Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Area
2.2.1. Wild Condors
2.2.2. Captive Condors
2.3. Sample Design
2.4. Bacteriological Analysis
2.5. Comparison between Condors and Other Vulture Species
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging Infectious Diseases of Wildlife–Threats to Biodiversity and Human Health. Science 2000, 287, 443–449. [Google Scholar]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990. [Google Scholar]
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.-Y.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L. Evolutionary Origins of the SARS-CoV-2 Sarbecovirus Lineage Responsible for the COVID-19 Pandemic. Nat. Microbiol. 2020, 5, 1408–1417. [Google Scholar]
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak–an Update on the Status. Mil. Med. Res. 2020, 7, 1–10. [Google Scholar]
- Williams, E.S.; Yuill, T.; Artois, M.; Fischer, J.; Haigh, S.A. Emerging Infectious Diseases in Wildlife. Rev. Sci. Tech. Off. Int. Epizoot. 2002, 21, 139–158. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar]
- Gottdenker, N.L.; Streicker, D.G.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar]
- Alexander, K.A.; Carlson, C.J.; Lewis, B.L.; Getz, W.M.; Marathe, M.V.; Eubank, S.G.; Sanderson, C.E.; Blackburn, J.K. The ecology of pathogen spillover and disease emergence at the human-wildlife-environment interface. In The Connections between Ecology and Infectious Disease; Springer: Berlin/Heidelberg, Germany, 2018; pp. 267–298. [Google Scholar]
- Benskin, C.M.; Wilson, K.; Jones, K.; Hartley, I.R. Bacterial Pathogens in Wild Birds: A Review of the Frequency and Effects of Infection. Biol. Rev. 2009, 84, 349–373. [Google Scholar]
- Smith, O.M.; Snyder, W.E.; Owen, J.P. Are We Overestimating Risk of Enteric Pathogen Spillover from Wild Birds to Humans? Biol. Rev. 2020, 95, 652–679. [Google Scholar]
- Hald, B.; Skov, M.N.; Nielsen, E.M.; Rahbek, C.; Madsen, J.J.; Wainø, M.; Chriél, M.; Nordentoft, S.; Baggesen, D.L.; Madsen, M. Campylobacter Jejuni and Campylobacter Coli in Wild Birds on Danish Livestock Farms. Acta Vet. Scand. 2015, 58, 1–10. [Google Scholar]
- Sulzner, K.; Kelly, T.; Smith, W.; Johnson, C.K. Enteric Pathogens and Antimicrobial Resistance in Turkey Vultures (Cathartes Aura) Feeding at the Wildlife–Livestock Interface. J. Zoo Wildl. Med. 2014, 45, 931–934. [Google Scholar]
- Plaza, P.I.; Blanco, G.; Madariaga, J.; Boeri, E.; Teijeiro, M.L.; Bianco, G.; Lambertucci, S. Scavenger Birds Exploiting Rubbish Dumps: Pathogens at the Gates. Transbound. Emerg. Dis. 2018, 66, 873–881. [Google Scholar]
- Ferguson-Lees, J.; Christie, D.A. Raptors of the World; Houghton Mifflin Harcourt: Boston, MA, USA, 2001. [Google Scholar]
- Plaza, P.I.; Blanco, G.; Lambertucci, S.A. Implications of Bacterial, Viral and Mycotic Microorganisms in Vultures for Wildlife Conservation, Ecosystem Services and Public Health. Ibis 2020, 162, 1109–1124. [Google Scholar]
- Roggenbuck, M.; Schnell, I.B.; Blom, N.; Bælum, J.; Bertelsen, M.F.; Sicheritz-Pontén, T.; Sørensen, S.J.; Gilbert, M.T.P.; Graves, G.R.; Hansen, L.H. The Microbiome of New World Vultures. Nat. Commun. 2014, 5, 5498. [Google Scholar]
- Houston, D.C.; Cooper, J.E. The Digestive Tract of the Whiteback Griffon Vulture and Its Role in Disease Transmission among Wild Ungulates. J. Wildl. Dis. 1975, 11, 306–313. [Google Scholar]
