40 |
Household tap | 0.10 | 0.05 | 0.21 | −0.03 | 0.23 | ||
Household water filtration system | 0.26 * | 0.05 | 2 × 10−6 | 0.14 | 0.39 | ||
Water treatment plant (WTP) | River | −0.25 * | 0.06 | 9 × 10−5 | −0.40 | −0.11 | |
household tap | −0.16 * | 0.05 | 0.01 | −0.28 | −0.03 | ||
Household water filtration system | 0.01 | 0.05 | 0.99 | −0.12 | 0.14 | ||
Household tap | River | −0.10 | 0.05 | 0.21 | −0.23 | 0.03 | |
water treatment plant (WTP) | 0.16 * | 0.05 | 0.01 | 0.03 | 0.28 | ||
Household water filtration system | 0.17 * | 0.04 | 4.5 × 10−4 | 0.06 | 0.27 | ||
Household water filtration system | River | −0.26 * | 0.05 | 2 × 10−6 | −0.39 | −0.14 | |
water treatment plant (WTP) | −0.01 | 0.05 | 0.995 | −0.14 | 0.12 | ||
Household tap | −0.17 * | 0.04 | 4.5 × 10−4 | −0.27 | −0.06 |
Variable | ADF with Constant | p-Value | ADF with Constant and Trend | p-Value |
---|---|---|---|---|
Cd | −11.545 | 3.76 × 10−17 * | −11.714 | 2.6 × 10−16 * |
Cr | −1.2599 | 6.5 × 101 | −3.2672 | 7.17 × 10−2 * |
Variables | Coefficient | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Constant | 1.02417 | 0.27284 | 3.754 | 0.0003 *** |
Lag 1 | −0.03538 | 0.09534 | −0.371 | 0.7113 |
Lag 2 | 0.05592 | 0.09289 | 0.602 | 0.5485 |
Lag 3 | −0.06715 | 0.09302 | −0.722 | 0.4719 |
Lag 4 | 0.11769 | 0.09249 | 1.272 | 0.2060 |
Lag 5 | −0.01826 | 0.09297 | −0.196 | 0.8446 |
Lag 6 | −0.22229 | 0.09283 | −2.395 | 0.0184 *** |
Lag 7 | 0.22085 | 0.09525 | 2.319 | 0.0223 *** |
u (-6) | 0.20617 | 0.09257 | 2.227 | 0.0280 ** |
Variables | Coefficient | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Constant | 0.19268 | 0.09610 | 2.005 | 0.0472 ** |
Lag 1 | 0.20961 | 0.06767 | 3.098 | 0.0024 *** |
Lag 2 | 0.64481 | 0.06699 | 9.626 | 1.25 × 10−16 *** |
u (-2) | −0.47459 | 0.07912 | −5.998 | 2.13 × 10−8 *** |
Variables | Coefficient | Standard Error | t-Ratio | p-Value |
---|---|---|---|---|
Constant | 0.50945 | 0.39174 | 1.3005 | 0.1960 |
Water flow | −0.00073 | 0.00162 | −0.4547 | 0.6502 |
Rainfall | −2.17297 × 10−5 | 0.00013 | −0.1715 | 0.8641 |
Temperature | 0.06835 | 0.03774 | 1.8109 | 0.0727 * |
Lag 1 | −0.64645 | 0.13525 | −4.7796 | 5.15 × 10−6 *** |
Lag 2 | −0.40636 | 0.14763 | −2.7525 | 0.0069 *** |
Lag 3 | −0.26401 | 0.11146 | −2.3686 | 0.0195 ** |
Variables | Coefficient | Std. Error | t-Ratio | p-Value |
---|---|---|---|---|
Constant | 9.44345 | 4.79696 | 1.9686 | 0.0513 * |
Water flow | −0.0129813 | 0.00862977 | −1.5042 | 0.1351 |
Rainfall | 0.000526234 | 0.000716295 | 0.7347 | 0.4640 |
Temperature | −0.321556 | 0.185214 | −1.7361 | 0.0851 * |
Lag 2 | 0.305618 | 0.0831747 | 3.6744 | 0.0004 *** |
References
- United States Environmental Protection Agency. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals; United States Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 18 December 2017).
