Texture-Modified Food for Dysphagic Patients: A Comprehensive Review
Abstract
:1. Introduction
2. Methods to Assess Texture in the Food Industry
- Empirical tests to measure some physical properties under well-defined conditions;
- Imitative tests to simulate the conditions to which a material is subjected in mouths;
- Fundamental tests to measure physical properties, such as viscosity and elasticity.
2.1. Gels: Rheological Characterization
2.2. Emulsions: Rheology of Food Emulsions
2.3. Rheological Measurements: Equipment
- -
- Empirical: instrumental-dependent and specified to test a hypothesis;
- -
- Fundamental tests: based on known concepts and equations of physics and fundamental rheology. The European Society for Swallowing Disorders (ESSD) stressed in its published White Paper the importance of rheological parameters, such as shear rate, non-Newtonian fluids properties, yield stress, elasticity, and density [50].
3. The Effects of Processing Methods and Ingredients on Food Texture
4. Modifying Texture for Dysphagic Patients
5. Developed Food Products for Dysphagic Patients
- (i)
- Thickeners to be added to liquids and food—the main compounds used to obtain suitable rheological characteristics are gum-based thickeners and starch-based thickeners. The most widespread are carrageenan (E407), modified corn (E1442), xanthan gum (E415), guar gum (E412), and tara gum (E417). Other compounds include calcium citrate (E333) and potassium chloride (E508), used as thickener additives [156,157,158];
- (ii)
- Nutritional supplements with a pudding texture [159];
- (iii)
- Lyophilized or dehydrated powdered products, and pasteurized or sterilized ready to eat or to be reconstituted with both the desired texture, and savory and sweet flavors as purées, or cereals, compotes, and puddings, to eat as breakfasts, snacks, and desserts [139,160]. Examples of commercially developed food products for dysphagia from starch and gum are Nutilis® (Nutricia, Milupa GmbH., Fulda, Germany) and Resource® (Resource, Nestlé Portugal S.A., Linda-a-Velha, Portugal). Both products are presented as white powder that easy to dissolve and can instantly thicken clear liquids. Nutilis® is composed of maltodextrin, modified maize starch (E-1442), tara gum, xanthan gum, and guar gum, while Resource® contains only modified maize starch (E-1442). In both cases, the employed modified starch was hydroxypropyl distarch phosphate [161].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sullo, A.; Norton, I.T. Food Colloids and Emulsions. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Amesterdam, The Netherlands, 2016; pp. 7–15. [Google Scholar]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Academic Press, Elsevier: New York, NY, USA, 2002. [Google Scholar]
- Loret, C. Using sensory properties of food to trigger swallowing: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichero, J.A.Y.; Steele, C.; Duivestein, J.; Clavé, P.; Chen, J.; Kayashita, J.; Dantas, R.; Lecko, C.; Speyer, R.; Lam, P.; et al. The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 280–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungsinchai, S.; Niamnuy, C.; Wattanapan, P.; Charoenchaitrakool, M.; Devahastin, S. Texture modification technologies and their opportunities for the production of dysphagia foods: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1898–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, J.M.; Park, D.J. Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci. Technol. 2016, 57, 156–164. [Google Scholar] [CrossRef]
- UN. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Department of Economic and Social Affairs, Population Division (2015) Working Paper No. ESA/P/WP.241. 2015. Available online: https://population.un.org/wpp/publications/files/key_findings_wpp_2015.pdf (accessed on 1 September 2020).
- IUFoST. Meeting the Food Needs of the Ageing Population. Implications for Food Science and Technology. 2014. Available online: http://www.iufost.org/iufostftp/IUF.SIB.Meeting%20the%20Food%20Needs%20of%20the%20Ageing%20Population.pdf (accessed on 1 September 2020).