- Blumstein, D.T.; Rangchi, T.N.; Briggs, T.; De Andrade, F.S.; Natterson-Horowitz, B. A Systematic Review of Carrion Eaters’ Adaptations to Avoid Sickness. J. Wildl. Dis. 2017, 53, 577–581. [Google Scholar]
- Beasley, D.E.; Koltz, A.M.; Lambert, J.E.; Fierer, N.; Dunn, R.R. The Evolution of Stomach Acidity and Its Relevance to the Human Microbiome. PLoS ONE 2015, 10, e0134116. [Google Scholar]
- Blanco, G. Supplementary Feeding as a Source of Multiresistant Salmonella in Endangered Egyptian Vultures. Transbound. Emerg. Dis. 2018, 65, 806–816. [Google Scholar]
- Marin, C.; Torres, C.; Marco-Jiménez, F.; Cerdà-Cuéllar, M.; Sevilla, S.; Ayats, T.; Vega, S. Supplementary Feeding Stations for Conservation of Vultures Could Be an Important Source of Monophasic Salmonella Typhimurium 1, 4,[5], 12: I:-. Sci. Total Environ. 2018, 636, 449–455. [Google Scholar]
- Blanco, G.; de Tuesta, J.A.D. Seasonal and Spatial Occurrence of Zoonotic Salmonella Serotypes in Griffon Vultures at Farmland Environments: Implications in Pathogen Pollution and Ecosystem Services and Disservices. Sci. Total Environ. 2021, 758, 143681. [Google Scholar]
- Blanco, G.; López-Hernández, I.; Morinha, F.; López-Cerero, L. Intensive Farming as a Source of Bacterial Resistance to Antimicrobial Agents in Sedentary and Migratory Vultures: Implications for Local and Transboundary Spread. Sci. Total Environ. 2020, 739, 140356. [Google Scholar]
- Crump, J.A.; Mintz, E.D. Global Trends in Typhoid and Paratyphoid Fever. Clin. Infect. Dis. 2010, 50, 241–246. [Google Scholar]
- Lin, F.Y.; Vo, A.H.; Phan, V.B.; Nguyen, T.T.; Bryla, D.; Tran, C.T.; Ha, B.K.; Dang, D.T.; Robbins, J.B. The Epidemiology of Typhoid Fever in the Dong Thap Province, Mekong Delta Region of Vietnam. Am. J. Trop. Med. Hyg. 2000, 62, 644–648. [Google Scholar]
- Tizard, I. Salmonellosis in Wild Birds. In Seminars in Avian and Exotic Pet Medicine; Phalen, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 13, pp. 50–66. [Google Scholar]
- Alarcón, P.A.; Morales, J.M.; Donázar, J.A.; Sánchez-Zapata, J.A.; Hiraldo, F.; Lambertucci, S.A. Sexual-Size Dimorphism Modulates the Trade-off between Exploiting Food and Wind Resources in a Large Avian Scavenger. Sci. Rep. 2017, 7, 11461. [Google Scholar]
- Hoyo, J.; Elliott, A.; Sargatal, J. Handbook of the Birds of the World—New World Vultures to Guineafowl; Lynx Editions: Barcelona, Spain, 1994. [Google Scholar]
- Plaza, P.I.; Lambertucci, S.A. Ecology and Conservation of a Rare Species: What Do We Know and What May We Do to Preserve Andean Condors? Biol. Conserv. 2020, 251, 108782. [Google Scholar]
- BirdLife International. Vultur gryphus Linnaeus, 1758. In The IUCN Red List of Threatened Species; BirdLife International: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Lambertucci, S.A. Size and Spatio-Temporal Variations of the Andean Condor Vultur Gryphus Population in North-West Patagonia, Argentina: Communal Roosts and Conservation. Oryx 2010, 44, 441–447. [Google Scholar]
- Lambertucci, S.A.; Trejo, A.; Di Martino, S.; Sánchez-Zapata, J.A.; Donázar, J.A.; Hiraldo, F. Spatial and Temporal Patterns in the Diet of the Andean Condor: Ecological Replacement of Native Fauna by Exotic Species. Anim. Conserv. 2009, 12, 338–345. [Google Scholar]
