Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. ZIKV Data
2.2.2. Environmental Data
2.3. Methods
2.3.1. Spatiotemporal Analysis of ZIKV Epidemic
2.3.2. Determination of the Dominant Environmental Factors
2.3.3. Geographical Weighted Regression Model
3. Results
3.1. Characteristics of the Spatiotemporal Distribution of ZIKV
3.2. The Geographical Relationship between ZIKV and Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S. Emerging human infectious diseases and the links to global food production. Nature Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bugallo, G.; Piedra, L.A.; Rodriguez, M.; Bisset, J.A.; Lourenço-de-Oliveira, R.; Weaver, S.C.; Vasilakis, N.; Vega-Rúa, A. Vector-borne transmission and evolution of Zika virus. Nat. Ecol. Evol. 2019, 3, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, D.; Nilles, E.J.; Cao-Lormeau, V.M. Rapid spread of emerging Zika virus in the Pacific area. Clin. Microbiol. Infect. 2014, 20, O595–O596. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Gardner, L. Zika: The cost of neglect. Palgrave Commun. 2016, 2, 16060. [Google Scholar] [CrossRef]
- WHO. Accelerating Progress on HIV, Tuberculosis, Malaria, Hepatitis and Neglected Tropical Diseases: A New Agenda for 2016–2030; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M.; Charrel, R. Zika Virus in Gabon (Central Africa)–2007: A New Threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [Green Version]
- Kass, D.E.; Merlino, M. Zika Virus. N. Engl. J. Med. 2016, 375, 294. [Google Scholar]
- Paz, S.; Semenza, J.C. El Niño and climate change—Contributing factors in the dispersal of Zika virus in the Americas? Lancet 2016, 387, 745. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.N.; Gage, K.L.; Khan, A.S. Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environ. Health Perspect. 2010, 118, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Mardulyn, P.; Goffredo, M.; Conte, A.; Hendrickx, G.; Meiswinkel, R.; Balenghien, T.; Sghaier, S.; Lohr, Y.; Gilbert, M. Climate change and the spread of vector-borne diseases: Using approximate B ayesian computation to compare invasion scenarios for the bluetongue virus vector C ulicoides imicola in I taly. Mol. Ecol. 2013, 22, 2456–2466. [Google Scholar] [CrossRef] [PubMed]
- Rossati, A.; Bargiacchi, O.; Kroumova, V.; Garavelli, P.L. Vector transmitted diseases and climate changes in Europe. Infez Med. 2014, 22, 179–192. [Google Scholar] [PubMed]
- Muñoz, Á.G.; Thomson, M.C.; Goddard, L.; Aldighieri, S. Analyzing climate variations at multiple timescales can guide Zika virus response measures. GigaScience 2016, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikenberry, S.E.; Gumel, A.B. Mathematical modeling of climate change and malaria transmission dynamics: A historical review. J. Math. Biol. 2018, 77, 857–933. [Google Scholar] [CrossRef]
- Lord, J.S.; Hargrove, J.W.; Torr, S.J.; Vale, G.A. Climate change and African trypanosomiasis vector populations in Zimbabwe’s Zambezi Valley: A mathematical modelling study. PLoS Med. 2018, 15, e1002675. [Google Scholar] [CrossRef]
- Ghazali, D.A.; Guericolas, M.; Thys, F.; Sarasin, F.; Arcos Gonzalez, P.; Casalino, E. Climate change impacts on disaster and emergency medicine focusing on mitigation disruptive effects: An international perspective. Int. J. Environ. Res. 2018, 15, 1379. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Investig. 2020, 130, 553–555. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Liu, Y.; Liu, J.; Zhao, J.; Champagne, C.; Tong, L.; Zhang, R.; Zhang, F.; Qin, C.-F.; Ma, P.; et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat. Commun. 2019, 10, 1324. [Google Scholar] [CrossRef]
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J.; et al. Ecology and economics for pandemic prevention. Science 2020, 369, 379–381. [Google Scholar] [CrossRef]
- Farrugia, A. Globalisation and blood safety. Blood Rev. 2009, 23, 123–128. [Google Scholar] [CrossRef]
- Swaminathan, S.; Schlaberg, R.; Lewis, J.; Hanson, K.E.; Couturier, M.R. Fatal Zika Virus Infection with Secondary Nonsexual Transmission. N. Engl. J. Med. 2016, 375, 1907–1909. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; Turner, J.; Metelmann, S.; Hesson, J.C.; Blagrove, M.S.C.; Solomon, T.; Morse, A.P.; Baylis, M. Global risk model for vector-borne transmission of Zika virus reveals the role of El Nio 2015. Proc. Natl. Acad. Sci. USA 2017, 114, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Wang, K.; Wang, W. Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 2019, 92, 190–195. [Google Scholar] [CrossRef]