- Cichero, J.A.Y.; Lam, P.; Steele, C.M.; Hanson, B.; Chen, J.; Dantas, R.O.; Duivestein, J.; Kayashita, J.; Lecko, C.; Murray, J.; et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: The IDDSI framework. Dysphagia 2017, 32, 293–314. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, S.; Nakauma, M.; Funami, T.; Odake, S.; Nishinari, K. Swallowing profiles of food polysaccharide gels in relation to bolus rheology. Food Hydrocoll. 2011, 25, 1016–1024. [Google Scholar] [CrossRef]
- Yoshioka, K.; Yamamoto, A.; Matsushima, Y.; Hachisuka, K.; Ikeuchi, Y. Effects of high pressure on the textural and sensory properties of minced fish meat gels for the dysphagia diet. Food Nutr. Sci. 2016, 7, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Miles, A.; Liang, V.; Sekula, J.; Broadmore, S.; Owen, P.; Braakhuis, A.J. Texture-modified diets in aged care facilities: Nutrition, swallow safety and mealtime experience. Australas. J. Ageing 2020, 39, 31–39. [Google Scholar] [CrossRef]
- Lam, P.; Stanschus, S.; Zaman, R.; Cichero, J.A. The international dysphagia diet standardisation initiative (IDDSI) framework: The Kempen pilot. Br. J. Neurosci. Nurs. 2017, 13, S18–S26. [Google Scholar] [CrossRef] [Green Version]
- ISO. Sensory Analysis Vocabulary, Part 4; International Organization for Standardization: Geneva, Switzerland, 1981. [Google Scholar]
- Thybo, A.K.; Martens, M. Analysis of sensory assessors in texture profiling of potatoes by multivariate modelling. Food Qual. Prefer. 2000, 11, 283–288. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Textural perceptions and food quality. J. Food Qual. 1991, 14, 75–85. [Google Scholar] [CrossRef]
- Bomze, L.; Dehom, S.; Lao, W.P.; Thompson, J.; Lee, N.; Cragoe, A.; Luceno, C.; Crawley, B. Comorbid Dysphagia and Malnutrition in Elderly Hospitalized Patients. Laryngoscope 2021. [Google Scholar] [CrossRef]
- Herh, P.K.; Colo, S.M.; Roye, N.; Hedman, K. Rheology of foods: New techniques, capabilities, and instruments. Am. Lab. 2000, 32, 16–21. [Google Scholar]
- Cuomo, F.; Angelicola, M.; De Arcangelis, E.; Lopez, F.; Messia, M.C.; Marconi, E. Rheological and Nutritional Assessment of Dysphagia—Oriented New Food Preparations. Foods 2021, 10, 663. [Google Scholar] [CrossRef]
- Adeleye, B.; Rachal, C. Comparison of the rheological properties of ready-to-serve and powdered instant food–thickened beverages at different temperatures for dysphagic patients. J. Am. Diet. Assoc. 2007, 107, 1176–1182. [Google Scholar] [CrossRef]
- Socialstyrelsen. Näringsproblem i Vård och Omsorg. Prevention och Behandling (SoS Rapport 2000:11); Socialstyrelsen: Stockholm, Sweden, 2020. Available online: http://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/11653/2000-3-11_0003012.pdf (accessed on 2 March 2021).
- BDA. The British Dietetic Association and the Royal College of Speech and Language Therapists. National Descriptors for Texture Modification in Adults. May 2002. Available online: https://www.acquiredbraininjury-education.scot.nhs.uk/wp-content/uploads/National-Descriptors-Texture-Modification-Adults-2009.pdf (accessed on 2 March 2021).
- Wendin, K.; Ekman, S.; Bülow, M.; Ekberg, O.; Johansson, D.; Rothenberg, E.; Stading, M. Objective and quantitative definitions of modified food textures based on sensory and rheological methodology. Food Nutr. Res. 2010, 54, 5134. [Google Scholar] [CrossRef] [Green Version]
- Hemsley, B.; Palmer, S.; Kouzani, A.; Adams, S.; Balandin, S. Review informing the design of 3D food printing for people with swallowing disorders: Constructive, conceptual, and empirical problems. In HICSS 52: Proceedings of the 52nd Annual Hawaii International Conference on System Sciences; University of Hawaii at Manoa: Honolulu, HI, USA, 2019; pp. 5735–5744. [Google Scholar]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Dunshea, F.R. Cross-cultural effects of food product familiarity on sensory acceptability and non-invasive physiological responses of consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef]
- Farag, K.W.; Lyng, J.G.; Morgan, D.J.; Cronin, D.A. Effect of low temperatures (−18 to +5 °C) on the texture of beef lean. Meat Sci. 2009, 81, 249–254. [Google Scholar] [CrossRef]
- Steffe, J.F. Rheological Methods in Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1996. [Google Scholar]
- Zargaraan, A.; Rastmanesh, R.; Fadavi, G.; Zayeri, F.; Mohammadifar, M.A. Rheological aspects of dysphagia-oriented food products: A mini review. Food Sci. Hum. Wellness 2013, 2, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Food Rheolgy. 2021. Available online: https://www.anton-paar.com/es-es/reologia-de-los-alimentos/ (accessed on 2 March 2021).
- Scott-Blair, G. Rheology in food research. Adv. Food Res. 1958, 8, 1–56. [Google Scholar]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Nishinari, K.; Kohyama, K.; Kumagai, H.; Funami, T.; Bourne, M.C. Parameters of texture profile analysis. Food Sci. Technol. Res. 2013, 19, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Overview of Texture Profiles Analysis. Chapter II. 2020. Available online: https://texturetechnologies.com/resources/texture-profile-analysis (accessed on 2 March 2021).