- Oze, C.; Bird, D.K.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.F.; Mokhtar, M.B.; Alam, L.; Mohamed, C.A.R.; Ta, G.C. Non-carcinogenic Health Risk Assessment of Aluminium Ingestion Via Drinking Water in Malaysia. Expo. Health 2019, 11, 167–180. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Alam, L.; Mohamed, C.A.R.; Mokhtar, M.; Ta, G.C. Health risk of Polonium 210 ingestion via drinking water: An experience of Malaysia. Int. J. Environ. Res. Public Health 2018, 15, 2056. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.F.; Alam, L.; Ta, G.C.; Mohamed, C.A.R.; Mokhtar, M. A Review on the Environmental Pollution of Langat River, Malaysia. Asian J. Water Environ. Pollut. 2016, 13, 25–31. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Alam, L.; Ta, G.C.; Mohamed, C.A.R.; Mokhtar, M. A Review on the Chemical Pollution of Langat River, Malaysia. Asian J. Water Environ. Pollut. 2016, 13, 9–15. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Mohiuddin, K.M.; Ogawa, Y.Z.H.M.; Zakir, H.M.; Otomo, K.; Shikazono, N. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 2011, 8, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Aris, A.Z.; Lim, W.Y.; Looi, L.J. Natural and Anthropogenic Determinants of Freshwater Ecosystem Deterioration: An Environmental Forensic Study of the Langat River Basin, Malaysia. In Environ. Management of River Basin Ecosystems; Ramkumar, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 455–476. [Google Scholar]
- Al-Badaii, F.; Shuhaimi-Othman, M. Heavy metals and water quality assessment using multivariate statistical techniques and water quality index of the Semenyih River, Peninsular Malaysia. Iranica J. Energy Environ. 2014, 5, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Hafizah, S.N.; Alam, M.Z. Improvement of existing water quality index in Selangor, Malaysia. In Proceedings of the 2nd International Conference on Water & Flood Management (ICWFM-2009), Institute of Water and Flood Management, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, 15–17 March 2009. [Google Scholar]
- Sarmani, S.B. The Determination of Heavy Metals in Water, Suspended Materials and Sediments from Langat River, Malaysia Sediment/Water Interactions; Springer: Berlin/Heidelberg, Germany, 1989; pp. 233–238. [Google Scholar]
- Yusuf, M.A. River Water Quality and Ecosystem Health in Langat River Basin, Selangor, Malaysia. Ph.D. Thesis, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia, 2001. [Google Scholar]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef]
- United States Environment Protection Agency. National Primary Drinking Water Regulations. Ground Water and Drinking Water; United States Environment Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 28 February 2017).
