Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Methods
3. Results and Discussion
3.1. Model Validation
3.2. The Discharge Water Temperature of XJB
3.3. Impact of Dams on the Inflow Water Temperature of TGD
3.4. The Discharge Water Temperature of TGD
3.5. The Trend of Discharge Water Temperature at TGD in the Future
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, J.; Zhao, Y.; Song, L.; Bi, S.; Zhang, H. Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China. Ecol. Inform. 2014, 20, 33–46. [Google Scholar] [CrossRef]
- Poff, N.L.; Matthews, J.H. Environmental flows in the Anthropocene: Past progress and future prospects. Curr. Opin. Environ. Sustain. 2013, 5, 667–675. [Google Scholar] [CrossRef]
- Lu, S.B.; Shang, Y.Z.; Li, W.; Peng, Y.; Wu, X.H. Economic benefit analysis of joint operation of cascaded reservoirs. J. Clean. Prod. 2018, 179, 731–737. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Wang, H. Socioeconomic impacts of hydropower development on the Yibin–Chongqing section, upper reaches of the Yangtze River. Phys. Chem. Earth 2015, 89, 73–78. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Zhang, H.X.; Chang, J.X.; Gao, C.; Wu, H.S. Cascade hydropower plants operation considering comprehensive ecological water demands. Energy Convers. Manag. 2019, 180, 119–133. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Nislow, K.H. Changes in hydrologic regime by dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Yan, H.Y.; Huang, Y.; Wang, G.Y. Water eutrophication evaluation based on rough set and petri nets: A case study in Xiangxi-River, Three Gorges Reservoir. Ecol. Indic. 2016, 49, 463–472. [Google Scholar] [CrossRef]
- Long, T.Y.; Wu, L.; Meng, G.H.; Guo, W.H. Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China. Ecol. Model. 2011, 222, 112–119. [Google Scholar] [CrossRef]
- Mao, Z.P.; Wang, Y.C.; Peng, W.Q.; Zhou, H.D. Advances in effects of dams on river ecosystem. Adv. Water Sci. 2005, 16, 134–140. (In Chinese) [Google Scholar]
- Tiemann, J.S.; Gillette, D.P.; Wildhaber, M.L.; Edds, D.R. Effects of lowhead dams onriffle-dwelling fishes and macroinvertebrates in a midwestern river. Trans. Am. Fish. Soc. 2004, 133, 705–717. [Google Scholar] [CrossRef]
- Liu, L.F.; Cheng, K.Q.; Zhang, S.J.; Liu, C. Study on cumulative effects of water temperature by cascade hydropower stations built on rivers. J. China Inst. Water Resour. Hydropower Res. 2007, 3, 173–180. (In Chinese) [Google Scholar]
- Deng, Y.; Li, J.; LI, K.F.; Li, R. Cumulative impact of cascade power stations on water temperature. Adv. Water Sci. 2008, 19, 274–279. (In Chinese) [Google Scholar]
- Liang, R.F.; Deng, Y.; Tuo, Y.C.; LI, J. Analysis on characteristics of water temperature’ s cumulative effects of river cascade hydropower stations. J. Sichuan Univ. Eng. Sci. Ed. 2012, 44, 221–227. (In Chinese) [Google Scholar]
- Elci, S. Effects of thermal stratification and mixing on reservoir water quality. Limnlogy 2008, 9, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Winter, T.; Harvey, J.; Franke, L.; Alley, W. Ground Water and Surface Water: A Single Resource; US Geological Survey Circular: Denver, CO, USA, 2002.
- Rolland, D.C.; Bourget, S.; Warren, A.; Laurion, I.; Vincent, W.F. Extreme variability of cyanobacterial blooms in an urban drinking water supply. J. Plankton Res. 2013, 35, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Momii, K. Impacts of regional warming on long-term hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrol. Process. 2015, 29, 2232–2242. [Google Scholar] [CrossRef]
- Gao, X.P.; Zhao, S.X.; Zhang, C.; Tu, X.Y. Index system and method for assessing the health status of river. J. Hydraul. Eng. 2009, 40, 962–968. (In Chinese) [Google Scholar]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef] [Green Version]
- Imberger, J. The diurnal mixed layer. Limnol. Assoc. Sci. Limnol. Oceanogr. 1985, 30, 737–770. [Google Scholar] [CrossRef]
- Yang, D.G.; Wei, Q.W.; Chen, X.H.; Liu, J.Y.; Zhu, Y.J.; Wang, K. Hydrological Status of the spawning ground of Acipenser sinensis underneath the Gezhouba Dam and its relationship with the spawning runs. Ecol. Soc. China 2007, 27, 862–869. [Google Scholar]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Bartholow, J.; Hanna, R.B.; Saito, L.; Lieberman, D.; Horn, M. Simulated limnological effects of the Shasta lake temperature control device. Environ. Manag. 2001, 27, 609–626. [Google Scholar] [CrossRef] [PubMed]
- Preece, R.M. Cold Water Pollution below Dams in New South Wales: A Desktop Assessment; NSW Department of Infrastructure, Planning and Natural Resources: Sydney, Australia, 2004.