- Martínez, O.; Vicente, M.S.; De Vega, M.C.; Salmerón, J. Sensory perception and flow properties of dysphagia thickening formulas with different composition. Food Hydrocoll. 2019, 90, 508–514. [Google Scholar] [CrossRef]
- National Dysphagia Diet Task Force. National Dysphagia Diet: Standardization for Optimal Care; American Dietetic Association: Chicago, IL, USA, 2002. [Google Scholar]
- Vieira, J.M.; Oliveira, F.D., Jr.; Salvaro, D.B.; Maffezzolli, G.P.; de Mello, J.D.B.; Vicente, A.A.; Cunha, R.L. Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Curr. Res. Food Sci. 2020, 3, 19–29. [Google Scholar] [CrossRef]
- ISO 11036:2020. Sensory Analysis—Methodology—Texture Profile. 2020. Available online: https://www.iso.org/standard/76668 (accessed on 2 March 2021).
- Levine, H.; Finley, J.W. Texture. In Principles of Food Chemistry; Springer: Cham, Switzerland, 2018; pp. 329–336. [Google Scholar] [CrossRef]
- Albert, A.; Varela, P.; Salvador, A.; Hough, G.; Fiszman, S. Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Qual. Prefer. 2011, 22, 463–473. [Google Scholar] [CrossRef]
- O’Leary, M.; Hanson, B.; Smith, C.H. Variation of the apparent viscosity of thickened drinks. Int. J. Lang. Commun. Disord. 2011, 46, 7–29. [Google Scholar] [CrossRef]
- Nicosia, M.A.; Robbins, J. The usefulness of the line spread test as a measure of liquid consistency. Dysphagia 2007, 22, 306–311. [Google Scholar] [CrossRef]
- Fujimoto, K.; Minami, N.; Goto, T.; Ishida, Y.; Watanabe, M.; Nagao, K.; Ichikawa, T. Hardness, cohesiveness, and adhesiveness of oral moisturizers and denture adhesives: Selection criteria for denture wearers. Dent. J. 2016, 4, 34. [Google Scholar] [CrossRef]
- Karel, M. Food research tasks at the beginning of the new millennium—A personal vision. In Water Management in the Design and Distribution of Quality of Foods; Roos, Y.H., Leslie, R.B., Lillford, P.J., Eds.; Technomic Publishing: New York, NY, USA, 1999; pp. 535–559. [Google Scholar]
- Stone, H.; Sidel, J.L. 6–Descriptive Analysis, Sensory Evaluation Practices. In Food Science and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2004; pp. 201–245. [Google Scholar]
- Bourne, M.C. Is rheology enough for food texture measurement? J. Texture Stud. 1975, 6, 259–262. [Google Scholar] [CrossRef]
- Barbon, C.E.A.; Steele, C.M. Thickened Liquids for Dysphagia Management: A Current Review of the Measurement of Liquid Flow. Curr. Phys. Med. Rehabil. Rep. 2018, 6, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.; Jamshidi, R.; Redfearn, A.; Begley, R.; Steele, C.M. Experimental and Computational Investigation of the IDDSI Flow Test of Liquids Used in Dysphagia Management. Ann. Biomed. Eng. 2019, 47, 2296–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reginelli, A.; D’Amora, M.; Del Vecchio, L.; Monaco, L.; Barillari, M.R.; Di Martino, N.; Barillari, U.; Motta, G.; Cappabianca, S.; Grassi, R. Videofluoroscopy and oropharyngeal manometry for evaluation of swallowing in elderly patients. Int. J. Surg. 2016, 33 (Suppl. 1), S154–S158. [Google Scholar] [CrossRef] [PubMed]
- Stading, M.; Waqas, M.Q.; Holmberg, F.; Wiklund, J.; Kotze, R.; Ekberg, O. A Device that Models Human Swallowing. Dysphagia 2019, 34, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Myhan, R.; Białobrzewski, I.; Markowski, M. An approach to modeling the rheological properties of food materials. J. Food Eng. 2012, 111, 351–359. [Google Scholar] [CrossRef]
- Wang, Z.; Hirai, S. Modeling and estimation of rheological properties of food products for manufacturing simulations. J. Food Eng. 2011, 102, 136–144. [Google Scholar] [CrossRef]
- Rao, M.A. Flow and functional models for rheological properties of fluid foods. In Rheology of Fluid, Semisolid, and Solid Foods; Springer: Boston, MA, USA, 2014; pp. 27–61. [Google Scholar]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental characterization of banana dessert gels for the elderly with dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Seo, C.W.; Yoo, B. Steady and dynamic shear rheological properties of gumbased food thickeners used for diet modification of patients with dysphagia: Effect of concentration. Dysphagia 2013, 28, 205–211. [Google Scholar] [CrossRef]
- Steele, C.M.; Hill, L.; Stokely, S.; Peladeau-Pigeon, M. Age and strength influences on lingual tactile acuity. J. Texture Stud. 2014, 45, 317–323. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Kokini, J.L.; Ma, L.; Ibarz, A. The rheology of semiliquid foods. Adv. Food Nutr. Res. 1996, 39, 1–69. [Google Scholar]
- Gallegos, C.; Franco, J.M. Rheology of food emulsions. In Rheology Series; Elsevier: Amsterdam, The Netherlands, 1999; Volume 8, pp. 87–118. [Google Scholar]