- Nalatambi, S. Determination of metals in tap water using atomic absorption spectrometry: A case study in bandar Sunway residential area. Sunway Acad. J. 2009, 6, 33–46. [Google Scholar]
- Ong, C.; Ibrahim, S.; Sen, G.B. A survey of tap water quality in Kuala Lumpur. Urban Water J. 2007, 4, 29–41. [Google Scholar] [CrossRef]
- Azlan, A.; Khoo, H.E.; Idris, M.A.; Ismail, A.; Razman, M.R. Evaluation of minerals content of drinking water in Malaysia. Sci. World J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.F.; Alam, L.; Ta, G.C.; Mohamed, C.A.R.; Mokhtar, M. A Preliminary Study to Investigate the Trace Metals in Drinking Water Supply Chain. In Proceedings of the In-house Seminar of the Chemical Oceanography Laboratory (ISSN: 0127-9629), Bangi, Malaysia, 2 June 2016. [Google Scholar]
- Ahmed, M.F.; Mokhtar, M.; Alam, L.; Ta, G.C.; Lee, K.E.; Khalid, R.M. Recognition of Local Authority for Better Management of Drinking Water at the Langat River Basin, Malaysia. Int. J. Eng. Technol. 2018, 7, 148–154. [Google Scholar] [CrossRef]
- Mokhtar, M.B.; Toriman, M.E.H.; Hossain, A.A. Social learning in facing challenges of sustainable development: A case of Langat River Basin, Malaysia. Res. J. Appl. Sci. 2010, 5, 434–443. [Google Scholar]
- Mokhtar, M.B.; Toriman, M.E.H.; Hossain, M.; Abraham, A.; Tan, K.W. Institutional challenges for integrated river basin management in Langat River Basin, Malaysia. Water Environ. J. 2011, 25, 495–503. [Google Scholar] [CrossRef]
- Satarug, S.; Nishijo, M.; Ujjin, P.; Moore, M.R. Chronic exposure to low-level cadmium induced zinc-copper dysregulation. J. Trace Elem. Med. Biol. 2018, 46, 32–38. [Google Scholar] [CrossRef]
- Prince, M.; Wimo, A.; Guerchet, M.; Gemma-Claire, A.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015: The Global Impact of Dementia-An analysis of prevalence, incidence, cost and trends. Alzheimer’s Dis. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- García-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G. Cadmium Exposure and Cancer Mortality in a Prospective Cohort: The Strong Heart Study. Env. Health Perspect 2014. [Google Scholar] [CrossRef]
- McCredie, M.; Stewart, J.H. Risk factors for kidney cancer in New South Wales. IV. Occupation. Br. J. Ind. Med. 1993, 50, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Kolonel, L.N. Association of cadmium with renal cancer. Cancer 1976, 37, 1782–1787. [Google Scholar] [CrossRef]
- Boffetta, P.; Fontana, L.; Stewart, P.; Zaridze, D.; Szeszenia-Dabrowska, N.; Janout, V.; Bencko, V. Occupational exposure to arsenic, cadmium, chromium, lead and nickel, and renal cell carcinoma: A case-control study from Central and Eastern Europe. Occup. Environ. Med. 2011, 68, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Pesch, B.; Haerting, J.; Ranft, U.; Klimpel, A.; Oelschlagel, B.; Schill, W. Occupational risk factors for renal cell carcinoma: Agent-specific results from a case-control study in Germany. MURC Study Group. Multicenter urothelial and renal cancer study. Int. J. Epidemiol. 2000, 29, 1014–1024. [Google Scholar] [CrossRef] [Green Version]
- Partanen, T.; Heikkila, P.; Hernberg, S.; Kauppinen, T.; Moneta, G.; Ojajarvi, A. Renal cell cancer and occupational exposure to chemical agents. Scand. J. Work Environ. Health 1991, 17, 231–239. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry: Geneva, Switzerland, 1993. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2017; Available online: http://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 8 December 2017).
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vahter, M. Health effects of cadmium exposure- a review of the literature and a risk estimate. Scand. J. Work Environ. Health 1998, 24 (Suppl. 1), 1–51. [Google Scholar]
- Song, J.K.; Luo, H.; Yin, X.H.; Huang, G.L.; Luo, S.Y.; Lin, D.R.; Yuan, D.B. Association between cadmium exposure and renal cancer risk: A meta-analysis of observational studies. Sci. Rep. 2015, 5, 17976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotz, P.; Buchet, J.P.; Bernard, A.; Lison, D.; Robert, L. Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 1999, 354, 1508–1513. [Google Scholar] [CrossRef]
- Wu, H.; Liao, Q.; Chillrud, S.N.; Yang, Q.; Huang, L.; Bi, J.; Yan, B. Environmental Exposure to Cadmium: Health Risk Assessment and its Associations with Hypertension and Impaired Kidney Function. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- World Health Organization. Preventing Disease through Healthy Environments Exposure to Cadmium: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2010; Available online: http://www.who.int/ipcs/features/cadmium.pdf (accessed on 8 December 2017).