- Ballejo, F.; Lambertucci, S.A.; Trejo, A.; De Santis, L.J. Trophic Niche Overlap among Scavengers in Patagonia Supports the Condor-Vulture Competition Hypothesis. Bird Conserv. Int. 2017, 28, 390–402. [Google Scholar]
- Guido, J.M.; Alarcón, P.A.; Donázar, J.A.; Hiraldo, F.; Lambertucci, S.A. The Use of Biosphere Reserves by a Wide-Ranging Avian Scavenger Indicates Its Significant Potential for Conservation. Environ. Conserv. 2020, 1, 22–29. [Google Scholar]
- Plaza, P.I.; Wiemeyer, G.; Lambertucci, S.A. Comparison of Lead Contamination among Related Scavenging Birds Sharing Food Sources: A Call for Caution When Using Surrogate Species. Ibis 2020, 162, 1303–1311. [Google Scholar]
- Wiemeyer, G.M.; Pérez, M.A.; Bianchini, L.T.; Sampietro, L.; Bravo, G.F.; Jácome, N.L.; Astore, V.; Lambertucci, S.A. Repeated Conservation Threats across the Americas: High Levels of Blood and Bone Lead in the Andean Condor Widen the Problem to a Continental Scale. Environ. Pollut. 2017, 220, 672–679. [Google Scholar]
- Alarcón, P.A.; Lambertucci, S.A. Pesticides Thwart Condor Conservation. Science 2018, 360, 612. [Google Scholar]
- Plaza, P.I.; Blanco, G.; Wiemeyer, G.; López-Rull, I.; Hornero-Méndez, D.; Donázar, J.A.; Hiraldo, F.; Lambertucci, S.A. Plasma Carotenoids and Immunity in a Despotic Avian Scavenger. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 569–578. [Google Scholar]
- Cabrera, A.L. Fitogeografía de La República Argentina. Bol. Soc. Argent. Bot. 1971, 14, 1–42. [Google Scholar]
- Mueller, J.P.; Cueto, M.I. Actualización En Producción Ovina 2005. INTA Bariloche 2005. [Google Scholar]
- Ballejo, F.; Plaza, P.I.; Lambertucci, S.A. The Conflict between Scavenging Birds and Farmers: Field Observations Do Not Support People’s Perceptions. Biol. Conserv. 2020, 248, 108627. [Google Scholar]
- Lambertucci, S.A.; Alarcón, P.A.; Hiraldo, F.; Sanchez-Zapata, J.A.; Blanco, G.; Donázar, J.A. Apex Scavenger Movements Call for Transboundary Conservation Policies. Biol. Conserv. 2014, 170, 145–150. [Google Scholar]
- Blanco, G.; Hornero-Méndez, D.; Lambertucci, S.A.; Bautista, L.M.; Wiemeyer, G.; Sanchez-Zapata, J.A.; Garrido-Fernández, J.; Hiraldo, F.; Donázar, J.A. Need and Seek for Dietary Micronutrients: Endogenous Regulation, External Signalling and Food Sources of Carotenoids in New World Vultures. PLoS ONE 2013, 8, e65562. [Google Scholar]
- Astore, V.; Estrada, R.; Jácome, N.L. Reintroduction Strategy for the Andean Condor Conservation Program, Argentina. Int. Zoo Yearb. 2017, 51, 124–136. [Google Scholar]
- Cowan, S.T. Cowan and Steel’s Manual for the Identification of Medical Bacteria; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2009. [Google Scholar]
- Brown, L.D.; Cat, T.T. DasGupta A Estimación Del Intervalo Para Una Proporción. Cienc. Estad. 2001, 16, 101–133. [Google Scholar]
- Marin, C.; Palomeque, M.-D.; Marco-Jiménez, F.; Vega, S. Wild Griffon Vultures (Gyps Fulvus) as a Source of Salmonella and Campylobacter in Eastern Spain. PLoS ONE 2014, 9, e94191. [Google Scholar]
- Blanco, G.; de Tuesta, J.A.D. Culture-and Molecular-Based Detection of Swine-Adapted Salmonella Shed by Avian Scavengers. Sci. Total Environ. 2018, 634, 1513–1518. [Google Scholar]
- Adesiyun, A.A.; Seepersadsingh, N.; Inder, L.; Caesar, K. Some Bacterial Enteropathogens in Wildlife and Racing Pigeons from Trinidad. J. Wildl. Dis. 1998, 34, 73–80. [Google Scholar]