- Barringer, S.; Ratanatriwong, P. Rheometers. In Encyclopedia of Agricultural, Food, and Biological Engineering; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 862–865. [Google Scholar]
- Dobraszczyka, B.J.; Morgenstern, M.P. Rheology and the breadmaking process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
- Riso, S.; Baj, G.; D’Andrea, F. Thickened beverages for dysphagic patients. Data and myth. Mediterr. J. Nutr. Metab. 2008, 1, 15–17. [Google Scholar] [CrossRef]
- Park, D.J.; Han, J.A. Quality controlling of brown rice by ultrasound treatment and its effect on isolated starch. Carbohydr. Polym. 2016, 137, 30–38. [Google Scholar] [CrossRef]
- Civille, G.V.; Czczesniak, A.S. Guidelines to training a texture profile panel. J. Texture Stud. 1973, 4, 204–223. [Google Scholar] [CrossRef]
- Saldaña, E.; Behrens, J.H.; Serrano, J.S.; Ribeiro, F.; de Almeida, M.A.; Contreras-Castillo, C.J. Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Struct. 2015, 6, 13–20. [Google Scholar] [CrossRef]
- Yates, M.D.; Drake, M.A. Texture properties of Gouda cheese. J. Sens. Stud. 2007, 22, 493–506. [Google Scholar] [CrossRef]
- Barden, L.M.; Osborne, J.A.; McMahon, D.J.; Foegeding, E.A. Investigating the filled gel model in Cheddar cheese through use of Sephadex beads. J. Dairy Sci. 2015, 98, 1502–1516. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Rosenthal, A. Food texture and structure. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Woodhead Publishing: Cambridge, UK, 2015; Volume 1, pp. 3–24. [Google Scholar]
- Aguilera, J.M. Seligman lecture 2005 food product engineering: Building the right structures. J. Sci. Food Agric. 2006, 86, 1147–1155. [Google Scholar] [CrossRef]
- Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 2006, 17, 272–283. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E381–E387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funami, T.; Ishihara, S.; Nakauma, M.; Kohyama KNishinari, K. Texture design for products using food hydrocolloids. Food Hydrocoll. 2012, 26, 412–420. [Google Scholar] [CrossRef]
- Nishinari, K.; Takemasa, M.; Brenner, T.; Su, L.; Fang, Y.; Hirashima, M.; Yoshimura, M.; Nitta, Y.; Moritaka, H.; Tomczynska-Mleko, M.; et al. The food colloid principle in the design of elderly food. J. Texture Stud. 2016, 47, 284–312. [Google Scholar] [CrossRef]
- Ray, S.; Raychaudhuri, U.; Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016, 13, 76–83. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Chung, C.; Degner, B.; McClements, D.J. Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT Food Sci. Technol. 2013, 54, 336–345. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, W.; Shan, J.; Zhang, S.; Dong, F. Physical properties and loading capacity of gelatinized granular starches. Ind. Crops Prod. 2014, 53, 323–329. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J.M. Starch matrices and the glycemic response. Food Sci. Technol. Int. 2011, 17, 187–204. [Google Scholar] [CrossRef]
- Marangoni, A.G.; Wesdorp, L.H. Structure and Properties of Fat Crystal Networks, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- McClements, D.J. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 2015, 80, N1602–N1611. [Google Scholar] [CrossRef]
- Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar] [CrossRef]
- Singer, N.S.; Dunn, J.M. Protein microparticulation: The principle and the process. J. Am. Coll. Nutr. 1990, 9, 388–397. [Google Scholar] [CrossRef]
- Nicolai, T.; Durand, D. Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci. 2013, 18, 249–256. [Google Scholar] [CrossRef]
- Nicolai, T. Formation and functionality of self-assembled whey protein microgels. Colloids Surf. B 2016, 137, 32–38. [Google Scholar] [CrossRef]
- Dickinson, E. Microgels—An alternative colloidal ingredient for stabilization of food emulsions. Trends Food Sci. Technol. 2015, 43, 178–188. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Tong, Q.; Decker, E.A.; McClements, D.J. Food-grade filled hydrogels for oral delivery of lipophilic active ingredients: Temperature-triggered release microgels. Food Res. Int. 2015, 69, 274–280. [Google Scholar] [CrossRef]
- Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr. 2008, 48, 361–377. [Google Scholar] [CrossRef]
- Okita, A.; Takahashi, K.; Itakura, M.; Horio, A.; Yamamoto, R.; Nakamura, Y.; Osako, K. A novel soft surimi gel with functionality prepared using alcalase for people suffering from dysphagia. Food Chem. 2021, 344, 128641. [Google Scholar] [CrossRef]
- Marquis, M.; Davy, J.; Cathala, B.; Fang, A.; Renard, D. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles. Carbohydr. Polym. 2015, 116, 189–199. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kobayashi, I.; Nakajima, M.; Wu, D.; Nandagopal, S.; Lin, F. Microfluidics for food, agriculture and biosystems industries. Lab Chip 2011, 11, 1574–1586. [Google Scholar] [CrossRef]