- World Health Organization. Cadmium. Environ. Health Criteria; World Health Organization: Geneva, Switzerland, 1992; Volume 134, Available online: http://www.inchem.org/documents/ehc/ehc/ehc134.htm (accessed on 29 May 2017).
- Mandel, J.S.; McLaughlin, J.K.; Schlehofer, B.; Mellemgaard, A.; Helmert, U.; Lindblad, P.; McCredie, M. International renal-cell cancer study. IV. Occupation. Int. J. Cancer 1995, 61, 601–605. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Agency for Toxic Substances and Disease Registry. Cadmium Toxicity, What Diseases are Associated with Chronic Exposure to Cadmium? Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2013. Available online: http://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=12 (accessed on 18 March 2015).
- Industrial Injuries Advisory Council. Cadmium and Genito-Urinary Cancers; Industrial Injuries Advisory Council, Department for Work and Pensions: London, UK, 2009. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/328543/iiac-pp24.pdf (accessed on 20 December 2017).
- Il’yasova, D.; Schwartz, G.G. Cadmium and renal cancer. Toxicol. Appl. Pharmacol. 2005, 207, 179–186. [Google Scholar] [CrossRef]
- Armstrong, B.G.; Kazantzis, G. Prostatic cancer and chronic respiratory and renal disease in British cadmium workers: A case control study. Br. J. Ind. Med. 1985, 42, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Toxicological Review of Hexavalent Chromium; United States Environmental Protection Agency: Washington, DC, USA, 2010. Available online: https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=498828 (accessed on 24 February 2018).
- IARC. Chromium, Nickel and Welding, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, French, 1990; Available online: https://monographs.iarc.fr/ENG/Monographs/vol49/mono49.pdf (accessed on 24 February 2018).
- Water Boards. Frequently Asked Questions about Hexavalent Chromium in Drinking Wate; Water Boards: Sacramento, CA, USA, 2015. Available online: https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/chromium6/chromium_fact_sheet_2015_final.pdf (accessed on 24 February 2018).
- World Health Organization. Chromium in Drinking-Water; World Health Organization: Geneva, Switzerland, 2003; Available online: http://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf (accessed on 24 February 2018).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile of Chromium; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Washington, DC, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf (accessed on 24 February 2018).
- Federal-Provincial-Territorial Committee on Drinking Water. Chromium in Drinking Water; Federal-Provincial-Territorial Committee on Drinking Water, Canada. 2015. Available online: http://www.healthycanadians.gc.ca/health-system-systeme-sante/consultations/chromium-chrome/alt/chromium-chrome-eng.pdf (accessed on 24 February 2018).
- American Water Works Association. Chromium in Drinking Water: A Technical Information Primer; American Water Works Association: Denver, CO, USA, 2013. [Google Scholar]
- Pellerin, C.; Booker, S.M. Reflections on hexavalent chromium: Health hazards of an industrial heavyweight. Environ. Health Perspect. 2000, 108, 402. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration. Occupational Exposure to Hexavalent Chromium, Final Rule; Occupational Safety and Health Administration (OSHA), United States Department of Labor: Washington, DC, USA, 2006. Available online: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=18599&p_table=federal_register (accessed on 24 February 2018).
- CDC. Occupational Exposure to Hexavalent Chromium; Centers for Disease Control and Prevention National Institute for Occupational Safety and Health: Washington, DC, USA, 2013. Available online: https://www.cdc.gov/niosh/docs/2013-128/pdfs/2013_128.pdf (accessed on 24 February 2018).
- Beaumont, J.J.; Sedman, R.M.; Reynolds, S.D.; Sherman, C.D.; Li, L.H.; Howd, R.A.; Alexeeff, G.V. Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology 2008, 19, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Deamer, K. Chromium-6 in Tap Water: Why the ‘Erin Brockovich’ Chemical Is Dangerous. LiveScience 2016. Available online: https://www.livescience.com/56210-what-is-chromium-6-in-tap-water.html (accessed on 24 February 2018).
