Smartphone Use and Postural Balance in Healthy Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pellecchia, G.L. Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 2003, 18, 29–34. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.-C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Andersson, G.; Yardley, L.; Luxon, L. A dual-task study of interference between mental activity and control of balance. Am. J. Otol. 1998, 19, 632–637. [Google Scholar]
- Rebold, M.J.; Croall, C.A.; Cumberledge, E.A.; Sheehan, T.P.; Dirlam, M.T. The impact of different cell phone functions and their effects on postural stability. Perform. Enhanc. Health 2017, 5, 98–102. [Google Scholar] [CrossRef]
- Hunter, M.C.; Hoffman, M.A. Postural control: Visual and cognitive manipulations. Gait Posture 2001, 13, 41–48. [Google Scholar] [CrossRef]
- Polskaia, N.; Richer, N.; Dionne, E.; Lajoie, Y. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention. Gait Posture 2015, 41, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Andersson, G.; Hagman, J.; Talianzadeh, R.; Svedberg, A.; Larsen, H.C. Effect of cognitive load on postural control. Brain Res. Bull. 2002, 58, 135–139. [Google Scholar] [CrossRef]
- Maylor, E.A.; Wing, A.M. Age Differences in Postural Stability are Increased by Additional Cognitive Demands. J. Gerontol. Ser. B 1996, 51, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Laatar, R.; Kachouri, H.; Borji, R.; Rebai, H.; Sahli, S. The effect of cell phone use on postural balance and mobility in older compared to young adults. Physiol. Behav. 2017, 173, 293–297. [Google Scholar] [CrossRef]
- Yardley, L.; Gardner, M.; Leadbetter, A.; Lavie, N. Effect of articulatory and mental tasks on postural control. NeuroReport 1999, 10, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Dault, M.C.; Yardley, L.; Frank, J.S. Does articulation contribute to modifications of postural control during dual-task paradigms? Cogn. Brain Res. 2003, 16, 434–440. [Google Scholar] [CrossRef]
- Cho, S.-H.; Choi, M.-H.; Goo, B.-O. Effect of Smart Phone Use on Dynamic Postural Balance. J. Phys. Ther. Sci. 2014, 26, 1013–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurwulan, N.R.; Jiang, B.C.; Iridiastadi, H. Posture and Texting: Effect on Balance in Young Adults. PLoS ONE 2015, 10, e0134230. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-C.; Cho, W.-S.; Cho, S.-H. Effects of smart phone use on lower limb joint angle and dynamic balance during gait. Work 2020, 65, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Haga, S.; Sano, A.; Sekine, Y.; Sato, H.; Yamaguchi, S.; Masuda, K. Effects of using a Smart Phone on Pedestrians’ Attention and Walking. Procedia Manuf. 2015, 3, 2574–2580. [Google Scholar] [CrossRef] [Green Version]
- Di Giulio, I.; McFadyen, B.J.; Blanchet, S.; Reeves, N.D.; Baltzopoulos, V.; Maganaris, C.N. Mobile phone use impairs stair gait: A pilot study on young adults. Appl. Ergon. 2020, 84, 103009. [Google Scholar] [CrossRef]
- Simmons, S.M.; Caird, J.K.; Ta, A.; Sterzer, F.; E Hagel, B. Plight of the distracted pedestrian: A research synthesis and meta-analysis of mobile phone use on crossing behaviour. Inj. Prev. 2020, 26, 170–176. [Google Scholar] [CrossRef]
- Schabrun, S.M.; Hoorn, W.V.D.; Moorcroft, A.; Greenland, C.; Hodges, P.W. Texting and Walking: Strategies for Postural Control and Implications for Safety. PLoS ONE 2014, 9, e84312. [Google Scholar] [CrossRef] [Green Version]
- Crowley, P.; Madeleine, P.; Vuillerme, N. The effects of mobile phone use on walking: A dual task study. BMC Res. Notes 2019, 12, 352. [Google Scholar] [CrossRef] [Green Version]
- Strubhar, A.J.; Peterson, M.L.; Aschwege, J.; Ganske, J.; Kelley, J.; Schulte, H. The effect of text messaging on reactive balance and the temporal and spatial characteristics of gait. Gait Posture 2015, 42, 580–583. [Google Scholar] [CrossRef]