- Amici, E.; Tetradis-Meris, G.; de Torres, C.P.; Jousse, F. Alginate gelation in microfluidic channels. Food Hydrocoll. 2008, 22, 97–104. [Google Scholar] [CrossRef]
- Skurtys, O.; Aguilera, J.M. Applications of microfluidic devices in food engineering. Food Biophys. 2008, 3, 1–15. [Google Scholar] [CrossRef]
- Sun, J.; Peng, Z.; Zhou, W.; Fuh, J.Y.; Hong, G.S.; Chiu, A. A review on 3D printing for customized food fabrication. Procedia Manuf. 2015, 1, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3d printing technologies applied for food design: Status and prospects. J. Food Eng. 2016, 179, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Goole, J.M.; Amighi, K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm. 2016, 499, 376–394. [Google Scholar] [CrossRef]
- Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll. 2015, 51, 227–240. [Google Scholar] [CrossRef]
- Nieuwland, M.; Geerdink, P.; Brier, P.; van den Eijnden, P.; Henket, J.T.M.M.; Langelaan, M.L.P.; Stroeks, N.; van Deventer, H.C.; Martin, A.H. Food-grade electrospinning of proteins. Innov. Food Sci. Emerg. Technol. 2013, 20, 269–275. [Google Scholar] [CrossRef]
- Stijnman, A.C.; Bodnar, I.; Tromp, R.H. Electrospinning of food-grade polysaccharides. Food Hydrocoll. 2011, 25, 1393–1398. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Lagarón, J.M.; López-Rubio, A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll. 2015, 49, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Kouzani, A.Z.; Adams, S.; Whyte, D.J.; Oliver, R.; Hemsley, B.; Palmer, S.; Balandin, S. 3D printing of food for people with swallowing difficulties. Knowl. Eng. 2017, 2, 23–29. [Google Scholar] [CrossRef]
- Stokes, J.R.; Boehm, M.W.; Baier, S.K. Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 2013, 18, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Kalviainen, N.; Roininen, K.; Tuorila, H. Sensory characterisation of high viscosity gels made with different thickeners. J. Texture Stud. 2007, 31, 407–420. [Google Scholar] [CrossRef]
- Barham, P.; Skibsted, L.H.; Bredie, W.L.; Bom Frøst, M.; Møller, P.; Risbo, J.; Snitkjær, P.; Mortensen, L.M. Molecular gastronomy: A new emerging scientific discipline. Chem. Rev. 2010, 110, 2313–2365. [Google Scholar] [CrossRef]
- Vega, C.; Castells, P. Spherification. In The Kitchen as the Laboratory; Vega, C., Ubbink, J., van der Linden, E., Eds.; Columbia University Press: New York, NY, USA, 2012; pp. 25–32. [Google Scholar]
- Yuasa, M.; Tagawa, Y.; Tominaga, M. The texture and preference of “mentsuyu (Japanese noodle soup base) caviar” prepared from sodium alginate and calcium lactate. Int. J. Gastron. Food Sci. 2019, 18, 100178. [Google Scholar] [CrossRef]
- Kim, S.; Joo, N. The study on development of easily chewable and swallowable foods for elderly. Nutr. Res. Pract. 2015, 9, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282. [Google Scholar] [CrossRef]
- Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Purwanti, N.; Peters, J.P.C.M.; van der Goot, A.J. Protein micro-structuring as a tool to texturize protein foods. Food Funct. 2013, 4, 277–282. [Google Scholar] [CrossRef]
- Van der Zanden, L.D.T.; van Kleef, E.; de Wijk, R.A. Examining heterogeneity in elderly consumers’ acceptance of carriers for protein-enriched food: A segmentation study. Food Qual. Prefer. 2015, 42, 130–138. [Google Scholar] [CrossRef]
- Zuñiga, R.N.; Aguilera, J.M. Aerated food gels: Fabrication and potential applications. Trends Food Sci. Technol. 2008, 19, 176–187. [Google Scholar] [CrossRef]
- Goh, S.M.; Leroux, B.; Groeneschild, C.A.G.; Busch, J.L.H.C. On the effect of tastant excluded fillers on sweetness and saltiness of a model food. J. Food Sci. 2010, 75, S245–S249. [Google Scholar] [CrossRef]
- Debusca, A.; Tahergorabi, R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Physicochemical properties of surimi gels fortified with dietary fiber. Food Chem. 2014, 148, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Egan, T.; Jacquier, J.C.; Rosenberg, Y.; Rosenberg, M. Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocoll. 2013, 31, 317–324. [Google Scholar] [CrossRef]
- Lesmes, U.; McClements, D.J. Structure–function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci. Technol. 2009, 20, 448–457. [Google Scholar] [CrossRef]
- Pouteau, E.B.; Bovetto, L.; Schlup-Ollivier, G.; Grathwohl, D.; Beaumont, M.; Macé, C. PP226-MON microgel formation of whey protein reduces its insulinogenic index without modifying glycemic response in healthy men. Clin. Nutr. Suppl. 2012, 1, 227–228. [Google Scholar] [CrossRef]