- Webe, M.; Rinke, K.; Hipsey, M.R.; Boehrer, B. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia. J. Environ. Manag. 2017, 197, 96–105. [Google Scholar] [CrossRef]
- Sherman, B.; Todd, C.R.; Koehn, J.D.; Ryan, T. Modelling the impact and potential mitigation of cold water pollution on Murray cod populations downstream of Hume Dam, Australia. River Res. Appl. 2007, 23, 377–389. [Google Scholar] [CrossRef]
- Wei, Q.W.; Yang, D.G.; Ke, F.E.; Kynard, B.; Kiefefer, M. Technique of ultrasonic telemetry for Chinese Sturgeon, Acipenser sinensis, in Yangtze River. J. Fish. China 1998, 22, 211–217. (In Chinese) [Google Scholar]
- Hu, D.G.; Ke, F.E.; Zhang, G.L. The second survey on the spawning ground of Chinese Sturgeon in the downstreams of Gezhouba Hydroelectric Project. Freshw. Fish. 1985, 3, 22–24. [Google Scholar]
- Hu, D.G.; Ke, F.E.; Zhang, G.L. Primary survey on spawning of Chinese Sturgeon in the downstream of Gezhouba Hydroelectric Project. Freshw. Fish. 1983, 3, 15–18. [Google Scholar]
- Hu, D.G.; Ke, F.E.; Zhang, G.L. Research on the spawning ground of Chinese Sturgeon in the downstreams of Gezhouba Hydroelectric Project. Freshw. Fish. 1992, 5, 6–10. [Google Scholar]
- Yi, Y.J.; Sun, J.; Zhang, S.H. A habitat suitability model for Chinese sturgeon determined using the generalized additive method. J. Hydrol. 2016, 534, 11–18. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers Hydraulic Engineering Center. HEC-RAS River Systems Analysis User Manual Version 4.1. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Users_Manual.pdf (accessed on 24 April 2020).
- Drake, J.; Bradford, A.; Joy, D. Application of HEC-RAS 4.0 temperature model to estimate groundwater contributions to Swan Creek, Ontario, Canada. J. Hydrol. 2010, 389, 390–398. [Google Scholar] [CrossRef]
- Cole, T.; Buchak, E.M. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0, User Manual; U.S. Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1995. [Google Scholar]
- Kim, Y.; Kim, B. Application of a 2-Dimensional Water Quality Model(CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea). Lake Reserv. Manag. 2006, 22, 213–222. [Google Scholar] [CrossRef]
- Rakesh, K.G.; Emmet, M.O.; Steven, W.E. Calibration, Verification, and an Application of a Two-Dimensional Hydrothermal Model [CE-QUALW2(t)] for Cannonsville Reservoir. Lake Reserv. Manag. 2009, 14, 186–196. [Google Scholar]
- Guo, W.X.; Wang, H.X.; Xia, Z.Q. Effects of Three Gorges and Gezhouba reservoirs on river water temperature regimes. J. Hydrol. Eng. 2009, 28, 182–187. (In Chinese) [Google Scholar]
Dam | Acronym | Completion Time | Storage Capacity (108 m3) | Distance from Gezhouba (km) |
---|---|---|---|---|
Gezhouba | GZ | 1982 | 16 | 0 |
Three Gorges | TGD | 2009 | 393 | 38 |
Xiangjiaba | XJB | 2012 | 52 | 1100 |
Xiluodu | XLD | 2014 | 127 | 1250 |
Wudongde | WWD | 2020 (planned) | 74 | 1650 |
Baihetan | BHT | 2021 (planned) | 206 | 1450 |
Period | Years | Dams | ||||
---|---|---|---|---|---|---|
1st | Before 2003 | GZ | ||||
2nd | 2009–2012 | GZ + TGD | XJB | XLD | ||
3rd | 2014–2020 | GZ + TGD | XJB | XLD | ||
4th | After 2020 | GZ + TGD | XJB | XLD | BHT | WDD |
Month | Inflow Discharge (m3/s) | Number of Replacements | ||||
---|---|---|---|---|---|---|
2nd Period | 3rd Period | 4th Period | 2nd Period | 3rd Period | 4th Period | |
January | 4474 | 4985 | 5246 | 0.35 | 0.39 | 0.41 |
February | 4155 | 4700 | 5418 | 0.31 | 0.35 | 0.41 |
March | 5202 | 5738 | 6389 | 0.46 | 0.51 | 0.57 |
April | 6723 | 7371 | 8265 | 0.60 | 0.66 | 0.74 |
May | 11,085 | 11,462 | 12,802 | 1.19 | 1.23 | 1.37 |
June | 15,436 | 14,747 | 14,718 | 1.98 | 1.89 | 1.89 |
July | 30,133 | 30,106 | 27,156 | 3.72 | 3.71 | 3.35 |
August | 20,703 | 20,758 | 20,596 | 2.61 | 2.62 | 2.60 |
September | 20,323 | 18,523 | 18,185 | 1.97 | 1.80 | 1.77 |
October | 14,536 | 14,495 | 13,883 | 1.13 | 1.12 | 1.07 |
November | 8765 | 8790 | 8670 | 0.62 | 0.62 | 0.61 |
December | 5570 | 5538 | 5881 | 0.41 | 0.41 | 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Deng, Y.; Tuo, Y.; Yang, Y.; Liang, N. Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River. Int. J. Environ. Res. Public Health 2020, 17, 2973. https://doi.org/10.3390/ijerph17082973
He T, Deng Y, Tuo Y, Yang Y, Liang N. Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River. International Journal of Environmental Research and Public Health. 2020; 17(8):2973. https://doi.org/10.3390/ijerph17082973
Chicago/Turabian StyleHe, Tianfu, Yun Deng, Youcai Tuo, Yanjing Yang, and Naisheng Liang. 2020. "Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River" International Journal of Environmental Research and Public Health 17, no. 8: 2973. https://doi.org/10.3390/ijerph17082973
APA StyleHe, T., Deng, Y., Tuo, Y., Yang, Y., & Liang, N. (2020). Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River. International Journal of Environmental Research and Public Health, 17(8), 2973. https://doi.org/10.3390/ijerph17082973