- Stern, A.H. A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure. Environ. Res. 2010, 110, 798–807. [Google Scholar] [CrossRef]
- LENNTECH. Chromium (Cr) and Water; LENNTECH: Miami Beach, FL, USA, 2018; Available online: https://www.lenntech.com/periodic/water/chromium/chromium-and-water.htm (accessed on 24 February 2018).
- CWA. The Dangers of Hexavalent Chromium (Chromium 6) in California Drinking Water; Clean Water Action: Washington, DC, USA, 2018; Available online: https://www.cleanwateraction.org/features/dangers-hexavalent-chromium-chromium-6-california-drinking-water (accessed on 24 February 2018).
- Daud, Z.; Mohamed, C.A.R. Preliminary Studies on Distribution and Behavior of Rare Earth Elements in the Sungai Balok, Kuantan. In Advancements in Marine and freshwater Sciences Int. Symposium; Universiti Malaysia Terengganu: Terengganu, Malaysia, 2013. [Google Scholar]
- Paulson, A.J.; Curl, H.C.; Feely, R.A.; Krogslund, K.A.; Hanson, S. Trace Metal and Ancillary Data in Puget Sound: August 1986: Data report (No. PB-91-201590/XAB); Pacific Marine Environmental Lab.: Seattle, WA, USA, 1991. [Google Scholar]
- United States Environmental Protection Agency. Guidance for Data Useability in Risk Assessment (Part A); United States Environmental Protection Agency: Washington, DC, USA, 1991. Available online: https://rais.ornl.gov/documents/USERISKA.pdf (accessed on 7 December 2017).
- Ab Razak, N.H.; Praveena, S.M.; Aris, A.Z.; Hashim, Z. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia. Public Health 2016. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Risk Assessment Guidance for Superfund; Volume I Human Health Evaluation Manual (Part A). Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A) EPA/540/1-89/002; United States Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- United States Environmental Protection Agency. IRIS Assessments; United States Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 17 November 2017).
- USEPA. Regional Screening Levels (RSLs)—Generic Tables (November 2017). United States Environmental Protection Agency; 2017. Available online: https://semspub.epa.gov/work/HQ/197025.pdf (accessed on 17 November 2017).
- United States Environmental Protection Agency DOS. Population Distribution by Local Authority Areas and Mukims 2010; Department of Statistics: Putrajaya, Malaysia, 2013. Available online: http://newss.statistics.gov.my/newss-portalx/ep/epProductFreeDownloadSearch.seam (accessed on 15 September 2015).
- Yamane, T. Statistics, An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Alam, M.M. Linkages between Climatic Changes and Food Security among the Poor and Low-Income households in the East Coast Economic Region (ECER), Malaysia. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2014. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994; Volume 2. [Google Scholar]
- Cox, D.R.; Gudmundsson, G.; Lindgren, G.; Bondesson, L.; Harsaae, E.; Laake, P.; Lauritzen, S.L. Statistical analysis of time series: Some recent developments. Scandinavian J. Stat. 1981, 8, 93–115. [Google Scholar]
- MOH. Drinking Water Quality Standard; Engineering Services Division, Ministry of Health, Malaysia: Putrajaya, Malaysia, 2010. Available online: http://kmam.moh.gov.my/public-user/drinking-water-quality-standard.html (accessed on 25 February 2018).
- United States Environmental Protection Agency. National Recommended Water Quality Criteria-Aquatic Life Criteria Table; United States Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- European Commission. Quality Standard for Priority Substances and Certain other Pollutants, Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 (amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, L 226/1); Official Journal of the European Union, European Commission: Brussels, Belgium, 2013. [Google Scholar]
- United States Environmental Protection Agency. Ground Water and Drinking Water; United States Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://www.epa.gov/aboutepa/mailing-addresses-and-phone-numbers#HQ (accessed on 28 February 2017).