- Munialo, C.D. Energy Storage and Dissipation in Deformed Protein-based Networks on Seconds Time Scale is Controlled by Submicron Length Scales; Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Sukkar, S.G.; Maggi, N.; Travalca Cupillo, B.; Ruggiero, C. Optimizing texture modified foods for oro-pharyngeal dysphagia: A difficult but possible target? Front. Nutr. 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Steele, C.M. The blind scientists and the elephant of swallowing: A review of instrumental perspectives on swallowing physiology. J. Texture Stud. 2015, 46, 122–137. [Google Scholar] [CrossRef]
- Langmore, S.E.; Miller, R.M. Behavioral treatment for adults with oropharyngeal dysphagia. Arch. Phys. Med. Rehabil. 1994, 75, 1154–1160. [Google Scholar] [CrossRef]
- IDDSI. International Dysphagia Diet Standardisation Initiative (IDDSI). Complete IDDSI Framework (Detailed Definitions). 2019. Available online: https://iddsi.org/IDDSI/media/images/Complete_IDDSI_Framework_Final_31July2019.pdf (accessed on 2 March 2021).
- Hotaling, D.L. Nutritional considerations for the pureed diet texture in dysphagic elderly. Dysphagia 1992, 7, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A penetration-aspiration scale. Dysphagia 1996, 11, 93–98. [Google Scholar] [CrossRef]
- McHorney, C.A.; Robbins, J.; Lomax, K.; Rosenbek, J.C.; Chignell, K.; Kramer, A.E.; Bricker, D.E. The SWAL–QOL and SWAL–CARE outcomes tool for oropharyngeal dysphagia in adults: III. Documentation of reliability and validity. Dysphagia 2002, 17, 97–114. [Google Scholar] [CrossRef]
- O’Neil, K.H.; Purdy, M.; Falk, J.; Gallo, L. The dysphagia outcome and severity scale. Dysphagia 1999, 14, 139–145. [Google Scholar] [CrossRef]
- Crary, M.A.; Mann, G.D.C.; Groher, M.E. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch. Phys. Med. Rehabil. 2005, 86, 1516–1520. [Google Scholar] [CrossRef]
- Munialo, C.D.; Kontogiorgos, V.; Euston, S.R.; Nyambayo, I. Rheological, tribological and sensory attributes of texture-modified foods for dysphagia patients and the elderly: A review. Int. J. Food Sci. Technol. 2020, 55, 1862–1871. [Google Scholar] [CrossRef]
- Vilardell, N.; Rofes, L.; Arreola, V.; Speyer, R.; Clavé, P. A comparative study between modified starch and xanthan gum thickeners in post-stroke oropharyngeal dysphagia. Dysphagia 2016, 31, 169–179. [Google Scholar] [CrossRef]
- Kuhlemeier, K.V.; Palmer, J.B.; Rosenberg, D. Effect of liquid bolus consistency and delivery method on aspiration and pharyngeal retention in dysphagia patients. Dysphagia 2001, 16, 119–122. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, Y.; Li, R.; Ma, A.; Zhang, H. Rheological characterization of polysaccharide thickeners oriented for dysphagia management: Carboxymethylated curdlan, konjac glucomannan and their mixtures compared to xanthan gum. Food Hydrocoll. 2021, 110, 106198. [Google Scholar] [CrossRef]
- Vieira, J.M.; Cristiane Conte Paim Andrade, T.P.; Santos, P.K.; Okuro, S.T.; Garcia, M.I.; Rodrigues, A.A.V.; Cunha, R.L. Flaxseed gum-biopolymers interactions driving rheological behaviour of oropharyngeal dysphagia-oriented products. Food Hydrocoll. 2021, 111, 106257. [Google Scholar] [CrossRef]
- Sharma, M.; Duizer, L. Characterizing the Dynamic Textural Properties of Hydrocolloids in Pureed Foods—A Comparison Between TDS and TCATA. Foods 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-amylase and starch digestion: An interesting marriage. Starch-Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Yver, C.M.; Kennedy, W.P.; Mirza, N. Taste acceptability of thickening agents. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 145–147. [Google Scholar] [CrossRef]
- Garcia, J.M.; Chambers, E. Managing dysphagia through diet modifications. Am. J. Nurs. 2010, 110, 26–33. [Google Scholar] [CrossRef]
- Merino, G.; Marín-Arroyo, M.R.; Beriain, M.J.; Ibañez, F.C. Dishes Adapted to Dysphagia: Sensory Characteristics and Their Relationship to Hedonic Acceptance. Foods 2021, 10, 480. [Google Scholar] [CrossRef]
- Olaru, L.D.; Nistor, O.V.; Andronoiu, D.G.; Ghinea, I.O.; Barbu, V.; Botez, E. Effect of added hydrocolloids on ready-to-eat courgette (Cucurbita pepo) puree ohmically treated. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R.; Izaola, O. Menú de textura modificada y su utilidade en pacientes con situaciones de riesgo nutricional. Nutr Hosp. 2014, 29, 751–759. [Google Scholar]
- Mendes, C.; Bohn, D.M. Expanding horizons: Encouraging cross-campus student collaboration to develop a novel food product for individuals experiencing dysphagia. J. Food Sci. Educ. 2020, 19, 36–40. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Nutrition for Older Persons. Ageing and Nutrition: A Growing Global Challenge. 2020. Available online: https://www.who.int/nutrition/topics/ageing/en/ (accessed on 31 October 2020).