- Ortiz, M.R.; Le, N.K.; Sharma, V.; Hoare, I.; Quizhpe, E.; Teran, E.; Naik, E.; Salihu, H.M.; Izurieta, R. Post-earthquake Zika virus surge: Disaster and public health threat amid climatic conduciveness. Sci. Rep. 2017, 7, 140–1182. [Google Scholar]
- Mordecai, E.A.; Cohen, J.M.; Evans, M.V.; Gudapati, P.; Johnson, L.R.; Miazgowicz, K.; Murdock, C.C.; Rohr, J.R.; Ryan, S.J.; Savage, V.; et al. Temperature determines Zika, dengue and chikungunya transmission potential in the Americas. Biorxiv 2016, 63735. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Gugliemini, O.; Harber, S.; Harrison, A.; Houle, L.; Ivory, J.; Kersten, S.; Khan, R.; Kim, J.; LeBoa, C.; et al. Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005135. [Google Scholar] [CrossRef]
- Teng, Y.; Bi, D.; Xie, G.; Jin, Y.; Huang, Y.; Lin, B.; An, X.; Tong, Y.; Feng, D. Model-informed risk assessment for Zika virus outbreaks in the Asia-Pacific regions. J. Infect. 2017, 74, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The Habitat Concept and a Plea for Standard Terminology. Wildl. Soc. Bull. (1973–2006) 1997, 25, 173–182. [Google Scholar]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- O’neill, R.; Krummel, J.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.; Milne, B.; Turner, M.G.; Zygmunt, B.; Christensen, S.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Khalid, B.; Ghaffar, A. Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. Int. J. Biometeorol. 2015, 59, 1721–1746. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, G.S.; Kesari, S.; Chatterjee, N.; Kumar, V.; Das, P. Spatial and temporal variation and hotspot detection of kala-azar disease in Vaishali district (Bihar), India. BMC Infect. Dis. 2013, 13, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stigler, S.M. Gauss and the invention of least squares. Ann. Stat. 1981, 9, 465–474. [Google Scholar] [CrossRef]
- McMillen, D.P. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Am. J. Agric. Econ. 2004. [Google Scholar] [CrossRef]
- Baden, L.R.; Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med. 2016, 374, 1552–1563. [Google Scholar]
- Hills, S.L.; Russell, K.; Hennessey, M.; Williams, C.; Mead, P. Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission—Continental United States, 2016. Morb. Mortal. Wkly. Rep. 2016, 65, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Gao, Y.; Han, G.-Z. Zika Virus: Two or Three Lineages? Trends Microbiol. 2016, 24, 521–522. [Google Scholar] [CrossRef] [Green Version]
- Lazear, H.M.; Diamond, M.S. Zika virus: New clinical syndromes and its emergence in the Western Hemisphere. J. Virol. 2016, 90, 4864–4875. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Zhang, J.; Wang, S.; Zhao, W. Classification–coordination–collaboration: A systems approach for advancing Sustainable Development Goals. Natl. Sci. Rev. 2020, 7, 838–840. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhang, J.; Meadows, M.E.; Liu, Y.; Hua, T.; Fu, B. A systematic approach is needed to contain COVID-19 globally. Sci. Bull. 2020, 65, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Basarab, M.; Bowman, C.; Aarons, E.J.; Cropley, I. Zika virus. BMJ 2016, 352, i1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicators | GDP Per Capita | Population Density | Temperature | Relative Humidity | Biodiversity | Landscape Fragmentation |
---|---|---|---|---|---|---|
Pearson correlation coefficient | −0.047 | 0.266 | 0.035 | −0.058 | −0.133 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jia, K.; Liu, Y.; Yuan, B.; Xia, M.; Zhao, W. Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment. Int. J. Environ. Res. Public Health 2021, 18, 290. https://doi.org/10.3390/ijerph18010290
Li J, Jia K, Liu Y, Yuan B, Xia M, Zhao W. Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment. International Journal of Environmental Research and Public Health. 2021; 18(1):290. https://doi.org/10.3390/ijerph18010290
Chicago/Turabian StyleLi, Jie, Kun Jia, Yanxu Liu, Bo Yuan, Mu Xia, and Wenwu Zhao. 2021. "Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment" International Journal of Environmental Research and Public Health 18, no. 1: 290. https://doi.org/10.3390/ijerph18010290
APA StyleLi, J., Jia, K., Liu, Y., Yuan, B., Xia, M., & Zhao, W. (2021). Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment. International Journal of Environmental Research and Public Health, 18(1), 290. https://doi.org/10.3390/ijerph18010290