- Ritchie, B.W.; Hsarrison, G.J.; Zantop, D.; Harrison, L.R. Avian Medicine: Principles and Application, Abridged Edition; Wingers Publishing: Idaho Falls, Idaho, 1997. [Google Scholar]
- Acha, P.N.; Szyfres, B. Zoonosis y Enfermedades Transmisibles Comunes al Hombre y a Los Animales; Publicación Científica OPS, OMS: Washington, DC, USA, 1986; Volume 354, pp. 387–393. [Google Scholar]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-Resistant Staphylococcus Aureus. Nat. Rev. Dis. Primers 2018, 4, 1–23. [Google Scholar]
- Jacobs, L.; McMahon, B.H.; Berendzen, J.; Longmire, J.; Gleasner, C.; Hengartner, N.W.; Vuyisich, M.; Cohn, J.R.; Jenkins, M.; Bartlow, A.W. California Condor Microbiomes: Bacterial Variety and Functional Properties in Captive-Bred Individuals. PLoS ONE 2019, 14, e0225858. [Google Scholar]
- Arbulu, S.; Jiménez, J.J.; Gútiez, L.; Campanero, C.; del Campo, R.; Cintas, L.M.; Herranz, C.; Hernández, P.E. Evaluation of Bacteriocinogenic Activity, Safety Traits and Biotechnological Potential of Fecal Lactic Acid Bacteria (LAB), Isolated from Griffon Vultures (Gyps Fulvus Subsp. Fulvus). BMC Microbiol. 2016, 16, 228. [Google Scholar]
- Murray, B.E. The Life and Times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and Acquired Resistance Mechanisms in Enterococcus. Virulence 2012, 3, 421–569. [Google Scholar]
- Vela, A.I.; Casas-Díaz, E.; Fernández-Garayzábal, J.F.; Serrano, E.; Agustí, S.; Porrero, M.C.; Sánchez del Rey, V.; Marco, I.; Lavín, S.; Domínguez, L. Estimation of Cultivable Bacterial Diversity in the Cloacae and Pharynx in Eurasian Griffon Vultures (Gyps Fulvus). Microb. Ecol. 2015, 69, 597–607. [Google Scholar] [CrossRef]
- Bodawatta, K.H.; Freiberga, I.; Puzejova, K.; Sam, K.; Poulsen, M.; Jønsson, K.A. Flexibility and Resilience of Great Tit (Parus Major) Gut Microbiomes to Changing Diets. Anim. Microbiome 2021, 3, 1–14. [Google Scholar]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The Avian Gut Microbiota: Community, Physiology and Function in Wild Birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar]
- Panangala, V.S.; Stringfellow, J.S.; Dybvig, K.; Woodard, A.; Sun, F.; Rose, D.L.; Gresham, M.M. Mycoplasma corogypsi Sp. Nov., a New Species from the Footpad Abscess of a Black Vulture, Coragyps Atratus. Int. J. Syst. Evol. Microbiol. 1993, 43, 585–590. [Google Scholar]
- Kumar, V.; Dhar, P.; Sharma, M.; Raj, A. Bacterial Enteritis in an Oriental White Backed Vulture (Gyps Bengalensis) and Its Successful Management. Vet. Sci. Dev. 2012, 2, e1. [Google Scholar]
- Pitarch, A.; Gil, C.; Blanco, G. Oral Mycoses in Avian Scavengers Exposed to Antibiotics from Livestock Farming. Sci. Total Environ. 2017, 605, 139–146. [Google Scholar]
- Fuentes-Castillo, D.; Esposito, F.; Cardoso, B.; Dalazen, G.; Moura, Q.; Fuga, B.; Fontana, H.; Cerdeira, L.; Dropa, M.; Rottmann, J. Genomic Data Reveal International Lineages of Critical Priority Escherichia Coli Harbouring Wide Resistome in Andean Condors (Vultur Gryphus Linnaeus, 1758). Mol. Ecol. 2020, 29, 1919–1935. [Google Scholar]
- Duclos, M.; Sabat, P.; Newsome, S.D.; Pavez, E.F.; Galbán-Malagón, C.; Jaksic, F.M.; Quirici, V. Latitudinal Patterns in the Diet of Andean Condor (Vultur Gryphus) in Chile: Contrasting Environments Influencing Feeding Behavior. Sci. Total Environ. 2020, 741, 140220. [Google Scholar]