- Fernández, A.C.; de la Maza, B.P.; Casariego, A.V.; Taibo, R.V.; Fondo, A.U.; Rodríguez, I.C.; Pomar, M.D.B. Características técnicas de los productos alimentarios específicos para el paciente con disfagia. Nutr. Hosp. 2015, 32, 1401–1407. [Google Scholar]
- Baijens, L.W.J.; Clavé, P.; Cras, P.; Ekberg, O.; Forster, A.; Kolb, G.F.; Leners, J.-C.; Masiero, S.; Mateos-Nozal, J.; Ortega, O.; et al. European Society for Swallowing Disorders—European Union Geriatric Medicine Society white paper: Oropharyngeal dysphagia as a geriatric syndrome. Clin. Interv. Aging 2016, 11, 1403–1428. [Google Scholar] [CrossRef] [Green Version]
- Burger, C.; Kiesswetter, E.; Alber, R.; Pfannes, U.; Arens-Azevedo, U.; Volkert, D. Texture modified diet in German nursing homes: Availability, best practices and association with nursing home characteristics. BMC Geriatr. 2019, 19, 284. [Google Scholar] [CrossRef]
- Cassens, D.; Johnson, E.; Keelan, S. Enhancing taste, texture, appearance, and presentation of pureed food improved resident quality of life and weight status. Nutr Rev. 1996, 54 Pt 2, S51–S54. [Google Scholar] [CrossRef] [Green Version]
- Hadde, E.K.; Chen, W.; Chen, J. Cohesiveness visual evaluation of thickened fluids. Food Hydrocoll. 2020, 101, 105522. [Google Scholar] [CrossRef]
- Sucupira, N.R.; Xerez, A.C.P.; Sousa, P.H.M. Losses of vitamins in heat treatment of foods. UNOPAR Cient Ciênc Biol. Saúde 2012, 14, 121–128. [Google Scholar]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurugan, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci. Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Ezekiel, R.; Kaur, A. Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches. Carbohydr. Polym. 2011, 83, 1521–1528. [Google Scholar] [CrossRef]
- Jin, T.Z.; Yu, Y.; Gurtler, J.B. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT Food Sci. Technol. 2017, 77, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Nayak, C.A.; Suguna, K.; Narasimhamurthy, K.; Rastogi, N.K. Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. J. Food Eng. 2007, 79, 765–770. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Atherton, M.; Bellis-Smith, N.; Suter, M. Texture-modified foods and thickened fluids as used for individuals with dysphagia: Australian standardised labels and definitions. Nutr Diet. 2007, 64 (Suppl. 2), S53–S76. [Google Scholar]
- Huckabee, M.-L.; McIntosh, T.; Fuller, L.; Curry, M.; Thomas, P.; Walshe, M.; McCague, E.; Battel, I.; Nogueira, D.; Frank, U.; et al. The Test of Masticating and Swallowing Solids (TOMASS): Reliability, validity and international normative data. Int. J. Lang. Commun. Disord. 2018, 53, 144–156. [Google Scholar] [CrossRef]
- Mathieu, V.; de Loubens, C.; Thomas, C.; Panouillé, M.; Magnin, A.; Souchon, I. An experimental model to investigate the biomechanical determinants of pharyngeal mucosa coating during swallowing. J. Biomech. 2018, 72, 144–151. [Google Scholar] [CrossRef]
- Qazi, W.M.; Ekberg, O.; Wiklund, J.; Kotze, R.; Stading, M. Assessment of the food-swallowing process using bolus visualization and manometry simultaneously in a device that models human swallowing. Dysphagia 2019, 34, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Casanovas, A.; Hernández, M.J.E.; Martí-Bonmatí, E.; Dolz, M. Cluster classification of dysphagia-oriented products considering flow, thixotropy and oscillatory testing. Food Hydrocoll. 2011, 25, 851–859. [Google Scholar] [CrossRef]
- Payne, C.; Methven, L.; Fairfield, C.; Bell, A. Consistently inconsistent: Commercially available starch-based dysphagia products. Dysphagia 2011, 26, 27–33. [Google Scholar] [CrossRef]
- Bolivar-Prados, M.; Rofes, L.; Arreola, V.; Guida, S.; Nascimento, W.V.; Martin, A.; Vilardell, N.; Fernández, O.O.; Ripken, D.; Lansink, M.; et al. Effect of a gum-based thickener on the safety of swallowing in patients with poststroke oropharyngeal dysphagia. Neurogastroenterol. Motil. 2019, 31, e13695. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Busto, F.; Muñoz, V.A.; Sarabia, M.; Ruiz de Alegría, L.; González de Viñaspre, I.; López-Molina, N.; Cabo Santillán, N. Suplementos nutricionales gelatinizados: Una alternativa válida para la disfagia. Nutr Hosp. 2011, 26, 775–783. [Google Scholar]