- Goddard, E.C.; Remler, P.T.; Roos, R.H.; Turchyn, R. The Effect of Texting on Balance and Temporospatial Aspects of Gait. West. Undergrad. Res. J. Health Nat. Sci. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Park, J.-H.; Kang, S.-Y.; Lee, S.-G.; Jeon, H.-S. The effects of smart phone gaming duration on muscle activation and spinal posture: Pilot study. Physiother. Theory Pr. 2017, 33, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, M.E.; Tshabalala, M.D.; Hlatswayo, N.C.; Modipana, R.M.; Makibelo, P.P.; Mashale, E.P.; Pete, L.C. The short-term effect of smartphone usage on the upper-back postures of university students. Cogent Eng. 2019, 6, 1627752. [Google Scholar] [CrossRef]
- Lee, S.; Han, S.-K.; Lee, D.-H. The Effects of Posture on Neck Flexion Angle While Using a Smartphone according to Duration. J. Korean Soc. Phys. Med. 2016, 11, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Szczygieł, E.; Piotrowski, K.; Golec, J.; Czechowska, D.; Masłoń, A.; Bac, A.; Golec, E. Head position influence on stabilographic variables. Acta Bioeng. Biomech. 2016, 18, 49. [Google Scholar]
- Zulkifli, S.S.; Loh, W.P.; Ping, L.W. A state-of-the-art review of foot pressure. Foot Ankle Surg. 2020, 26, 25–32. [Google Scholar] [CrossRef]
- Roman, N.; Tirziman, E.; Sorea, D.; Miclaus, R.; Repanovici, A.; Amaricai, E.; Rogozea, L. Ethical dilemmas in the interdisciplinary approach to informed consent to patients in physiotherapy services in Romania. Rev. Cercet. Interv. Soc. 2018, 63, 290–303. [Google Scholar]
- Faul, F.; Erdfelder, E.R.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kapandji, A.I. The Plantar Vault. In The Physiology of the Joints. The Lower Limb; Elsevier: Amsterdam, The Netherland, 2011; pp. 232–261. [Google Scholar]
- PoData 2.0. Available online: http://www.chinesport.com/catalog/posture-analysis/stabilometric-analysis/03001-podata-2-0 (accessed on 22 September 2018).
- Toprak, M.; Alptekin, H.K.; Turhan, D. Correction to: P-12 Assessment of Symmetrigraph and Global Postural System Results for the Posture Analysis of the Healthy Individuals. Chiropr. Man. Ther. 2018, 26, 20. [Google Scholar] [CrossRef] [Green Version]
- Scoppa, F.; Gallamini, M.; Belloni, G.; Messina, G. Clinical stabilometry standardization: Feet position in the static stabilometric assessment of postural stability. Acta Medica Mediterr. 2017, 33, 707–713. [Google Scholar]
- Gobbi, G.; Galli, D.; Carubbi, C.; Pelosi, A.; Lillia, M.; Gatti, R.; Queirolo, V.; Costantino, C.; Vitale, M.; Saccavini, M.; et al. Assessment of body plantar pressure in elite athletes: An observational study. Sport Sci. Health 2013, 9, 13–18. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B. The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehabil. Med. 2010, 46, 239–248. [Google Scholar] [PubMed]
- Perinetti, G. Dental occlusion and body posture: No detectable correlation. Gait Posture 2006, 24, 165–168. [Google Scholar] [CrossRef]
- Nagymáté, G.; Kiss, R.M. Replacing redundant stabilometry parameters with ratio and maximum deviation parameters. In Proceedings of the 12th IASTED International Conference on Biomedical Engineering, BioMed 2016, Innsbruck, Austria, 15–17 February 2016; Acta Press: Calgary, Canada, 2016; pp. 140–144. [Google Scholar]
- Doumas, M.; Smolders, C.; Krampe, R. Task prioritization in aging: Effects of sensory information on concurrent posture and memory performance. Exp. Brain Res. 2008, 187, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Tse, C.M.; Carpenter, M.G.; Liu-Ambrose, T.; E Chisholm, A.; Lam, T. Attentional requirements of postural control in people with spinal cord injury: The effect of dual task. Spinal Cord 2017, 55, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.; Krampe, R.; Lindenberger, U.; Baltes, P.B. Age differences between children and young adults in the dynamics of dual-task prioritization: Body (balance) versus mind (memory). Dev. Psychol. 2008, 44, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Baldini, A.; Nota, A.; Assi, V.; Ballanti, F.; Cozza, P. Intersession reliability of a posturo-stabilometric test, using a force platform. J. Electromyogr. Kinesiol. 2013, 23, 1474–1479. [Google Scholar] [CrossRef] [Green Version]
- Ruhe, A.; Fejer, R.; Walker, B. The test–retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Donath, L.; Roth, R.; Zahner, L.; Faude, O. Testing single and double limb standing balance performance: Comparison of COP path length evaluation between two devices. Gait Posture 2012, 36, 439–443. [Google Scholar] [CrossRef]