Genus and Species | Oropharynx | Cloacae | ||||
---|---|---|---|---|---|---|
Isolates | Occurrence | 95% CI | Isolates | Occurrence | 95% CI | |
Polymicrobial | 26 | 46.4% | 34–59 | 12 | 21.43% | 13–34 |
Corynebacterium spp. | 6 | 10.71% | 5–21 | 7 | 12.5% | 6–24 |
Escherichia coli | 1 | 1.78% | 0–9 | 31 | 55,36% | 42–64 |
Klebsiella spp. | 0 | 0% | 0–6 | 9 | 16.97% | 9–28 |
Proteus mirabilis | 2 | 3.57% | 1–12 | 2 | 3.57% | 1–12 |
Proteus spp. | 0 | 0% | 0–6 | 3 | 5.36% | 2–15 |
Pseudomonas spp. | 1 | 1,78% | 0–9 | 0 | 0% | 0–6 |
Staphylococcus spp. | 8 | 14.28% | 7–26 | 3 | 5.36% | 2–15 |
Staphylococcus aureus | 4 | 7.14% | 3–17 | 0 | 0% | 0–6 |
α-hemolytic Streptococcus | 1 | 1,78% | 0–9 | 0 | 0% | 0–6 |
β-hemolytic Streptococcus | 3 | 5.36% | 2–15 | 1 | 1.78% | 0–9 |
Bacillus spp. | 7 | 12.5% | 6–24 | 1 | 1.78% | 0–9 |
Micrococcus spp. | 9 | 16.97% | 9–28 | 0 | 0% | 0–6 |
Serratia spp. | 0 | 0% | 0–6 | 2 | 3.57% | 1–12 |
Enterococcus spp. | 0 | 0% | 0–6 | 0 | 0% | 0–6 |
Enterobacter spp. | 0 | 0% | 0–6 | 0 | 0% | 0–6 |
Genus and Species | Oropharynx | Cloacae | ||||
---|---|---|---|---|---|---|
Isolates | Occurrence | 95% CI | Isolates | Occurrence | 95% CI | |
Polymicrobial | 16 | 22.53% | 14–34 | 15 | 21.13% | 13–32 |
Corynebacterium spp. | 10 | 14.08% | 8–24 | 1 | 1.41% | 0–8 |
Escherichia coli | 9 | 12.68% | 7–22 | 35 | 49.30% | 38–61 |
Klebsiella spp. | 2 | 2.82% | 1–10 | 0 | 0% | 0–5 |
Klebsiella pneumoniae | 1 | 1.41% | 0–8 | 0 | 0% | 0–5 |
Proteus spp. | 0 | 0% | 0–5 | 6 | 8.45% | 4–17 |
Proteus mirabilis | 4 | 5,63% | 2–15 | 3 | 4.22% | 1–12 |
Aeromonas spp. | 1 | 1.41% | 0–8 | 0 | 0% | 0–5 |
Staphylococcus spp. | 21 | 29.58% | 20–41 | 0 | 0% | 0–5 |
Staphylococcus aureus | 8 | 11.27% | 6–21 | 4 | 5,63% | 2–15 |
β-hemolytic Streptococcus | 6 | 8.45% | 4–17 | 3 | 4.22% | 1–12 |
Bacillus spp. | 1 | 1.41% | 0–8 | 0 | 0% | 0–5 |
Micrococcus spp. | 5 | 7.94% | 3–15 | 1 | 1.41% | 0–8 |
Enterobacter spp. | 2 | 2.82% | 1–10 | 2 | 2.82% | 1–10 |
Enterococcus spp. | 0 | 0% | 0–5 | 7 | 2.82% | 1–10 |
Enterococcus faecalis | 0 | 0% | 0–5 | 4 | 5,63% | 2–15 |
Enterococcus cloacae | 0 | 0% | 0–5 | 2 | 2.82% | 1–10 |
Pseudomonas spp. | 2 | 2.82% | 1–10 | 0 | 0% | 0–5 |
Salmonella spp. | 0 | 0% | 0–5 | 2 | 2.82% | 1–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiemeyer, G.M.; Plaza, P.I.; Bustos, C.P.; Muñoz, A.J.; Lambertucci, S.A. Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds. Int. J. Environ. Res. Public Health 2021, 18, 5231. https://doi.org/10.3390/ijerph18105231
Wiemeyer GM, Plaza PI, Bustos CP, Muñoz AJ, Lambertucci SA. Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds. International Journal of Environmental Research and Public Health. 2021; 18(10):5231. https://doi.org/10.3390/ijerph18105231
Chicago/Turabian StyleWiemeyer, Guillermo María, Pablo Ignacio Plaza, Carla Paola Bustos, Alejandra Jimena Muñoz, and Sergio Agustín Lambertucci. 2021. "Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds" International Journal of Environmental Research and Public Health 18, no. 10: 5231. https://doi.org/10.3390/ijerph18105231
APA StyleWiemeyer, G. M., Plaza, P. I., Bustos, C. P., Muñoz, A. J., & Lambertucci, S. A. (2021). Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds. International Journal of Environmental Research and Public Health, 18(10), 5231. https://doi.org/10.3390/ijerph18105231