- Lee, H.S.; Lee, J.-J.; Kim, M.-G.; Kim, K.-T.; Cho, C.-W.; Kim, D.-D.; Lee, J.-Y. Sprinkle formulations—A review of commercially available products. Asian J. Pharm. Sci. 2020, 15, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Moret-Tatay, A.; Rodríguez-García, J.; Martí-Bonmatí, E.; Hernando, I.; Hernández, M.J. Commercial thickeners used by patients with dysphagia: Rheological and structural behaviour in different food matrices. Food Hydrocoll. 2015, 51, 318–326. [Google Scholar] [CrossRef]
- Scott-Thomas, C. R&D Challenge: Developing Texture-Modified Foods For The Elderly. 2012. Available online: http://www.foodnavigator.com/Science/R-D-challenge-Developing-texture-modified-foods-for-the-elderly (accessed on 19 March 2021).
- Reilly, R.; Frankel, F.; Edelstein, S. Molecular gastronomy: Transforming diets for dysphagia. J. Nutr. Health Food Sci. 2013, 1, 1. [Google Scholar]
- Jeong, S.; Kim, H.; Lee, S. Rheology-Based Classification of Foods for the Elderly by Machine Learning Analysis. Appl. Sci. 2021, 11, 2262. [Google Scholar] [CrossRef]
Category | Description | Example |
---|---|---|
Regular or cut | Normal texture, possibly cut into smaller pieces. | Whole or cut meat, whole fish, meat or sausage dishes, vegetables, potatoes and gravy. Fresh fruit or canned fruit with whipped cream or ice cream. |
Coarse pâtés | Grainy, porous soft texture with coarse grains, such as a juicy and soft meatloaf. Easy to cut with a fork. | Coarse meat pâté or whole steamed fish, coarse vegetable pâté or well-cooked vegetables, whole or pressed potatoes, and gravy. Canned fruit in pieces with whipped cream or ice cream. |
Timbales | Smooth, soft, short, and uniform consistency, similar to an omelet. Can be eaten with a fork or spoon. | Meat or fish timbale/soufflé, vegetable timbale/purée, mashed/pressed potatoes, and gravy. Fruit mousse with whipped cream or ice cream. |
Jellied products | Soft and slippery food, such as mousse. Can be eaten with a fork or spoon. | Cold jellied meat or fish, vegetable purée or cold jellied vegetables, mashed potatoes, and thick gravy. Jellied fruits with whipped cream or ice cream. |
Liquids | Smooth and liquid consistency, such as tomato soup. Fluid runs off the spoon. Cannot be eaten with a fork. | Enriched meat, fish or vegetable soup with whipped cream or crème frâiche. Fruit soup with whipped cream or ice cream. |
Thickened liquids | Smooth and viscous, such as sour cream. Fluid drops off the spoon. Cannot be eaten with a fork. | Enriched viscous meat, fish or vegetable soup with whipped cream or crème frâiche. Viscous fruit soup with whipped cream or ice cream. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raheem, D.; Carrascosa, C.; Ramos, F.; Saraiva, A.; Raposo, A. Texture-Modified Food for Dysphagic Patients: A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 5125. https://doi.org/10.3390/ijerph18105125
Raheem D, Carrascosa C, Ramos F, Saraiva A, Raposo A. Texture-Modified Food for Dysphagic Patients: A Comprehensive Review. International Journal of Environmental Research and Public Health. 2021; 18(10):5125. https://doi.org/10.3390/ijerph18105125
Chicago/Turabian StyleRaheem, Dele, Conrado Carrascosa, Fernando Ramos, Ariana Saraiva, and António Raposo. 2021. "Texture-Modified Food for Dysphagic Patients: A Comprehensive Review" International Journal of Environmental Research and Public Health 18, no. 10: 5125. https://doi.org/10.3390/ijerph18105125
APA StyleRaheem, D., Carrascosa, C., Ramos, F., Saraiva, A., & Raposo, A. (2021). Texture-Modified Food for Dysphagic Patients: A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(10), 5125. https://doi.org/10.3390/ijerph18105125