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: http://apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf?ua=1 (accessed on 29 May 2017).
- Agency for Toxic Substances and Disease Registry. Public Health Statement for Aluminum; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008. Available online: https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34 (accessed on 18 December 2017).
- Shazili, N.A.M.; Yunus, K.; Ahmad, A.S.; Abdullah, N.; Rashid, M.K.A. Heavy metal pollution status in the Malaysian aquatic environment. Aquat. Ecosyst. Health Manag. 2006, 9, 137–145. [Google Scholar] [CrossRef]
- Al-Badaii, F.; Halim, A.A.; Shuhaimi-Othman, M. Evaluation of dissolved heavy metals in water of the Sungai Semenyih (Peninsular Malaysia) using environmetric methods. Sains Malays. 2016, 45, 841–852. [Google Scholar]
- APEC. Are There Any Potential Health Risks Associated with Corrosion Byproducts from Water Transported Through Galvanized Drinking Water Pipes? APEC Water Systems: City of Industry, CA, USA, 2017; Available online: http://www.freedrinkingwater.com/water_health/health2/corrosion-byproducts2-galvanized-drinking-pipes-health-risks.htm (accessed on 15 May 2017).
- United States Environmental Protection Agency. Chromium in Drinking Water; United States Environmental Protection Agency: Washington, DC, USA, 2018. Available online: https://www.epa.gov/dwstandardsregulations/chromium-drinking-water (accessed on 24 February 2018).
- STI. Fabrication Factors for Carbon Steel Pipe Vs. Stainless Steel Pipe. STI Group. 2016. Available online: http://setxind.com/fabrication/fabrication-factors-carbon-steel-pipe-vsstainless-steel-pipe/ (accessed on 15 May 2017).
- Thomasnet. Stainless Steel Pipe Types; Thomas Publishing Company: New York, NY, USA, 2017; Available online: http://www.thomasnet.com/articles/pumps-valves-accessories/stainless-steelpipe-types (accessed on 14 May 2017).
- Cho, R. Chromium-6 Found in Tap Water of 31 U.S. Cities; Earth Institute, Columbia University: New York, NY, USA, 2010; Available online: http://blogs.ei.columbia.edu/2010/12/30/chromium-6-found-in-tap-water-of-31-u-s-cities/ (accessed on 24 February 2018).
- Chebeir, M.; Chen, G.; Liu, H. Emerging investigators series: Frontier review: Occurrence and speciation of chromium in drinking water distribution systems. Environ. Sci. Water Res. Technol. 2016, 2, 906–914. [Google Scholar] [CrossRef]
- Daschner, F.; Rüden, H.; Simon, R.; Clotten, J. Microbiological contamination of drinking water in a commercial household water filter system. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Fiore, J.; Babineau, R. Effect of an activated carbon filter on the microbial quality of water. Appl. Environ. Microbiol. 1977, 34, 541–546. [Google Scholar] [CrossRef] [Green Version]
- PEI. Chelation, Uptake, and Binding of Trace Metals; The Princeton Environmental Institute: Princeton, NJ, USA, 2000; Available online: https://www.princeton.edu/~cebic/chelbindintro.html (accessed on 25 May 2017).
- Wallis, C.; Stagg, C.H.; Melnick, J.L. The hazards of incorporating charcoal filters into domestic water systems. Water Res. 1974, 8, 111–113. [Google Scholar] [CrossRef]
- Walsh, K. Treating Bacteria in Drinking Water; Scranton Gillette Communications: Arlington Heights, IL, USA, 2009; Available online: https://www.wqpmag.com/treating-bacteria-drinking-water (accessed on 25 May 2017).
- Hashim, N.; Yusop, H. Drinking water quality of water vending machines in Parit Raja, Batu Pahat, Johor. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; Available online: http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf (accessed on 8 December 2017).