- Asseman, F.; Caron, O.; Crémieux, J. Is there a transfer of postural ability from specific to unspecific postures in elite gymnasts? Neurosci. Lett. 2004, 358, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noé, F. Effect of expertise and visual contribution on postural control in soccer. Scand. J. Med. Sci. Sports 2006, 16, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, D.; Belur, P.; Myers, P.S.; Earhart, G.M.; Rawson, K.S. The impact of age, surface characteristics, and dual-tasking on postural sway. Arch. Gerontol. Geriatr. 2020, 87, 103973. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Etter, J.; Petrillo, C.; Chen, W.; Nuzzolo, J.; McGinnis, R. Wearable Sensors Show That Talking, Not Texting, Impairs Postural Control. In Proceedings of the 43rd Annual Northeast Bioengineering Conference: New Jersey Institute of Technology, Newark, NJ, USA, 31 March–1 April 2017. [Google Scholar]
- Jin, Z.X.; He, H.; Ruan, B.; Guo, H.; Xiong, K. yu Influence of staring at mobile phone on static balance, plantar pressure gait characteristics and lower limb joints in young men. Chin. J. Tissue Eng. Res. 2017, 21, 4454. [Google Scholar]
- Drugus, D.; Repanovici, A.; Popa, D.; Tirziman, E.; Roman, N.; Rogozea, L.; Miclaus, R. Social impact of public health care in risk management implementation. Rev. Cercet. Interv. Soc. 2017, 56, 79–87. [Google Scholar]
Variables | |
---|---|
Age, years | 21.37 ± 1.11 |
Gender | |
Male, n (%) | 13 (37.14%) |
Female, n (%) | 22 (62.86%) |
Weight, kg | 63.89 ± 11.08 |
Height, cm | 169.51 ± 8.37 |
BMI, kg/m2 | 22.13 ± 2.79 |
Variables | Control | Talk | Text | p |
---|---|---|---|---|
Right foot (%) | 48.98 ± 3.23 | 49.03 ± 5.26 | 49 ± 4.81 | NS |
Right MT1 (%) | 17.20 ± 9.03 | 17.01 ± 9.46 | 16.14 ± 9.29 | NS |
Right MT5 (%) | 37.35 ± 8.33 | 38.76 ± 8.87 | 37.54 ± 8.39 | NS |
Right heel (%) | 45.44 ± 11.27 | 44.23 ± 12.88 | 46.32 ± 12.01 | NS |
Left foot (%) | 51.03 ± 3.23 | 50.97 ± 5.26 | 51 ± 4.81 | NS |
Left MT1 (%) | 22.69 ± 6.57 | 22.77 ± 7.65 | 21.08 ± 7.81 | 0.03 |
Left MT5 (%) | 28.05 ± 8.33 | 29.78 ± 7.69 | 28.67 ± 7.57 | NS |
Left heel (%) | 49.26 ± 9.62 | 47.45 ± 9.57 | 50.26 ± 9.23 | 0.03 |
Control | Talk | Text | p | |
---|---|---|---|---|
CoPX | 0 [−3.75–6] | 2 [−3–8.75] | 1 [−4.5–6] | NS |
CoPY | 0 [−8.5–10] | 1 [−6–5] | −3 [−8–4.5] | NS |
CoP displacement (mm) | 12.72 [6.33–18.6] | 12.37 [6.51–22.01] | 12 [8.19–18.38] | NS |
CoP path length (mm) | 236 [211–258] | 317 [283–420.25] | 259 [239.25–284] | <0.0001 |
90% confidence ellipse area (mm2) | 37 [25.5–51] | 115 [54.5–182.25] | 58 [20.5–73.25] | <0.0001 |
Maximum CoP speed (mm/s) | 47 [42–51.5] | 91 [58.5–117.25] | 56 [47.25–66.75] | <0.0001 |
Talk | Text | p | |
---|---|---|---|
DTC CoP displacement (%) | 14.31 [−15.56–46.23] | 4.62 [−31.84–44.88] | NS |
DTC CoP path length (%) | 45.58 [29.63–69.48] | 10.73 [1.46–24.89] | <0.0001 |
DTC 90% confidence ellipse area (%) | 216.67 [42.69–607.35] | 18.18 [−32.14–124.58] | <0.0001 |
DTC maximum CoP speed (%) | 68.08 [39.63–129.14] | 17.78 [0.36–40.20] | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onofrei, R.R.; Amaricai, E.; Suciu, O.; David, V.L.; Rata, A.L.; Hogea, E. Smartphone Use and Postural Balance in Healthy Young Adults. Int. J. Environ. Res. Public Health 2020, 17, 3307. https://doi.org/10.3390/ijerph17093307
Onofrei RR, Amaricai E, Suciu O, David VL, Rata AL, Hogea E. Smartphone Use and Postural Balance in Healthy Young Adults. International Journal of Environmental Research and Public Health. 2020; 17(9):3307. https://doi.org/10.3390/ijerph17093307
Chicago/Turabian StyleOnofrei, Roxana Ramona, Elena Amaricai, Oana Suciu, Vlad Laurentiu David, Andreea Luciana Rata, and Elena Hogea. 2020. "Smartphone Use and Postural Balance in Healthy Young Adults" International Journal of Environmental Research and Public Health 17, no. 9: 3307. https://doi.org/10.3390/ijerph17093307
APA StyleOnofrei, R. R., Amaricai, E., Suciu, O., David, V. L., Rata, A. L., & Hogea, E. (2020). Smartphone Use and Postural Balance in Healthy Young Adults. International Journal of Environmental Research and Public Health, 17(9), 3307. https://doi.org/10.3390/ijerph17093307