- Frey, M.; Seidel, C.; Edwards, M.; Parks, J. Occurrence Survey of Boron and Hexavalent Chromium; American Water Works Association: Denver, CO, USA, 2005. [Google Scholar]
- Brandhuber, P. Low-Level Hexavalent Chromium Treatment Options; American Water Works Association: Denver, CO, USA, 2004. [Google Scholar]
- United States Environmental Protection Agency. A Regulators’ Guide to the Management of Radioactive Residuals from Drinking Water Treatment Technologies; United States Environmental Protection Agency: Washington, DC, USA, 2005. Available online: https://www.epa.gov/sites/production/files/2015-05/documents/816-r-05-004.pdf (accessed on 30 May 2017).
Sample | Metal | Range | Mean | Skewness | Kurtosis | MOH 1 | USEPA 2 | EC 3 |
---|---|---|---|---|---|---|---|---|
River water | Cd (mg/L) | 3.9 × 10−4–34.3 × 10−4 | 12.2 × 10−4 ± 3.8 × 10−4 | 1.03 | 0.13 | 0.003 | 0.00072 | 0.0022 |
Cr (mg/L) | 1.2 × 10−4–12.2 × 10−4 | 4.7 × 10−4 ± 2.7 × 10−4 | 1.33 | 1.90 | 0.05 | 0.011 | – | |
Treated water | 1.2 × 10−4–9.9 × 10−4 | 4.2 × 10−4 ± 3.1 × 10−4 | 0.91 | −0.84 | 0.003 | 0.005 4 | 0.003 5 | |
0.2 × 10−4–5.3 × 10−4 | 2.1 × 10−4 ± 1.4 × 10−4 | 0.95 | 0.14 | 0.05 | 0.1 4 | 0.05 5 | ||
Tap water | 1.3 × 10−4–7.7 × 10−4 | 4.2 × 10−4 ± 1.9 × 10−4 | 0.49 | −0.80 | 0.003 | 0.005 4 | 0.003 5 | |
1.0 × 10−4–9.5 × 10−4 | 3.7 × 10−4 ± 2.1 × 10−4 | 1.08 | 0.76 | 0.05 | 0.14 | 0.05 5 | ||
HH 6 filtration | 0.3 × 10−4–7.4 × 10−4 | 3.1 × 10−3 ± 2.1 × 10−3 | 0.49 | −0.90 | 0.003 | 0.005 4 | 0.003 5 | |
0.5 × 10−4–6.6 × 10−4 | 2 × 10−3 ± 1.5 × 10−3 | 2.00 | 4.31 | 0.05 | 0.1 4 | 0.05 5 |
Water Sampling Locations | River | Water Treatment Plant | Filter (Household Locations) | HH 1 Tap | HH 2 Filtration | ||||
---|---|---|---|---|---|---|---|---|---|
Cd (mg/L) | Cr (mg/L) | Cd (mg/L) | Cr (mg/L) | Cd (mg/L) | Cr (mg/L) | Cd (mg/L) | Cr (mg/L) | ||
Pangsoon | 1.60 ± 0.66 | 0.60 ± 0.56 | 0.87 ± 0.12 | 0.32 ± 0.21 | Alkaline I (Serdang I) | 0.19 ± 0.06 | 0.38 ± 0.12 | 0.32 ± 0.002 | 0.15 ± 0.09 |
Lolo | 1.78 ± 1.43 | 0.66 ± 0.36 | 0.93 ± 0.06 | 0.22 ± 0.2 | Alkaline II (Serdang II) | 0.19 ± 0.03 | 0.38 ± 0.12 | 0.66 ± 0.08 | 0.18 ± 0.09 |
Serai | 2.54 ± 0.02 | 0.60 ± 0.04 | 0.25 ± 0.09 | 0.1 ± 0.02 | Alkaline III (Serdang III) | 0.18 ± 0.02 | 0.35 ± 0.12 | 0.6 ± 0.02 | 0.35 ± 0.13 |
Langat | 1.25 ± 0.09 | 0.31 ± 0.14 | 0.51 ± 0.1 | 0.24 ± 0.16 | RO 3 I (Hentian Kajang I) | 0.42 ± 0.01 | 0.18 ± 0.03 | 0.65 ± 0.01 | 0.13 ± 0.04 |
Cheras | 1.23 ± 0.73 | 0.57 ± 0.32 | 0.17 ± 0.05 | 0.35 ± 0.13 | RO 3 II (Hentian Kajang II) | 0.75 ± 0.02 | 0.19 ± 0.01 | 0.49 ± 0.03 | 0.14 ± 0.09 |
Bukit | 0.43 ± 0.03 | 0.32 ± 0.12 | 0.19 ± 0.02 | 0.21 ± 0.07 | RO 3 III (Hentian Kajang III) | 0.58 ± 0.08 | 0.22 ± 0.08 | 0.4 ± 0.01 | 0.1 ± 0.02 |
Salak | 0.50 ± 0.04 | 0.36 ± 0.02 | 0.25 ± 0.05 | 0.16 ± 0.01 | Carbon I (Hentian Kajang IV) | 0.25 ± 0.04 | 0.59 ± 0.2 | 0.29 ± 0.04 | 0.17 ± 0.09 |
Labu | 0.47 ± 0.04 | 0.31 ± 0.12 | 0.19 ± 0.05 | 0.11 ± 0.03 | Carbon II (Hentian Kajang V) | 0.40 ± 0.03 | 0.53 ± 0.08 | 0.17 ± 0.08 | 0.12 ± 0.03 |
Mean | 1.22 ± 0.38 | 0.47 ± 0.21 | 0.42 ± 0.31 | 0.21 ± 0.14 | Carbon III (UKM II) | 0.39 ± 0.03 | 0.27 ± 0.25 | 0.18 ± 0.01 | 0.21 ± 0.01 |
Distilled I (UKM III) | 0.73 ± 0.04 | 0.63 ± 0.02 | 0.13 ± 0.01 | 0.12 ± 0.01 | |||||
Distilled II (Hentian Kajang VI) | 0.72 ± 0.07 | 0.71 ± 0.41 | 0.15 ± 0.02 | 0.66 ± 0.003 | |||||
Distilled III (UKM I) | 0.43 ± 0.03 | 0.4 ± 0.14 | 0.23 ± 0.04 | 0.22 ± 0.07 | |||||
UV I (Bangi I) | 0.43 ± 0.01 | 0.23 ± 0.150 | 0.03 ± 0.01 | 0.18 ± 0.01 | |||||
UV II (UKM IV) | 0.4 ± 0.03 | 0.2 ± 0.04 | 0.31 ± 0.02 | 0.17 ± 0.12 | |||||
UV III (Hentian Kajang VII) | 0.26 ± 0.03 | 0.29 ± 0.004 | 0.04 ± 0.01 | 0.14 ± 0.04 | |||||
Mean | 0.42 ± 0.19 | 0.37 ± 0.21 | 0.31 ± 0.21 | 0.2 ± 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.F.; Mokhtar, M.B. Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 2966. https://doi.org/10.3390/ijerph17082966
Ahmed MF, Mokhtar MB. Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia. International Journal of Environmental Research and Public Health. 2020; 17(8):2966. https://doi.org/10.3390/ijerph17082966
Chicago/Turabian StyleAhmed, Minhaz Farid, and Mazlin Bin Mokhtar. 2020. "Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia" International Journal of Environmental Research and Public Health 17, no. 8: 2966. https://doi.org/10.3390/ijerph17082966
APA StyleAhmed, M. F., & Mokhtar, M. B. (2020). Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia. International Journal of Environmental Research and Public Health, 17(8), 2966. https://doi.org/10.3390/ijerph17082966